Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = circumferential cracks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6773 KiB  
Article
Mechanical Properties of Steel Fiber-Reinforced Concrete Tunnel Secondary Lining Structure and Optimization of Support Parameters
by Zijian Wang, Yunchuan Wang, Xiaorong Wang, Baosheng Rong, Bin Zhang, Liming Wu, Chaolin Jia and Zihang Huang
Buildings 2025, 15(14), 2390; https://doi.org/10.3390/buildings15142390 - 8 Jul 2025
Viewed by 332
Abstract
To enhance the economic and safety aspects of tunnel structural design, this study optimizes the mix proportion of steel fiber-reinforced concrete (SFRC). It investigates the stress characteristics and support parameters of SFRC secondary lining structures via small-scale model tests and finite element analysis. [...] Read more.
To enhance the economic and safety aspects of tunnel structural design, this study optimizes the mix proportion of steel fiber-reinforced concrete (SFRC). It investigates the stress characteristics and support parameters of SFRC secondary lining structures via small-scale model tests and finite element analysis. The research focuses on the cracking process, deformation, and stress characteristics of SFRC linings under various loads. Compared with conventional reinforced concrete tunnels, SFRC tunnels show a significant increase in lining stiffness and load capacity, with a 20% reduction in reinforcement yielding load. When the damage factor is 0.43, the addition of steel fibers increases compressive stress by 22.18%. Using ABAQUS, simulations of SFRC linings with thicknesses ranging from 400 mm to 600 mm and reinforcement ratios of 0% to 0.28% were conducted. The results indicate that a 450 mm thick SFRC lining matches the mechanical performance of a 600 mm thick conventional reinforced concrete lining. Notably, an SFRC lining with a 0.20% circumferential reinforcement ratio equals a conventional lining with a 0.28% reinforcement ratio in overall mechanical performance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 4336 KiB  
Article
Experimental Study on Failure Mechanisms of Shield Tunnel Segments with Initial Cracks Under Surcharge Loading
by Pengfei Xiang, Gang Wei, Haibo Jiang, Yongjie Qi and Yangyang Liu
Symmetry 2025, 17(7), 1036; https://doi.org/10.3390/sym17071036 - 1 Jul 2025
Viewed by 252
Abstract
Accidental ground surcharge loads can induce adverse effects such as segment cracking in underlying shield tunnel structures, with particularly pronounced impacts on pre-damaged tunnel segments. Cracks represent one of the most common initial damage forms in shield tunnel structures. To investigate through-crack failure [...] Read more.
Accidental ground surcharge loads can induce adverse effects such as segment cracking in underlying shield tunnel structures, with particularly pronounced impacts on pre-damaged tunnel segments. Cracks represent one of the most common initial damage forms in shield tunnel structures. To investigate through-crack failure mechanisms in shield tunnel segments with initial cracks under surcharge loading, this study conducted 1:8 scaled indoor model tests, considering factors including initial crack length, quantity, morphology, and surcharge position. Research findings demonstrate that increased initial crack length and quantity significantly reduce the critical load required for through-crack formation. Specifically, segments with 9 cm longitudinal initial cracks required 50.9% less load to develop through-cracks compared to intact segments. Similarly, segments containing two 9 cm circumferential initial cracks exhibited a 22.1% reduction in critical load relative to those with single circumferential cracks. Initial cracks in pre-damaged segments substantially influence the propagation path of new cracks during subsequent loading failures. The detrimental effects of staggered longitudinal-circumferential initial cracks exceed those of purely longitudinal cracks, which themselves pose greater risks than circumferential cracks alone. Bilateral surcharge loading significantly increases the critical load threshold for through-crack formation compared to unilateral loading. This highlights the severe structural risks associated with uneven load distribution. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

13 pages, 3737 KiB  
Article
The Application of Numerical Ductile Fracture Simulation in the LBB Evaluation of Nuclear Pipes
by Yuxuan Fang, Biao Li, Chang-Sung Seok and Tao Shen
Appl. Sci. 2025, 15(13), 7010; https://doi.org/10.3390/app15137010 - 21 Jun 2025
Viewed by 287
Abstract
The leak-before-break (LBB) concept is widely used in the design and estimation of piping systems of nuclear power plants, which requires considerable test work to obtain the fracture resistance (J-R) curves of nuclear pipes. The application of numerical ductile fracture simulation can effectively [...] Read more.
The leak-before-break (LBB) concept is widely used in the design and estimation of piping systems of nuclear power plants, which requires considerable test work to obtain the fracture resistance (J-R) curves of nuclear pipes. The application of numerical ductile fracture simulation can effectively limit the test work. In this study, an extended stress-modified critical strain (SMCS) model is applied to simulate the crack growth behaviors of full-scale nuclear pipes (SA312 TP304L stainless steel) with a circumferential through-wall crack under a four-point bending load. The LBB evaluation is performed based on the J-R curves of CT specimens and full-scale pipes obtained from fracture resistance tests and numerical simulations. It shows that due to the high crack-tip constraint effect, CT specimens may cause lots of conservatism in the LBB evaluation of nuclear pipes, while the application of numerical ductile fracture simulation can largely reduce the conservatism. Full article
Show Figures

Figure 1

19 pages, 2791 KiB  
Article
Experimental Investigation of Mechanical Behavior and Damage Evolution of Coal Materials Subjected to Cyclic Triaxial Loads with Increasing Amplitudes
by Zongwu Song, Chun’an Tang and Hongyuan Liu
Materials 2025, 18(13), 2940; https://doi.org/10.3390/ma18132940 - 21 Jun 2025
Viewed by 482
Abstract
As a part of the mining-induced stress redistribution process during coal mining, the repeated loading and unloading process with increasing peak stresses will cause more severe deformation and damage to mining roadways, which is different from the findings in other underground engineering practices. [...] Read more.
As a part of the mining-induced stress redistribution process during coal mining, the repeated loading and unloading process with increasing peak stresses will cause more severe deformation and damage to mining roadways, which is different from the findings in other underground engineering practices. Consequently, cyclic triaxial compression tests with increasing amplitudes were carried out to investigate the mechanical behavior, acoustic emission (AE) characteristics, and damage evolution of coal materials. It is found that peak deviatoric stress and axial residual strain at the failure of coal specimens increase with increasing confining pressures, while the changes in circumferential strain are not obvious. Moreover, the failure patterns of coal specimens exhibit shear failure due to the constraint of confining pressures while some local tensile cracks occur near the shear bands at both ends of the specimens. After that, the damage evolution of coal specimens was analyzed against the regularity of AE counts and energies to develop a damage evolution model. It is concluded that the damage evolution model can not only quantify the deformation and failure process of the coal specimens under cyclic loads with increasing amplitudes but also takes into account both the initial damage due to natural defects and the induced damage by the cyclic loads in previous cycles. Full article
Show Figures

Figure 1

22 pages, 12454 KiB  
Article
Analysis of Filled Soil-Induced Pier Offset and Cracking in a Highway Bridge and Retrofitting Scheme Development: A Case Study
by Xiaowei Tao, Haikuan Liu, Jie Li, Pinde Yu and Junfeng Zhang
Buildings 2025, 15(11), 1929; https://doi.org/10.3390/buildings15111929 - 2 Jun 2025
Cited by 1 | Viewed by 612
Abstract
This study investigates the underlying causes of pier displacement and cracking in a highway link bridge. The initial geological assessment ruled out slope instability as a contributing factor to pier movement. Subsequently, a comprehensive analysis, integrating in situ soil investigation and finite element [...] Read more.
This study investigates the underlying causes of pier displacement and cracking in a highway link bridge. The initial geological assessment ruled out slope instability as a contributing factor to pier movement. Subsequently, a comprehensive analysis, integrating in situ soil investigation and finite element modeling, was conducted to evaluate the influence of additional fill loads on the piers. The findings reveal that the additional filled soil loads were the primary driver of pier tilting and lateral displacement, leading to a significant risk of cracking, particularly in the mid-section of the piers. Following the removal of the filled soil, visual inspection of the piers confirmed the development of circumferential cracks on the columns of Pier 7, with the crack distribution closely aligning with the high-risk zones predicted by the finite element analysis. To address the observed damage and residual displacement, a reinforcement strategy combining column strengthening and alignment correction was proposed and validated through load-bearing capacity calculations. This study not only provides a scientific basis for analyzing the causes of accidents and bridge reinforcement but, more importantly, it provides a systematic method for analyzing the impact of additional filled soil loads on bridge piers, offering guidance for accident analysis and risk assessment in similar engineering projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 14111 KiB  
Article
High-Speed Bearing Reliability: Analysis of Tapered Roller Bearing Performance and Cage Fracture Mechanisms
by Qingsong Li, Jiaao Ning, Hang Liang and Muzhen Yang
Metals 2025, 15(6), 592; https://doi.org/10.3390/met15060592 - 26 May 2025
Viewed by 532
Abstract
This investigation examines the fracture mechanisms of 31,311 tapered roller bearing cages using finite element analysis (FEA) and the Gurson–Tvergaard–Needleman (GTN) damage model. Static, dynamic, modal, and harmonic response analyses identify critical stress concentrations at the contact interface between the rolling elements and [...] Read more.
This investigation examines the fracture mechanisms of 31,311 tapered roller bearing cages using finite element analysis (FEA) and the Gurson–Tvergaard–Needleman (GTN) damage model. Static, dynamic, modal, and harmonic response analyses identify critical stress concentrations at the contact interface between the rolling elements and the outer ring, with maximum deformation occurring in the inner ring. Modal analysis excludes resonance as a potential failure cause. Crack initiation and propagation studies reveal that cracks predominantly form at the pocket bridge corners, propagating circumferentially. The propagation angle increases under circumferential and coupled loading conditions while remaining constant under longitudinal loading. Based on the GTN model, this study is the first to examine the crack propagation and fracture toughness of the cage under various loading conditions. The results indicate that longitudinal loading (Load II) yields the highest fracture toughness, significantly surpassing those under circumferential (Load I) and coupled loading (Load III). Load II exhibits the strongest crack growth resistance, with a peak CTODc of 0.598 mm, attributed to plastic strain accumulation. Fracture toughness decreases with crack depth, as CTODc declines by 66.5%, 20.1%, and 58.4% for Loads I, II, and III, respectively. Crack deflection angles show the greatest variation under Load I (35% increase), while Loads II and III demonstrate minimal sensitivity (<10% change). The optimization of the bearing cage pocket hole fillet radius from 0 mm to 0.75 mm demonstrates a maximum stress concentration reduction of 38.2% across different load conditions. This work introduces a novel methodology for predicting cage fracture behavior and optimizing design, offering valuable insights to enhance the reliability and longevity of systems in high-speed, high-load applications. Full article
Show Figures

Figure 1

17 pages, 6934 KiB  
Article
Fatigue Life Anisotropy of API 5L X42 Pipeline Steel in Axial Force-Controlled Tests
by Manuel A. Beltrán-Zúñiga, Jorge L. González-Velázquez, Diego I. Rivas-López, Héctor J. Dorantes-Rosales, Carlos Ferreira-Palma, Felipe Hernández-Santiago and Fernando Larios-Flores
Materials 2025, 18(11), 2484; https://doi.org/10.3390/ma18112484 - 26 May 2025
Viewed by 365
Abstract
Fatigue endurance anisotropic behavior was evaluated for an API 5L X42 pipeline steel through axial force-controlled fatigue tests amongst Longitudinal, Diagonal, and Circumferential directions. This study shows that fatigue life anisotropy is mainly controlled by pearlite banding degree (Ai) and [...] Read more.
Fatigue endurance anisotropic behavior was evaluated for an API 5L X42 pipeline steel through axial force-controlled fatigue tests amongst Longitudinal, Diagonal, and Circumferential directions. This study shows that fatigue life anisotropy is mainly controlled by pearlite banding degree (Ai) and ferritic grain orientation (Ω12). Also, it is foreseen that the observed behavior can be related to the dislocation arrays generated by the cyclic loading in relation to microstructure orientation, and the interactions of the fatigue crack tip with the microstructure during the crack propagation stage. Full article
Show Figures

Figure 1

21 pages, 4230 KiB  
Article
A Study on the Crack Propagation Behavior of Cement Sheath Interfaces Considering Bond Strength
by Jiwei Wu, Xuegang Wang, Shiyuan Xie, Yanxian Wu, Yilin Li, Zhenhui Shu, Xiaojun Zhang, Wei Lian and Dandan Yuan
Processes 2025, 13(6), 1631; https://doi.org/10.3390/pr13061631 - 22 May 2025
Viewed by 507
Abstract
Existing studies have not considered the impact of interface bond strength on the ease of crack propagation at the cement sheath interface. Through Brazilian splitting and direct shear tests, the normal and shear bond strengths at interfaces I and II of a cement [...] Read more.
Existing studies have not considered the impact of interface bond strength on the ease of crack propagation at the cement sheath interface. Through Brazilian splitting and direct shear tests, the normal and shear bond strengths at interfaces I and II of a cement sheath were quantified. Based on this, a crack propagation model for the cement sheath interface was established using cohesive zone elements. The propagation characteristics of cracks along the axial and circumferential directions at interfaces I and II of a cement sheath during hydraulic fracturing were analyzed, along with their influencing factors. The results show that, due to the difference in interface bond strength, the crack propagation rate and length at interface I in the axial direction are greater than those at interface II, while the interface II crack is more likely to propagate in the circumferential direction. The elastic modulus of the cement sheath is a key factor affecting the integrity of the cement seal. Both excessively low and high elastic moduli can lead to different forms of failure in the cement sheath. It is recommended to control the elastic modulus of the cement sheath between 7 and 8 GPa. As the internal casing pressure increases, the axial propagation length of cement sheath interface cracks also increases. During fracturing, reducing pump pressure can reduce the axial crack propagation length in the cement sheath, alleviating or preventing the risk of fluid migration between stages and clusters. The findings of this study provide theoretical references and engineering support for the control of cement sheath seal integrity. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

20 pages, 5317 KiB  
Article
Numerical Analysis and Optimization of Residual Stress Distribution in Lined Pipe Overlay Welding
by Yuwei Sun, Sirong Yu, Bingying Wang and Tianping Gu
Processes 2025, 13(5), 1548; https://doi.org/10.3390/pr13051548 - 17 May 2025
Cited by 1 | Viewed by 448
Abstract
This study investigates the thermal and residual stress development in multi-layer lined pipe welding through numerical simulation and experimental validation. The focus is on the weld overlay/liner transition region, a critical area prone to stress concentrations and fatigue crack initiation. Using finite element [...] Read more.
This study investigates the thermal and residual stress development in multi-layer lined pipe welding through numerical simulation and experimental validation. The focus is on the weld overlay/liner transition region, a critical area prone to stress concentrations and fatigue crack initiation. Using finite element analysis (FEA) with the Goldak double-ellipsoidal heat source model, the research examines the temperature evolution, residual stress distribution, and deformation characteristics during the welding process. Key findings reveal that the peak temperature in the weld overlay region reaches 3045.2 °C, ensuring complete metallurgical bonding. Residual stresses are predominantly tensile near the three-phase boundary, with maximum von Mises stress observed in the base pipe at 359.30 MPa. This study also employs Response Surface Methodology (RSM) to optimize welding parameters, achieving a 20.5% reduction in residual axial stress and a 58.1% reduction in residual circumferential stress. These results provide valuable insights for optimizing welding processes, improving quality control, and enhancing the long-term reliability of bimetallic composite pipelines. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 22095 KiB  
Article
Experimental and Numerical Investigation of Constant-Amplitude Fatigue Performance in Welded Joints of Steel Tubular Flange Connections for Steel Structures
by Huaguang Ni, Saicong Guo, Shujia Zhang and Honggang Lei
Buildings 2025, 15(9), 1574; https://doi.org/10.3390/buildings15091574 - 7 May 2025
Viewed by 446
Abstract
Welded joints of tubular flange connections (TFCs) for steel structures are prone to cumulative fatigue breakdown under oscillatory loading regimes. This study investigates the constant-amplitude fatigue performance of these welded connections through combined experimental testing and finite element analysis. Seven tubular flange connection [...] Read more.
Welded joints of tubular flange connections (TFCs) for steel structures are prone to cumulative fatigue breakdown under oscillatory loading regimes. This study investigates the constant-amplitude fatigue performance of these welded connections through combined experimental testing and finite element analysis. Seven tubular flange connection specimens were subjected to constant-amplitude fatigue tests, and the nominal stress range approach was employed to establish S-N curves for the TFC welds, which were then compared with existing design codes. Stress concentration behavior at the weld toe was analyzed using ABAQUS finite element software. Macro- and micro-scale examinations of fatigue fracture surfaces were conducted to elucidate the fatigue crack mechanisms. The results demonstrate an allowable stress range of 82.41 MPa at a 2-million-cycle fatigue strength, exceeding the specifications of current fatigue design codes. The finite element analysis shows that there is a significant stress concentration at the weld toe of the steel tube–flange weld, and the uneven stress distribution in the circumferential direction of the weld makes this position more prone to fatigue failure, which is consistent with the experimental phenomena. The derived fatigue design method for TFCs provides practical guidance for engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 7585 KiB  
Article
The Research on Path Planning Method for Detecting Automotive Steering Knuckles Based on Phased Array Ultrasound Point Cloud
by Yihao Mao, Jun Tu, Huizhen Wang, Yangfan Zhou, Qiao Wu, Xu Zhang and Xiaochun Song
Sensors 2025, 25(9), 2907; https://doi.org/10.3390/s25092907 - 4 May 2025
Viewed by 473
Abstract
To address the challenges of automatic detection caused by the variation of surface normal vectors in automotive steering knuckles, an automatic detection method based on ultrasonic phased array technology is herein proposed. First, a point cloud model of the workpiece was constructed using [...] Read more.
To address the challenges of automatic detection caused by the variation of surface normal vectors in automotive steering knuckles, an automatic detection method based on ultrasonic phased array technology is herein proposed. First, a point cloud model of the workpiece was constructed using ultrasonic distance measurement, and Gaussian-weighted principal component analysis was used to estimate the normal vectors of the point cloud. By utilizing the normal vectors, water layer thickness during detection, and the incident angle of the sound beam, the probe pose information corresponding to the detection point was precisely calculated, ensuring the stability of the sound beam incident angle during the detection process. At the same time, in the trajectory planning process, piecewise cubic Hermite interpolation was used to optimize the detection trajectory, ensuring continuity during probe movement. Finally, an automatic detection system was set up to test a steering knuckle specimen with surface circumferential cracks. The results show that the point cloud data of the steering knuckle specimen, obtained using phased array ultrasound, had a relative measurement error controlled within 1.4%, and the error between the calculated probe angle and the theoretical angle did not exceed 0.5°. The probe trajectory derived from these data effectively improved the B-scan image quality during the automatic detection of the steering knuckle and increased the defect signal amplitude by 5.6 dB, demonstrating the effectiveness of this method in the automatic detection of automotive steering knuckles. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 10319 KiB  
Article
Residual Stresses of Small-Bore Butt-Welded Piping Measured by Quantum Beam Hybrid Method
by Kenji Suzuki, Yasufumi Miura, Hidenori Toyokawa, Ayumi Shiro, Takahisa Shobu, Satoshi Morooka and Yuki Shibayama
Quantum Beam Sci. 2025, 9(2), 15; https://doi.org/10.3390/qubs9020015 - 2 May 2025
Viewed by 993
Abstract
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of [...] Read more.
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of small-bore welded piping, post-welding stress improvement measures are often not possible due to dimensional restrictions, etc. Therefore, knowing the actual welding residual stresses of small-bore welded piping regardless of reactor type is essential for the safe and stable operation of nuclear power stations, but there are only a limited number of examples of measuring the residual stresses. In this study, austenitic stainless steel pipes with an outer diameter of 100 mm and a wall thickness of 11.1 mm were butt-welded. The residual stresses were measured by the strain scanning method using neutrons. Furthermore, to obtain detailed residual stresses near the penetration bead where the maximum stress is generated, the residual stresses near the inner surface of the weld were measured using the double-exposure method (DEM) with hard X-rays of synchrotron radiation. A method using a cross-correlation algorithm was proposed to determine the accurate diffraction angle from the complex diffraction patterns from the coarse grains, dendritic structures, and plastic zones. A quantum beam hybrid method (QBHM) was proposed that uses the circumferential residual stresses obtained by neutrons and the residual stresses obtained by the double-exposure method in a complementary use. The residual stress map of welded piping measured using the QBHM showed an area where the axial tensile residual stress exists from the neighborhood of the penetration bead toward the inside of the welded metal. This result could explain the occurrence of stress corrosion cracking in the butt-welded piping. A finite element analysis of the same butt-welded piping was performed and its results were compared. There is also a difference between the simulation results of residual stress using the finite element method and the measurement results using the QBHM. This difference is because the measured residual stress map also includes the effect of the stress of each crystal grain based on elastic anisotropy, that is, residual micro-stress. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

22 pages, 9537 KiB  
Article
Study on Wellbore Stability of Shale–Sandstone Interbedded Shale Oil Reservoirs in the Chang 7 Member of the Ordos Basin
by Yu Suo, Xuanwen Kong, Heng Lyu, Cuilong Kong, Guiquan Wang, Xiaoguang Wang and Lingzhi Zhou
Processes 2025, 13(5), 1361; https://doi.org/10.3390/pr13051361 - 29 Apr 2025
Cited by 1 | Viewed by 433
Abstract
Wellbore instability is a major constraint in large-scale shale oil extraction. This study focuses on the shale–sandstone interbedded shale oil reservoirs in the Chang 7 area, delving into the evolutionary principles governing wellbore stability in horizontal drilling operations within these formations. A geological [...] Read more.
Wellbore instability is a major constraint in large-scale shale oil extraction. This study focuses on the shale–sandstone interbedded shale oil reservoirs in the Chang 7 area, delving into the evolutionary principles governing wellbore stability in horizontal drilling operations within these formations. A geological feature analysis of shale–sandstone reservoir characteristics coupled with rigorous mechanical experimentation was undertaken to investigate the micro-mechanisms underpinning wellbore instability. The Mohr–Coulomb failure criterion applicable to sandstone and the multi-weakness planes failure criterion of shale were integrated to analyze the stress distribution of surrounding rocks within horizontal wells, facilitating the computation of collapse pressure and fracture pressure. A finite element model of wellbore stability in shale–sandstone horizontal drilling was established, and then we conducted a comprehensive analysis of the impacts of varying elastic moduli, Poisson’s ratio, and in-situ stress on wellbore stability. The findings reveal that under varying confining pressures, the predominant failure mode observed in most sandstone samples is characterized by inclined shear failure, coupled with a reduced incidence of crack formation. The strength of shale escalates proportionally with increasing confining pressure, resulting in a reduced susceptibility to failure along its inherent weak planes. This transition is characterized by a gradual shift from the prevalent mode of longitudinal splitting towards inclined shear failure. As the elastic modulus of shale rises, the discrepancy between circumferential and radial stresses decreases. In contrast, with the increasing elastic modulus of sandstone, the gap between circumferential and radial stresses widens, potentially inducing potential instabilities in the wellbore. An increase in sandstone’s Poisson’s ratio corresponds to a proportional increase in the difference between circumferential and radial stresses. Under reverse fault stress regimes, wellbore collapse and instability are predisposed to occur. Calculations of collapse pressure and fracture pressure reveal that the safety density window is minimized at the interface between shale and sandstone, rendering it susceptible to wellbore instability. These research findings offer significant insights for the investigation of wellbore stability in interbedded shale–sandstone reservoirs contributing to the academic discourse in this field. Full article
(This article belongs to the Special Issue Advanced Research on Marine and Deep Oil & Gas Development)
Show Figures

Figure 1

25 pages, 51954 KiB  
Article
Mechanical Properties of Marble Under Triaxial and Cyclic Loading Based on Discrete Elements
by Yanshuang Yang, Jiancheng Peng, Zhen Cui, Lei Yan and Zhaopeng Kang
Appl. Sci. 2025, 15(7), 3576; https://doi.org/10.3390/app15073576 - 25 Mar 2025
Cited by 1 | Viewed by 379
Abstract
The excavation process for a deeply buried chamber in a high ground stress area is often dynamic. The design of reasonable excavation methods for differing geological conditions and surrounding pressure environments is of great engineering significance in order to improve the stability of [...] Read more.
The excavation process for a deeply buried chamber in a high ground stress area is often dynamic. The design of reasonable excavation methods for differing geological conditions and surrounding pressure environments is of great engineering significance in order to improve the stability of surrounding rocks during construction. Based on the findings from conventional triaxial and cyclic loading laboratory tests on marble, this paper obtains a set of mesoscopic parameters that accurately represent the macro-mechanical characteristics of marble, uses the discrete element method (DEM) to establish a numerical model, and carries out numerical tests of triaxial and cyclic loading under varying circumferential pressures. The mechanical parameter evolution, crack propagation mechanism and mesoscopic force field distribution of marble under conventional triaxial stress and cyclic load-reversal conditions are compared and analyzed. The findings suggest that the peak strength, residual strength, peak axial strain, elastic modulus, and Poisson’s ratio of marble increase as the circumferential pressures rises for both stress paths. The peak strength and elastic modulus under cyclic loading at different circumferential pressures are lower than those observed under conventional triaxial conditions, while the Poisson’s ratio is higher compared to conventional triaxial conditions. The cumulative total number of microcracks in marble damage under cyclic loading is higher and the damage is more complete compared to conventional triaxial loading. The rock specimens in both stress paths are dominated by tension cracks. Nevertheless, a greater number of shear cracks are exhibited by the specimens subjected to cyclic loading conditions. The proportion of tension cracks in the rock specimens gradually decreases with increasing circumferential pressure, while the proportion of shear cracks gradually increases. For both stress paths, the angular distribution of microcracks following rock specimen failure is similar, and the force chain becomes progressively denser as the circumferential pressures increase. The force chain distribution within the rock specimens is more heterogeneous under cyclic loading conditions than under conventional triaxial conditions. Full article
Show Figures

Figure 1

17 pages, 12960 KiB  
Article
Friction and Wear of Tungsten Carbide Dies in the Dry Drawing of Steel Wire
by Maciej Suliga, Piotr Szota, Joanna Kulasa, Anna Brudny and Marek Burdek
Materials 2025, 18(7), 1409; https://doi.org/10.3390/ma18071409 - 22 Mar 2025
Viewed by 594
Abstract
This paper presents an analysis of the wear of the surface layer of drawing dies after the steel wire drawing process. It was shown that the working surface of the drawing die is characterized by high roughness combined with the occurrence of numerous [...] Read more.
This paper presents an analysis of the wear of the surface layer of drawing dies after the steel wire drawing process. It was shown that the working surface of the drawing die is characterized by high roughness combined with the occurrence of numerous scratches and blurs. As a result of high pressures in the deformation zone, premature wear of drawing dies combined with mechanical damage and the sticking of steel on the drawing surfaces can occur during the industrial drawing process. The finite element method analysis showed a significant relationship between the friction coefficient and the rate of drawing die wear. The varying distribution of stresses in the drawing die during the drawing process can contribute to mechanical damage. Longitudinal tensile stresses at the wire’s entrance to the drawing die increase the risk of circumferential cracking of drawing dies. Full article
Show Figures

Figure 1

Back to TopTop