Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,344)

Search Parameters:
Keywords = chronic obstructive pulmonary diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 840 KiB  
Article
Baseline Knee Osteoarthritis and Chronic Obstructive Pulmonary Disease as Predictors of Physical Activity Decline: A Five-Year Longitudinal Study in U.S. Adults Using the Disablement Process Framework
by Saad A. Alhammad and Vishal Vennu
Healthcare 2025, 13(15), 1902; https://doi.org/10.3390/healthcare13151902 - 5 Aug 2025
Viewed by 39
Abstract
Background/Objective: Understanding how chronic conditions such as knee osteoarthritis (OA) and chronic obstructive pulmonary disease (COPD) influence long-term physical activity (PA) is essential for developing condition-specific rehabilitation strategies. This study aimed to examine whether baseline diagnoses of knee OA and COPD are independently [...] Read more.
Background/Objective: Understanding how chronic conditions such as knee osteoarthritis (OA) and chronic obstructive pulmonary disease (COPD) influence long-term physical activity (PA) is essential for developing condition-specific rehabilitation strategies. This study aimed to examine whether baseline diagnoses of knee OA and COPD are independently associated with the trajectories of PA decline over five years in U.S. adults, informed by the disablement process model. Methods: We analyzed data from 855 adults aged ≥45 years enrolled in the Osteoarthritis Initiative (OAI). The participants were categorized into three baseline groups, control (n = 122), knee OA (n = 646), and COPD (n = 87), based on self-reports and prior clinical assessments. PA was measured annually for five years using the Physical Activity Scale for the Elderly (PASE). General linear mixed models assessed changes in PA over time, adjusting for demographic, behavioral, and clinical covariates. Results: Compared to the controls, participants with knee OA had a significant decline in PA over time (β = −6.62; 95% CI: −15.4 to −2.19; p = 0.014). Those with COPD experienced an even greater decline compared to the knee OA group (β = −11.2; 95% CI: −21.7 to −0.67; p = 0.037). These associations persisted after adjusting for age, sex, body mass index, comorbidities, and smoking. Conclusions: Baseline knee OA and COPD were independently associated with long-term reductions in PA. These findings underscore the importance of early, tailored rehabilitation strategies, particularly pulmonary rehabilitation, in preserving functional independence among older adults with chronic conditions. Full article
(This article belongs to the Special Issue Association Between Physical Activity and Chronic Condition)
Show Figures

Figure 1

22 pages, 4258 KiB  
Article
A Few-Shot SE-Relation Net-Based Electronic Nose for Discriminating COPD
by Zhuoheng Xie, Yao Tian and Pengfei Jia
Sensors 2025, 25(15), 4780; https://doi.org/10.3390/s25154780 - 3 Aug 2025
Viewed by 161
Abstract
We propose an advanced electronic nose based on SE-RelationNet for COPD diagnosis with limited breath samples. The model integrates residual blocks, BiGRU layers, and squeeze–excitation attention mechanisms to enhance feature-extraction efficiency. Experimental results demonstrate exceptional performance with minimal samples: in 4-way 1-shot tasks, [...] Read more.
We propose an advanced electronic nose based on SE-RelationNet for COPD diagnosis with limited breath samples. The model integrates residual blocks, BiGRU layers, and squeeze–excitation attention mechanisms to enhance feature-extraction efficiency. Experimental results demonstrate exceptional performance with minimal samples: in 4-way 1-shot tasks, the model achieves 85.8% mean accuracy (F1-score = 0.852), scaling to 93.3% accuracy (F1-score = 0.931) with four samples per class. Ablation studies confirm that the 5-layer residual structure and single-hidden-layer BiGRU optimize stability (h_F1-score ≤ 0.011). Compared to SiameseNet and ProtoNet, SE-RelationNet shows superior accuracy (>15% improvement in 1-shot tasks). This technology enables COPD detection with as few as one breath sample, facilitating early intervention to mitigate lung cancer risks in COPD patients. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors (2nd Edition))
Show Figures

Figure 1

13 pages, 456 KiB  
Review
The Role of Obstructive Sleep Apnea in Pulmonary Hypertension Associated with Lung Diseases (Group 3 Pulmonary Hypertension): A Narrative Review
by Athiwat Tripipitsiriwat, Atul Malhotra, Hannah Robertson, Nick H. Kim, Jenny Z. Yang and Janna Raphelson
J. Clin. Med. 2025, 14(15), 5442; https://doi.org/10.3390/jcm14155442 - 1 Aug 2025
Viewed by 728
Abstract
Obstructive sleep apnea (OSA) could increase pulmonary artery pressure. However, the clinical consequences vary, mainly depending on comorbidities. Patients with pulmonary hypertension associated with lung diseases (World Health Organization (WHO) Group 3 pulmonary hypertension) are particularly vulnerable increases in pulmonary artery pressure. Managing [...] Read more.
Obstructive sleep apnea (OSA) could increase pulmonary artery pressure. However, the clinical consequences vary, mainly depending on comorbidities. Patients with pulmonary hypertension associated with lung diseases (World Health Organization (WHO) Group 3 pulmonary hypertension) are particularly vulnerable increases in pulmonary artery pressure. Managing pulmonary hypertension in this specific patient population presents a considerable challenge. While positive airway pressure therapy for OSA has shown promise in improving pulmonary hemodynamics in patients with obesity hypoventilation syndrome and chronic obstructive pulmonary disease, evidence is lacking for similar improvements in those with other pulmonary diseases and hypoventilation disorders. Furthermore, pulmonary-artery-specific therapies may carry a risk of clinical worsening in this group. Weight management and new pharmacotherapy have together emerged as a crucial intervention, demonstrating benefits for both OSA and pulmonary hemodynamics. We reviewed key studies that provide insights into the influence of OSA on WHO Group 3 pulmonary hypertension and the clinical management of both conditions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

11 pages, 245 KiB  
Review
The Impact of Insulin Resistance on Lung Volume Through Right Ventricular Dysfunction in Diabetic Patients—Literature Review
by Daniel Radu, Oana-Andreea Parlițeanu, Andra-Elena Nica, Cristiana Voineag, Octavian-Sabin Alexe, Alexandra Maria Cristea, Livia Georgescu, Roxana Maria Nemeș, Andreea Taisia Tiron and Alexandra Floriana Nemeș
J. Pers. Med. 2025, 15(8), 336; https://doi.org/10.3390/jpm15080336 - 1 Aug 2025
Viewed by 228
Abstract
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients [...] Read more.
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients with T2DM. Emerging evidence suggests that IR contributes to early structural and functional alterations in the right ventricle, independent of overt cardiovascular disease. The mechanisms involved include oxidative stress, inflammation, dyslipidemia, and obesity—factors commonly found in metabolic syndrome and T2DM. These pathophysiological changes compromise right ventricular contractility, leading to reduced pulmonary perfusion and respiratory capacity. RVD has been associated with chronic lung disease, pulmonary hypertension, and obstructive sleep apnea, all of which are prevalent in the diabetic population. As RVD progresses, it can result in impaired gas exchange, interstitial pulmonary edema, and exercise intolerance—highlighting the importance of early recognition and management. Therapeutic strategies should aim to improve insulin sensitivity and cardiac function through lifestyle interventions, pharmacological agents such as SGLT2 inhibitors and GLP-1/GIP analogs, and routine cardiac monitoring. These approaches may help slow the progression of RVD and its respiratory consequences. Considering the global burden of diabetes and obesity, and the growing incidence of related complications, further research is warranted to clarify the mechanisms linking IR, RVD, and respiratory dysfunction. Understanding this triad will be crucial for developing targeted interventions that improve outcomes and quality of life in affected patients. Full article
(This article belongs to the Section Mechanisms of Diseases)
14 pages, 287 KiB  
Article
Exploring the Link Between Social and Economic Instability and COPD: A Cross-Sectional Analysis of the 2022 BRFSS
by Michael Stellefson, Min-Qi Wang, Yuhui Yao, Olivia Campbell and Rakshan Sivalingam
Int. J. Environ. Res. Public Health 2025, 22(8), 1207; https://doi.org/10.3390/ijerph22081207 - 31 Jul 2025
Viewed by 187
Abstract
Despite growing recognition of the role that social determinants of health (SDOHs) and health-related social needs (HRSNs) play in chronic disease, limited research has examined their associations with Chronic Obstructive Pulmonary Disease (COPD) in population-based studies. This cross-sectional study analyzed 2022 Behavioral Risk [...] Read more.
Despite growing recognition of the role that social determinants of health (SDOHs) and health-related social needs (HRSNs) play in chronic disease, limited research has examined their associations with Chronic Obstructive Pulmonary Disease (COPD) in population-based studies. This cross-sectional study analyzed 2022 Behavioral Risk Factor Surveillance System (BRFSS) data from 37 U.S. states and territories to determine how financial hardship, food insecurity, employment loss, healthcare access barriers, and psychosocial stressors influence the prevalence of COPD. Weighted logistic regression models were used to assess the associations between COPD and specific SDOHs and HRSNs. Several individual SDOH and HRSN factors were significantly associated with COPD prevalence, with financial strain emerging as a particularly strong predictor. In models examining specific SDOH factors, economic hardships like inability to afford medical care were strongly linked to higher COPD odds. Psychosocial HRSN risks, such as experiencing mental stress, also showed moderate associations with increased COPD prevalence. These findings suggest that addressing both structural and individual-level social risks may be critical for reducing the prevalence of COPD in populations experiencing financial challenges. Full article
2 pages, 157 KiB  
Retraction
RETRACTED: Sá et al. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients 2024, 16, 1509
by Ana Karolina Sá, Fabiana Olímpio, Jessica Vasconcelos, Paloma Rosa, Hugo Caire Faria Neto, Carlos Rocha, Maurício Frota Camacho, Uilla Barcick, Andre Zelanis and Flavio Aimbire
Nutrients 2025, 17(15), 2513; https://doi.org/10.3390/nu17152513 - 31 Jul 2025
Viewed by 108
Abstract
The journal retracts the article titled “Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages” [...] Full article
13 pages, 777 KiB  
Article
Nomogram Development and Feature Selection Strategy Comparison for Predicting Surgical Site Infection After Lower Extremity Fracture Surgery
by Humam Baki and Atilla Sancar Parmaksızoğlu
Medicina 2025, 61(8), 1378; https://doi.org/10.3390/medicina61081378 - 30 Jul 2025
Viewed by 200
Abstract
Background and Objectives: Surgical site infections (SSIs) are a frequent complication after lower extremity fracture surgery, yet tools for individualized risk prediction remain limited. This study aimed to develop and internally validate a nomogram for individualized SSI risk prediction based on perioperative [...] Read more.
Background and Objectives: Surgical site infections (SSIs) are a frequent complication after lower extremity fracture surgery, yet tools for individualized risk prediction remain limited. This study aimed to develop and internally validate a nomogram for individualized SSI risk prediction based on perioperative clinical parameters. Materials and Methods: This retrospective cohort study included adults who underwent lower extremity fracture surgery between 2022 and 2025 at a tertiary care center. Thirty candidate predictors were evaluated. Feature selection was performed using six strategies, and the final model was developed with logistic regression based on bootstrap inclusion frequency. Model performance was assessed by area under the curve, calibration slope, Brier score, sensitivity, and specificity. Results: Among 638 patients undergoing lower extremity fracture surgery, 76 (11.9%) developed SSIs. Of six feature selection strategies compared, bootstrap inclusion frequency identified seven predictors: red blood cell count, preoperative C-reactive protein, chronic kidney disease, operative time, chronic obstructive pulmonary disease, body mass index, and blood transfusion. The final model demonstrated an AUROC of 0.924 (95% CI, 0.876–0.973), a calibration slope of 1.03, and a Brier score of 0.0602. Sensitivity was 86.2% (95% CI, 69.4–94.5) and specificity was 89.5% (95% CI, 83.8–93.3). Chronic kidney disease (OR, 88.75; 95% CI, 5.51–1428.80) and blood transfusion (OR, 85.07; 95% CI, 11.69–619.09) were the strongest predictors of infection. Conclusions: The developed nomogram demonstrates strong predictive performance and may support personalized SSI risk assessment in patients undergoing lower extremity fracture surgery. Full article
(This article belongs to the Special Issue Evaluation, Management, and Outcomes in Perioperative Medicine)
Show Figures

Figure 1

29 pages, 5407 KiB  
Article
Noncontact Breathing Pattern Monitoring Using a 120 GHz Dual Radar System with Motion Interference Suppression
by Zihan Yang, Yinzhe Liu, Hao Yang, Jing Shi, Anyong Hu, Jun Xu, Xiaodong Zhuge and Jungang Miao
Biosensors 2025, 15(8), 486; https://doi.org/10.3390/bios15080486 - 28 Jul 2025
Viewed by 386
Abstract
Continuous monitoring of respiratory patterns is essential for disease diagnosis and daily health care. Contact medical devices enable reliable respiratory monitoring, but can cause discomfort and are limited in some settings. Radar offers a noncontact respiration measurement method for continuous, real-time, high-precision monitoring. [...] Read more.
Continuous monitoring of respiratory patterns is essential for disease diagnosis and daily health care. Contact medical devices enable reliable respiratory monitoring, but can cause discomfort and are limited in some settings. Radar offers a noncontact respiration measurement method for continuous, real-time, high-precision monitoring. However, it is difficult for a single radar to characterize the coordination of chest and abdominal movements during measured breathing. Moreover, motion interference during prolonged measurements can seriously affect accuracy. This study proposes a dual radar system with customized narrow-beam antennas and signals to measure the chest and abdomen separately, and an adaptive dynamic time warping (DTW) algorithm is used to effectively suppress motion interference. The system is capable of reconstructing respiratory waveforms of the chest and abdomen, and robustly extracting various respiratory parameters via motion interference. Experiments on 35 healthy subjects, 2 patients with chronic obstructive pulmonary disease (COPD), and 1 patient with heart failure showed a high correlation between radar and respiratory belt signals, with correlation coefficients of 0.92 for both the chest and abdomen, a root mean square error of 0.80 bpm for the respiratory rate, and a mean absolute error of 3.4° for the thoracoabdominal phase angle. This system provides a noncontact method for prolonged respiratory monitoring, measurement of chest and abdominal asynchrony and apnea detection, showing promise for applications in respiratory disorder detection and home monitoring. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

19 pages, 887 KiB  
Review
Emerging Risk Factors for Invasive Pulmonary Aspergillosis: A Narrative Review
by Ahmed Elkhapery, Mariam Fatima and Ayman O. Soubani
J. Fungi 2025, 11(8), 555; https://doi.org/10.3390/jof11080555 - 27 Jul 2025
Viewed by 729
Abstract
Aspergillus can cause a spectrum of diseases depending on the immune status and predisposing conditions. Invasive pulmonary aspergillosis (IPA) is classically seen in patients with severe immunocompromise, such as patients with hematologic malignancies, transplant recipients, and chronic corticosteroid use at high doses. Recently, [...] Read more.
Aspergillus can cause a spectrum of diseases depending on the immune status and predisposing conditions. Invasive pulmonary aspergillosis (IPA) is classically seen in patients with severe immunocompromise, such as patients with hematologic malignancies, transplant recipients, and chronic corticosteroid use at high doses. Recently, IPA cases in patients without these classic risk factors, including those associated with severe respiratory viral infections, chronic obstructive pulmonary disease, liver failure, and critical illness, are being increasingly recognized. Delayed recognition and missed diagnoses contribute to increased mortality in these patient populations. Maintaining a high index of suspicion and implementation of systematic screening protocols in high-risk patients may help reduce missed or delayed diagnoses and improve patient outcomes. This review describes the pathophysiology, incidence, risk factors, outcomes, and diagnostic and treatment considerations in IPA in patients with emerging risk factors. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

15 pages, 3635 KiB  
Article
The Calprotectin Fragment, CPa9-HNE, Is a Plasma Biomarker of Mild Chronic Obstructive Pulmonary Disease
by Mugdha M. Joglekar, Jannie M. B. Sand, Theo Borghuis, Diana J. Leeming, Morten Karsdal, Frank Klont, Russell P. Bowler, Barbro N. Melgert, Janette K. Burgess and Simon D. Pouwels
Cells 2025, 14(15), 1155; https://doi.org/10.3390/cells14151155 - 26 Jul 2025
Viewed by 288
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the [...] Read more.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the extracellular matrix (ECM) plays a crucial role in COPD pathology. Remodeling of the ECM can generate ECM fragments, which can be released into circulation and subsequently induce pro-inflammatory responses. COPD is a heterogeneous disease, and serological biomarkers can be used to sub-categorize COPD patients for targeted treatments and optimal recruitment in clinical trials. This study evaluated fragments of calprotectin, collagen type VI, and versican, generated by neutrophil elastase and matrix metalloproteinases (MMP-) 2 and 12, respectively, as potential biomarkers of COPD disease, severity, and endotypes. Lower plasma levels of a neoepitope marker of calprotectin, indicative of activated neutrophils (nordicCPa9-HNETM), were detected in COPD donors compared to controls. CPa9-HNE was associated with milder disease, higher degree of air-trapping, and higher serum levels of MMP-2. Deposition of CPa9-HNE levels in lung tissue revealed no differences between groups. Taken together, CPa9-HNE was found to be a potential marker of mild COPD, but further studies are warranted to validate our findings. Full article
Show Figures

Graphical abstract

19 pages, 925 KiB  
Review
Muscle Wasting and Treatment of Dyslipidemia in COPD: Implications for Patient Management
by Andrea Bianco, Raffaella Pagliaro, Angela Schiattarella, Domenica Francesca Mariniello, Vito D’Agnano, Roberta Cianci, Ersilia Nigro, Aurora Daniele, Filippo Scialò and Fabio Perrotta
Biomedicines 2025, 13(8), 1817; https://doi.org/10.3390/biomedicines13081817 - 24 Jul 2025
Viewed by 447
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its [...] Read more.
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its role in predicting disease outcomes is complex. Muscle wasting is prevalent in COPD patients and exacerbates disease severity, contributing to poor physical performance, reduced quality of life, and increased mortality. Additionally, COPD is linked to metabolic disorders, such as dyslipidemia and diabetes, which contribute to systemic inflammation and worse prognosis and, therefore, should be treated. The systemic inflammatory response plays a central role in the development of sarcopenia. In this review, we highlight the mixed efficacy of statins in managing dyslipidemia in COPD, considering side effects, including muscle toxicity in such a frail population. Alternative lipid-lowering therapies and nutraceuticals, in addition to standard treatment, have the potential to target hypercholesterolemia, which is a coexisting condition present in more than 50% of all COPD patients, without worsening muscle wasting. The interference between adipose tissue and lung, and particularly the potential protective role of adiponectin, an adipocytokine with anti-inflammatory properties, is also reviewed. Respiratory, metabolic and muscular health in COPD is comprehensively assessed. Identifying and managing dyslipidemia and paying attention to other relevant COPD comorbidities, such as sarcopenia and muscle wasting, is important to improve the quality of life and to reduce the clinical burden of COPD patients. Future research should focus on understanding the relationships between these intimate mechanisms to facilitate specific treatment for systemic involvement of COPD. Full article
Show Figures

Figure 1

35 pages, 5195 KiB  
Article
A Multimodal AI Framework for Automated Multiclass Lung Disease Diagnosis from Respiratory Sounds with Simulated Biomarker Fusion and Personalized Medication Recommendation
by Abdullah, Zulaikha Fatima, Jawad Abdullah, José Luis Oropeza Rodríguez and Grigori Sidorov
Int. J. Mol. Sci. 2025, 26(15), 7135; https://doi.org/10.3390/ijms26157135 - 24 Jul 2025
Viewed by 463
Abstract
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these [...] Read more.
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these challenges, our study introduces a modular AI-powered framework that integrates an audio-based disease classification model with simulated molecular biomarker profiles to evaluate the feasibility of future multimodal diagnostic extensions, alongside a synthetic-data-driven prescription recommendation engine. The disease classification model analyzes respiratory sound recordings and accurately distinguishes among eight clinical classes: bronchiectasis, pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis, and healthy respiratory state. The proposed model achieved a classification accuracy of 99.99% on a holdout test set, including 94.2% accuracy on pediatric samples. In parallel, the prescription module provides individualized treatment recommendations comprising drug, dosage, and frequency trained on a carefully constructed synthetic dataset designed to emulate real-world prescribing logic.The model achieved over 99% accuracy in medication prediction tasks, outperforming baseline models such as those discussed in research. Minimal misclassification in the confusion matrix and strong clinician agreement on 200 prescriptions (Cohen’s κ = 0.91 [0.87–0.94] for drug selection, 0.78 [0.74–0.81] for dosage, 0.96 [0.93–0.98] for frequency) further affirm the system’s reliability. Adjusted clinician disagreement rates were 2.7% (drug), 6.4% (dosage), and 1.5% (frequency). SHAP analysis identified age and smoking as key predictors, enhancing model explainability. Dosage accuracy was 91.3%, and most disagreements occurred in renal-impaired and pediatric cases. However, our study is presented strictly as a proof-of-concept. The use of synthetic data and the absence of access to real patient records constitute key limitations. A trialed clinical deployment was conducted under a controlled environment with a positive rate of satisfaction from experts and users, but the proposed system must undergo extensive validation with de-identified electronic medical records (EMRs) and regulatory scrutiny before it can be considered for practical application. Nonetheless, the findings offer a promising foundation for the future development of clinically viable AI-assisted respiratory care tools. Full article
Show Figures

Figure 1

27 pages, 1201 KiB  
Review
Non-Viral Therapy in COVID-19: Where Are We Standing? How Our Experience with COVID May Help Us Develop Cell Therapies for Long COVID Patients
by Aitor Gonzaga, Gema Martinez-Navarrete, Loreto Macia, Marga Anton-Bonete, Gladys Cahuana, Juan R. Tejedo, Vanessa Zorrilla-Muñoz, Eduardo Fernandez-Jover, Etelvina Andreu, Cristina Eguizabal, Antonio Pérez-Martínez, Carlos Solano, Luis Manuel Hernández-Blasco and Bernat Soria
Biomedicines 2025, 13(8), 1801; https://doi.org/10.3390/biomedicines13081801 - 23 Jul 2025
Viewed by 467
Abstract
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). [...] Read more.
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). Numerous compounds from diverse pharmacological classes are currently undergoing preclinical and clinical evaluation, targeting both the virus and the host immune response. Methods: Despite the large number of articles published and after a preliminary attempt was published, we discarded the option of a systematic review. Instead, we have done a description of therapies with these results and a tentative mechanism of action. Results: Preliminary studies and early-phase clinical trials have demonstrated the potential of Mesenchymal Stem Cells (MSCs) in mitigating severe lung damage in COVID-19 patients. Previous research has shown MSCs to be effective in treating various pulmonary conditions, including acute lung injury, idiopathic pulmonary fibrosis, ARDS, asthma, chronic obstructive pulmonary disease, and lung cancer. Their ability to reduce inflammation and promote tissue repair supports their potential role in managing COVID-19-related complications. This review demonstrates the utility of MSCs in the acute phase of COVID-19 and postulates the etiopathogenic role of mitochondria in Long-COVID. Even more, their combination with other therapies is also analyzed. Conclusions: While the therapeutic application of MSCs in COVID-19 is still in early stages, emerging evidence suggests promising outcomes. As research advances, MSCs may become an integral part of treatment strategies for severe COVID-19, particularly in addressing immune-related lung injury and promoting recovery. However, a full pathogenic mechanism may explain or unify the complexity of signs and symptoms of Long COVID and Post-Acute Sequelae (PASC). Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

24 pages, 3224 KiB  
Review
Quercetin in Idiopathic Pulmonary Fibrosis and Its Comorbidities: Gene Regulatory Mechanisms and Therapeutic Implications
by Verónica Rocío Vásquez-Garzón, Juan Manuel Velázquez-Enríquez, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Jaime Arellanes-Robledo, Cristian Jiménez-Martínez and Rafael Baltiérrez-Hoyos
Genes 2025, 16(8), 856; https://doi.org/10.3390/genes16080856 - 23 Jul 2025
Viewed by 1008
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, has emerged as a promising compound due to its antioxidant, anti-inflammatory, and antifibrotic properties. Preclinical and clinical studies have demonstrated its ability to modulate key molecular pathways involved in IPF, including Nrf2, SIRT1/AMPK, and the regulation of fibrosis-associated microRNAs (miRNAs). Furthermore, quercetin shows therapeutic potential across a range of IPF-related comorbidities, including chronic obstructive pulmonary disease, pulmonary hypertension, lung cancer, cardiovascular disease, diabetes, and psychiatric disorders. Under these conditions, quercetin acts via epigenetic modulation of miRNAs and regulation of oxidative stress and inflammatory signaling pathways. This review highlights the multifunctional role of quercetin in IPF and its comorbidities, emphasizing its gene regulatory mechanisms and potential as an adjunctive or alternative therapeutic strategy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 1961 KiB  
Article
PAI-1 Inhibitor TM5441 Attenuates Emphysema and Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease
by Kyohei Oishi, Hideki Yasui, Yusuke Inoue, Hironao Hozumi, Yuzo Suzuki, Masato Karayama, Kazuki Furuhashi, Noriyuki Enomoto, Tomoyuki Fujisawa, Takahiro Horinouchi, Takayuki Iwaki, Yuko Suzuki, Toshio Miyata, Naoki Inui and Takafumi Suda
Int. J. Mol. Sci. 2025, 26(15), 7086; https://doi.org/10.3390/ijms26157086 - 23 Jul 2025
Viewed by 309
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide, primarily driven by chronic airway inflammation due to cigarette smoke exposure. Despite its burden, however, current anti-inflammatory therapies offer limited efficacy in preventing disease progression. Plasminogen activator inhibitor-1 (PAI-1), [...] Read more.
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide, primarily driven by chronic airway inflammation due to cigarette smoke exposure. Despite its burden, however, current anti-inflammatory therapies offer limited efficacy in preventing disease progression. Plasminogen activator inhibitor-1 (PAI-1), as a key regulator of fibrinolysis, has recently been implicated in structural airway changes and persistent inflammation in patients with COPD. This study aimed to investigate the ability of the PAI-1 inhibitor TM5441 to attenuate airway inflammation and structural lung damage induced by a cigarette smoke extract (CSE) in a mouse model. Mice received intratracheal CSE or vehicle on days 1, 8, and 15, and were sacrificed on day 22. TM5441 (20 mg/kg) was administered orally from days 1 to 22. The CSE significantly increased the mean linear intercept, destructive index, airway resistance, and reductions in dynamic compliance. The CSE also increased the numbers of neutrophils and macrophages in the bronchoalveolar lavage fluid, systemic PAI-1 activity, and neutrophil elastase mRNA and protein expression in the lungs. TM5441 treatment significantly suppressed these changes without affecting coagulation time. These findings suggest that TM5441 may be a novel therapeutic agent for COPD by targeting PAI-1-mediated airway inflammation and emphysema. Full article
(This article belongs to the Special Issue Lung Diseases Molecular Pathogenesis and Therapy)
Show Figures

Figure 1

Back to TopTop