Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = chronic inflammatory pain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2574 KiB  
Article
The Neuroregenerative Effects of IncobotulinumtoxinA (Inco/A) in a Nerve Lesion Model of the Rat
by Oscar Sánchez-Carranza, Wojciech Danysz, Klaus Fink, Maarten Ruitenberg, Andreas Gravius and Jens Nagel
Int. J. Mol. Sci. 2025, 26(15), 7482; https://doi.org/10.3390/ijms26157482 - 2 Aug 2025
Viewed by 235
Abstract
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats [...] Read more.
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats using the chronic constriction injury (CCI) model. Inco/A was administered perineurally at two time points: on days 0 and 21 post CCI. Functional and histological assessments were conducted to evaluate the effect of Inco/A on nerve regeneration. Sciatic Functional Index (SFI) measurements and Compound Muscle Action Potential (CMAP) recordings were conducted at different time points following CCI. Inco/A-treated animals exhibited a 65% improved SFI and 22% reduction in CMAP onset latencies compared to the vehicle-treated group, suggesting accelerated functional nerve recovery. Tissue analysis revealed enhanced remyelination in Inco/A-treated animals and 60% reduction in CGRP and double S100β signal expression compared to controls. Strikingly, 30% reduced immune cell influx into the injury site was observed following Inco/A treatment, suggesting that its anti-inflammatory effect contributes to nerve regeneration. These findings show that two injections of Inco/A promote functional recovery by enhancing neuroregeneration and modulating inflammatory processes, supporting the hypothesis that Inco/A has a neuroprotective and restorative role in nerve injury conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

11 pages, 487 KiB  
Perspective
Constipation in Ulcerative Colitis: An Underestimated Problem
by Gabrio Bassotti, Sara Bologna and Elisabetta Antonelli
J. Clin. Med. 2025, 14(15), 5428; https://doi.org/10.3390/jcm14155428 - 1 Aug 2025
Viewed by 144
Abstract
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. [...] Read more.
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. However, the literature reports that ulcerative colitis may sometimes feature fecal stasis with constipation. This apparent paradox may be partially explained by the motor abnormalities of the large bowel following inflammation, damage to the enteric innervation, and the onset of parietal fibrosis over time. Moreover, some anorectal abnormalities such pelvic floor dyssynergia may explain the symptoms of constipation reported in subsets of patients. Since these abnormalities may be responsible for diagnostic delays and non- or partial responses to therapy, it is important to recognize them as early as possible to avoid incorrect clinical and therapeutic approaches to these patients. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

31 pages, 2032 KiB  
Review
Leflunomide Applicability in Rheumatoid Arthritis: Drug Delivery Challenges and Emerging Formulation Strategies
by Ashish Dhiman and Kalpna Garkhal
Drugs Drug Candidates 2025, 4(3), 36; https://doi.org/10.3390/ddc4030036 - 1 Aug 2025
Viewed by 207
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder primarily targeting joints, leading to pain, swelling, and stiffness. RA results from the body’s own immune system attacking its own tissues. Currently, there are various treatments available for RA including disease-modifying antirheumatic drugs (DMARDs) [...] Read more.
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder primarily targeting joints, leading to pain, swelling, and stiffness. RA results from the body’s own immune system attacking its own tissues. Currently, there are various treatments available for RA including disease-modifying antirheumatic drugs (DMARDs) and NSAIDs. Leflunomide (LEF) is a USFDA-approved synthetic DMARD which is being widely prescribed for the management of RA; however, it faces several challenges such as prolonged drug elimination, hepatotoxicity, and others. LEF exerts its therapeutic effects by inhibiting dihydroorotate dehydrogenase (DHODH), thereby suppressing pyrimidine synthesis and modulating immune responses. Emerging nanotechnology-based therapies help in encountering the current challenges faced in LEF delivery to RA patients. This review enlists the LEF’s pharmacokinetics, mechanism of action, and clinical efficacy in RA management. A comparative analysis with methotrexate, biologics, and other targeted therapies, highlighting its role in monotherapy and combination regimens and the safety concerns, including hepatotoxicity, gastrointestinal effects, and teratogenicity, is discussed alongside recommended monitoring strategies. Additionally, emerging trends in novel formulations and drug delivery approaches are explored to enhance efficacy and minimize adverse effects. Overall, LEF remains a perfect remedy for RA patients, specifically individuals contraindicated with drugs like methotrexate. The therapeutic applicability of LEF could be enhanced by developing more customized treatments and advanced drug delivery approaches. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

12 pages, 788 KiB  
Article
Gut Microbial Composition on Dienogest Therapy in Patients with Endometriosis
by Veronika Pronina, Pavel Denisov, Vera Muravieva, Alexey Skorobogatiy, Ksenia Zhigalova, Galina Chernukha, Gennady Sukhikh and Tatiana Priputnevich
Microbiol. Res. 2025, 16(8), 169; https://doi.org/10.3390/microbiolres16080169 - 1 Aug 2025
Viewed by 207
Abstract
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. [...] Read more.
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. Dienogest (DNG) is widely used for endometriosis management, but its effects on gut microbiota remain underexplored. This study investigates the impact of DNG on gut microbial composition in endometriosis patients, aiming to elucidate its therapeutic mechanisms beyond hormonal modulation. DNG therapy led to a significant reduction in the Bacillota/Bacteroidota ratio (p = 0.0421), driven by decreased Staphylococcus spp. (p = 0.0244) and increased commensal bacteria such as Lactobacillus spp. and Collinsella aerofaciens (p = 0.049). Species richness and alpha diversity indices showed a non-significant upward trend. Notably, C. aerofaciens, a butyrate producer linked to gut barrier integrity, was detected twice as frequently during therapy. The study also observed reductions in facultative anaerobes like Enterococcus spp. and a trend toward higher titers of beneficial Bacteroidota. This study provides the first evidence that DNG therapy modulates gut microbiota in endometriosis patients, favoring a composition associated with anti-inflammatory and barrier-protective effects. The observed shifts—reduced opportunistic pathogens and increased symbionts—suggest a novel mechanism for DNG’s efficacy, potentially involving the microbial regulation of estrogen metabolism and immune responses. Full article
Show Figures

Figure 1

11 pages, 1692 KiB  
Communication
Nanogel Loaded with Perilla frutescens Leaf-Derived Exosome-like Nanovesicles and Indomethacin for the Treatment of Inflammatory Arthritis
by Xianqiang Li, Fei Wang, Rui Wang, Yanjie Cheng, Jinhuan Liu and Wanhe Luo
Biology 2025, 14(8), 970; https://doi.org/10.3390/biology14080970 (registering DOI) - 1 Aug 2025
Viewed by 324
Abstract
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently [...] Read more.
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently developed into a nanogel designed for topical drug delivery systems (PFE-IND-GEL). PFE exhibited a typical vesicular structure with a mean diameter of 98.4 ± 1.3 nm. The hydrodynamic size and zeta potential of PFE-IND-GEL were 129.6 ± 5.9 nm and −17.4 ± 1.9 mV, respectively. Mechanistic investigations in HaCaT keratinocytes showed that PFE significantly downregulated tight junction proteins (ZO-1 and Occludin, p < 0.01) via modulation of the IL-17 signaling pathway, as evidenced by transcriptomic analysis. In a sodium urea crystal-induced rat IA model, the topical application of PFE-IND-GEL significantly reduced joint swelling (p < 0.05) and serum levels of inflammatory cytokines (IL-6, IL-1α, TNF-α) compared to control groups. Histopathological analysis confirmed the marked attenuation of synovial inflammation and cartilage preservation in treated animals. These findings underscore the dual role of PFE as both a topical permeation enhancer and an anti-inflammatory agent, presenting a promising strategy for managing IA. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

9 pages, 6176 KiB  
Case Report
Concurrent Leydig and Sertoli Cell Tumors Associated with Testicular Mycosis in a Dog: A Case Report and Literature Review
by Mirosław Kuberka, Przemysław Prządka and Stanisław Dzimira
Pathogens 2025, 14(8), 752; https://doi.org/10.3390/pathogens14080752 - 31 Jul 2025
Viewed by 180
Abstract
Mycosis is caused by, among other factors, filamentous fungi, ubiquitous molds belonging to Aspergillus spp. which are often opportunistic pathogens. Over 100 species of Aspergillus have been described. The most common species responsible for diseases in humans and animals are Aspergillus fumigatus and [...] Read more.
Mycosis is caused by, among other factors, filamentous fungi, ubiquitous molds belonging to Aspergillus spp. which are often opportunistic pathogens. Over 100 species of Aspergillus have been described. The most common species responsible for diseases in humans and animals are Aspergillus fumigatus and Aspergillus niger, with Aspergillus flavus and Aspergillus clavatus being somewhat rarer. Aspergillus causes a range of diseases, from localized colonization and hypersensitivity reactions, through chronic necrotizing infections, to rapidly progressing angioinvasion and dissemination, leading to death. Testicular mycosis is extremely rarely described in both humans and animals. No studies in the literature report a simultaneous occurrence of testicular tumors and fungal infection of the organ, so the aim of this paper was to describe, for the first time, a case of two independent testicular tumors coexisting with testicular mycosis. A histopathological examination was performed on the left testicle of a male dog, specifically a mixed-breed dog resembling a husky weighing 22 kg and with an age of 8 years. Bilateral orchidectomy was performed for medical reasons due to the altered outline of the left testicle, leading to scrotal deformation. The dog did not show any clinical signs of illness, and the testicles were not painful. The right testicle, according to the operating veterinarian, showed no macroscopic changes, so histopathological verification was not performed. Microscopic imaging of the changes clearly indicated the coexistence of a tumor process involving Leydig cells (Leydigoma, interstitial cell tumor, ICT), Sertoli cells (Sertolioma), and fungal infection of the testis. The case suggests the possibility of the coexistence of tumor processes, which may have impaired local immune response of the tissue, with an infectious, in this case fungal, inflammatory process. Based on the literature, this paper is the first report on the occurrence of two independent histotype testicular tumors and their associated mycosis. Full article
(This article belongs to the Special Issue Rare Fungal Infection Studies)
Show Figures

Figure 1

33 pages, 799 KiB  
Review
The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications
by Nicola Siragusa, Gloria Baldassari, Lorenzo Ferrario, Laura Passera, Beatrice Rota, Francesco Pavan, Fabrizio Santagata, Mario Capasso, Claudio Londoni, Guido Manfredi, Danilo Consalvo, Giovanni Lasagni, Luca Pozzi, Vincenza Lombardo, Federica Mascaretti, Alice Scricciolo, Leda Roncoroni, Luca Elli, Maurizio Vecchi and Andrea Costantino
Nutrients 2025, 17(15), 2496; https://doi.org/10.3390/nu17152496 - 30 Jul 2025
Viewed by 548
Abstract
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This [...] Read more.
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This narrative review critically evaluates current nutritional approaches to IBS. The low-Fermentable Oligo-, Di-, Mono-saccharides and Polyols (FODMAP) diet is the most extensively studied and provides short-term symptom relief, but its long-term effects on microbiota diversity remain concerning. The Mediterranean diet, due to its anti-inflammatory and prebiotic properties, offers a sustainable, microbiota-friendly option; however, it has specific limitations in the context of IBS, particularly due to the adverse effects of certain FODMAP-rich foods. A gluten-free diet may benefit individuals with suspected non-celiac gluten sensitivity, although improvements are often attributed to fructan restriction and placebo and nocebo effects. Lactose-free diets are effective in patients with documented lactose intolerance, while a high-soluble-fiber diet is beneficial for constipation-predominant IBS. IgG-based elimination diets are emerging but remain controversial and require further validation. In this review, we present the 10 dietary commandments for IBS, pragmatic and easily retained recommendations. It advocates a personalized, flexible, and multidisciplinary management approach, avoiding rigidity and standardized protocols, with the aim of optimizing adherence, symptom mitigation, and health-related quality of life. Future research should aim to evaluate, in real-world clinical settings, the impact and applicability of the 10 dietary commandments for IBS in terms of symptom improvement and quality of life Full article
(This article belongs to the Special Issue Dietary Interventions for Functional Gastrointestinal Disorders)
Show Figures

Figure 1

12 pages, 451 KiB  
Article
Medical Post-Traumatic Stress Disorder Symptoms in Children and Adolescents with Chronic Inflammatory Arthritis: Prevalence and Associated Factors
by Leah Medrano, Brenda Bursch, Jennifer E. Weiss, Nicholas Jackson, Deborah McCurdy and Alice Hoftman
Children 2025, 12(8), 1004; https://doi.org/10.3390/children12081004 - 30 Jul 2025
Viewed by 204
Abstract
Background: Youth with chronic rheumatologic diseases undergo medical experiences that can lead to post-traumatic stress disorder (PTSD). Understudied in pediatric rheumatology, medical PTSD can be significantly distressing and impairing. Objective: This study explored the prevalence of medical PTSD symptoms in youth with chronic [...] Read more.
Background: Youth with chronic rheumatologic diseases undergo medical experiences that can lead to post-traumatic stress disorder (PTSD). Understudied in pediatric rheumatology, medical PTSD can be significantly distressing and impairing. Objective: This study explored the prevalence of medical PTSD symptoms in youth with chronic inflammatory arthritis and associated factors, including pain, disease activity, mental health history, and anxiety sensitivity. Methods: A cross-sectional study of 50 youth (ages 8–18) with juvenile idiopathic arthritis (JIA) and childhood-onset systemic lupus erythematous (cSLE) was conducted at a pediatric rheumatology clinic. Participants completed self-report measures assessing post-traumatic stress symptoms (CPSS-V), pain, anxiety sensitivity (CASI), pain-related self-efficacy (CSES), adverse childhood experiences (ACEs), and fibromyalgia symptoms (PSAT). Clinical data included diagnoses, disease activity, treatment history, and demographics. Results: Forty percent had trauma symptoms in the moderate or more severe range. The 14% likely meeting criteria for probable medical PTSD were older (median 17 vs. 15 years, p = 0.005), had higher pain scores (median 4 vs. 3, p = 0.008), more ACEs (median 3 vs. 1, p = 0.005), higher anxiety sensitivity scores (median 39 vs. 29, p = 0.008), and higher JIA disease activity scores (median cJADAS-10 11.5 vs. 7.5, p = 0.032). They were also more likely to report a history of depression (71 vs. 23%, p = 0.020). No associations were found with hospitalization or injected/IV medication use. Conclusions: Medical trauma symptoms are prevalent in youth with chronic inflammatory arthritis. Probable PTSD was associated with pain and psychological distress. These findings support the need for trauma-informed care in pediatric rheumatology. Full article
Show Figures

Figure 1

24 pages, 2944 KiB  
Article
Oral Pharmacokinetic Evaluation of a Microemulsion-Based Delivery System for Novel A190 Prodrugs
by Sagun Poudel, Chaolong Qin, Rudra Pangeni, Ziwei Hu, Grant Berkbigler, Madeline Gunawardena, Adam S. Duerfeldt and Qingguo Xu
Biomolecules 2025, 15(8), 1101; https://doi.org/10.3390/biom15081101 - 30 Jul 2025
Viewed by 491
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) is a key regulator of lipid metabolism, making its agonists valuable therapeutic targets for various diseases, including chronic peripheral neuropathy. Existing PPARα agonists face limitations such as poor selectivity, sub-optimal bioavailability, and safety concerns. We previously demonstrated that [...] Read more.
Peroxisome proliferator-activated receptor alpha (PPARα) is a key regulator of lipid metabolism, making its agonists valuable therapeutic targets for various diseases, including chronic peripheral neuropathy. Existing PPARα agonists face limitations such as poor selectivity, sub-optimal bioavailability, and safety concerns. We previously demonstrated that A190, a novel, potent, and selective PPARα agonist, effectively alleviates chemotherapy-induced peripheral neuropathy and CFA-induced inflammatory pain as a non-opioid therapeutic agent. However, A190 alone has solubility and permeability issues that limits its oral delivery. To overcome this challenge, in this study, four new-generation ester prodrugs of A190; A190-PD-9 (methyl ester), A190-PD-14 (ethyl ester), A190-PD-154 (isopropyl ester), and A190-PD-60 (cyclic carbonate) were synthesized and evaluated for their enzymatic bioconversion and chemical stability. The lead candidate, A190-PD-60, was further formulated as a microemulsion (A190-PD-60-ME) and optimized via Box–Behnken design. A190-PD-60-ME featured nano-sized droplets (~120 nm), low polydispersity (PDI < 0.3), and high drug loading (>90%) with significant improvement in artificial membrane permeability. Crucially, pharmacokinetic evaluation in rats demonstrated that A190-PD-60-ME reached a 16.6-fold higher Cmax (439 ng/mL) and a 5.9-fold increase in relative oral bioavailability compared with an A190-PD-60 dispersion. These findings support the combined prodrug-microemulsion approach as a promising strategy to overcome oral bioavailability challenges and advance PPARα-targeted therapies. Full article
Show Figures

Figure 1

9 pages, 1209 KiB  
Communication
Clinical, Immunological, Radiographic, and Pathologic Improvements in a Patient with Long-Standing Crohn’s Disease After Receiving Stem Cell Educator Therapy
by Richard Fox, Boris Veysman, Kristine Antolijao, Noelle Mendoza, Ruby Anne Lorenzo, Honglan Wang, Zhi Hua Huang, Yelu Zhao, Yewen Zhao, Terri Tibbot, Darinka Povrzenic, Mary Lauren Bayawa, Sophia Kung, Bassam Saffouri and Yong Zhao
Int. J. Mol. Sci. 2025, 26(15), 7292; https://doi.org/10.3390/ijms26157292 - 28 Jul 2025
Viewed by 422
Abstract
Crohn’s disease is a chronic inflammation affecting the gastrointestinal tract. To date, patients are commonly treated with corticosteroids or more aggressive biologics for high-risk subjects. Stem Cell Educator therapy has been successfully utilized to treat patients with type 1 diabetes and other autoimmune [...] Read more.
Crohn’s disease is a chronic inflammation affecting the gastrointestinal tract. To date, patients are commonly treated with corticosteroids or more aggressive biologics for high-risk subjects. Stem Cell Educator therapy has been successfully utilized to treat patients with type 1 diabetes and other autoimmune conditions. A 78-year-old patient with long-standing Crohn’s disease received one treatment with the Stem Cell Educator therapy, followed by clinical, radiographic, pathological examinations and immune marker testing by flow cytometry. After the treatment with Stem Cell Educator therapy, the patient’s clinical symptoms were quickly improved with normal bowel movements, without abdominal pain or rectal bleeding. Flow cytometry analysis revealed a marked decline in inflammatory markers, such as the percentage of monocyte/macrophage-associated cytokine interleukin-1 beta (IL-1β)+ cells, which reduced from 94.98% at the baseline to 18.21%, and down-regulation of the percentage of chemokine CXCL16+ cells from 91.92% at baseline to 42.58% at 2-month follow-up. Pathologic examination of the biopsy specimens from colonoscopy five weeks and six months post-treatment showed ileal mucosa with no specific abnormality and no significant inflammation or villous atrophy; no granulomas were identified. A follow-up CT scan four and one-half months post-treatment showed no evidence of the previously seen stenosis of the ilio-colonic anastomosis with proximal dilatation. Stem Cell Educator therapy markedly reduced inflammation in the subject with Crohn’s disease, leading to durable clinical, immunological, radiographic, and pathological improvements. Full article
Show Figures

Figure 1

39 pages, 1246 KiB  
Review
Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources
by Piotr Michel
Int. J. Mol. Sci. 2025, 26(15), 7280; https://doi.org/10.3390/ijms26157280 - 28 Jul 2025
Viewed by 348
Abstract
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various [...] Read more.
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various diseases related to inflammation and oxidative stress, including rheumatoid arthritis, sciatica, neuralgia, and muscular pain. The accumulated results indicated a targeted range of biological effects, particularly anti-inflammatory, antipyretic, and anti-rheumatic properties associated with reduced adverse outcomes. The molecular mechanisms involve the influence on several signalling pathways, including NF-κB, MAPK, and potentially AMPK, as well as the inhibition of critical pro-inflammatory enzymes, such as COX-2. This inhibition is achieved without affecting the COX-1 isoform, thereby preventing side effects such as bleeding ulcers or intracranial haemorrhage. This overview summarises the current knowledge about pharmacokinetics, molecular mechanisms, pharmacology, and biocompatibility of gaultherin. Additionally, four methods for isolating gaultherin from plant material and its distribution within the plant kingdom were the focal points of review and discussion. The paper also describes significant differences between synthetic aspirin and natural gaultherin in their biological potential and side effects, resulting from their different mechanisms of action. As a prodrug of salicylic acid, gaultherin releases salicylic acid gradually through enzymatic hydrolysis in the gastrointestinal tract. This controlled release minimises direct gastric irritation and accounts for its superior gastrointestinal safety profile compared to aspirin. Unlike aspirin, which irreversibly inhibits COX-1 and can lead to serious side effects with chronic use, gaultherin selectively inhibits COX-2 while sparing COX-1. These properties position gaultherin as a compelling natural alternative for patients requiring long-term anti-inflammatory therapy with reduced risk of gastrointestinal or bleeding complications. Full article
(This article belongs to the Special Issue The Role of Natural Products in Inflammation)
Show Figures

Figure 1

28 pages, 4633 KiB  
Review
Innovative Strategies in Hernia Mesh Design: Materials, Mechanics, and Modeling
by Evangelia Antoniadi, Nuno Miguel Ferreira, Maria Francisca Vaz, Marco Parente, Maria Pia Ferraz and Elisabete Silva
Materials 2025, 18(15), 3509; https://doi.org/10.3390/ma18153509 - 26 Jul 2025
Viewed by 431
Abstract
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, [...] Read more.
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, inflammation, adhesions, and even the need for revision surgeries. According to the Food and Drug Administration (FDA), hernia recurrence rates can reach up to 11%, surgical site infections occur in up to 21% of cases, and chronic pain incidence ranges from 0.3% to 68%. These statistics highlight the urgent need to improve mesh technologies to minimize such complications. The design and material composition of meshes are critical in reducing postoperative complications. Moreover, integrating drug-eluting properties into the meshes could address issues like infections and inflammation by enabling localized delivery of antibiotics and anti-inflammatory agents. Mesh design is equally important, with innovative structures like auxetic designs offering enhanced mechanical properties, flexibility, and tissue integration. These advanced designs can distribute stress more evenly, reduce fatigue, and improve performance in areas subjected to high pressures, such as during intense coughing, sneezing, or heavy lifting. Technological advancements, such as 3D printing, enable the precise fabrication of meshes with tailored designs and properties, providing new opportunities for innovation. By addressing these challenges, the development of next-generation mesh implants has the potential to reduce complications, improve patient outcomes, and significantly enhance quality of life for individuals undergoing hernia repair. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

29 pages, 1550 KiB  
Review
Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
by Aniello Alfieri, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Pharmaceuticals 2025, 18(8), 1100; https://doi.org/10.3390/ph18081100 - 24 Jul 2025
Viewed by 693
Abstract
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for [...] Read more.
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for their aromatic qualities, terpenes such as myrcene, β-caryophyllene (BCP), limonene, pinene, linalool, and humulene have demonstrated a broad spectrum of biological activities. Beyond their observable analgesic, anti-inflammatory, and anxiolytic outcomes, these compounds exert their actions through distinct molecular mechanisms. These include the activation of cannabinoid receptor type 2 (CB2), the modulation of transient receptor potential (TRP) and adenosine receptors, and the inhibition of pro-inflammatory signalling pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Cyclooxygenase-2 (COX-2). This narrative review synthesizes the current preclinical and emerging clinical data on terpene-mediated analgesia, highlighting both monoterpenes and sesquiterpenes, and discusses their potential for synergistic interaction with cannabinoids, the so-called entourage effect. Although preclinical findings are promising, clinical translation is limited by methodological variability, the lack of standardized formulations, and insufficient pharmacokinetic characterization. Further human studies are essential to clarify their therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

20 pages, 32329 KiB  
Article
D-Tryptophan Promotes Skin Wound Healing via Extracellular Matrix Remodeling in Normal and Diabetic Models
by Dawit Adisu Tadese, James Mwangi, Brenda B. Michira, Yi Wang, Kaixun Cao, Min Yang, Mehwish Khalid, Ziyi Wang, Qiumin Lu and Ren Lai
Int. J. Mol. Sci. 2025, 26(15), 7158; https://doi.org/10.3390/ijms26157158 - 24 Jul 2025
Viewed by 281
Abstract
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. [...] Read more.
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. Among these, D-amino acids such as D-tryptophan (D-Trp) have emerged as key regulators of cellular processes; however, their therapeutic potential in diabetic wounds remains largely unexplored. Here, we investigate the therapeutic potential of D-Trp in streptozotocin (STZ)-induced diabetic mice, comparing it with phosphate-buffered saline (PBS) controls and vascular endothelial growth factor (VEGF) as a positive control. Wound healing, inflammation, and histopathology were assessed. Protein and gene expression were analyzed via Western blot and RT-qPCR, respectively. Biolayer interferometry (BLI) measured the binding of D-Trp to hypoxia-inducible factor-1α (HIF-1α). D-Trp accelerated wound healing by modulating extracellular matrix (ECM) remodeling, signaling, and apoptosis. It upregulated matrix metalloproteinases (MMP1, MMP3, MMP-9), Janus kinase 2 (JAK2), and mitogen-activated protein kinase (MAPK) proteins while reducing pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], IL-6). D-Trp also suppressed caspase-3 and enhanced angiogenesis through HIF-1α activation. These findings suggest that D-Trp promotes healing by boosting ECM turnover, reducing inflammation, and activating MAPK/JAK pathways. Thus, D-Trp is a promising therapeutic for diabetic wounds. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

35 pages, 4837 KiB  
Review
MicroRNA-Based Delivery Systems for Chronic Neuropathic Pain Treatment in Dorsal Root Ganglion
by Stefan Jackson, Maria Rosa Gigliobianco, Cristina Casadidio, Piera Di Martino and Roberta Censi
Pharmaceutics 2025, 17(7), 930; https://doi.org/10.3390/pharmaceutics17070930 - 18 Jul 2025
Viewed by 774
Abstract
Neuropathic pain is a significant global clinical issue that poses substantial challenges to both public health and the economy due to its complex underlying mechanisms. It has emerged as a serious health concern worldwide. Recent studies involving dorsal root ganglion (DRG) stimulation have [...] Read more.
Neuropathic pain is a significant global clinical issue that poses substantial challenges to both public health and the economy due to its complex underlying mechanisms. It has emerged as a serious health concern worldwide. Recent studies involving dorsal root ganglion (DRG) stimulation have provided strong evidence supporting its effectiveness in alleviating chronic pain and its potential for sustaining long-term pain relief. In addition to that, there has been ongoing research with clinical evidence relating to the role of small non-coding ribonucleic acids known as microRNAs in regulating gene expressions affecting pain signals. The signal pathway involves alterations in neuronal excitation, synaptic transmission, dysregulated signaling, and subsequent pro-inflammatory response activation and pain development. When microRNAs are dysregulated in the dorsal root ganglia neurons, they polarize macrophages from anti-inflammatory M2 to inflammatory M1 macrophages causing pain signal generation. By reversing this polarization, a therapeutic activity can be induced. However, the direct delivery of these nucleotides has been challenging due to limitations such as rapid clearance, degradation, and reduction in half-life. Therefore, safe and efficient carrier vehicles are fundamental for microRNA delivery. Here, we present a comprehensive analysis of miRNA-based nano-systems for chronic neuropathic pain, focusing on their impact in dorsal root ganglia. This review provides a critical evaluation of various delivery platforms, including viral, polymeric, lipid-based, and inorganic nanocarriers, emphasizing their therapeutic potential as well as their limitations in the treatment of chronic neuropathic pain. Innovative strategies such as hybrid nanocarriers and stimulus-responsive systems are also proposed to enhance the prospects for clinical translation. Serving as a roadmap for future research, this review aims to guide the development and optimization of miRNA-based therapies for effective and sustained neuropathic pain management. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop