Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = chloride ion penetration resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8386 KB  
Article
Multifractal Characteristics of the Pore Structure and Resistance to Chloride Ion Penetration of Cement Mortar Modified with a Waterborne Nanosilicate-Based Densifier
by Xin Wang, Rongxin Guo, Haiting Xia, Dian Guan and Zhuo Liu
Fractal Fract. 2026, 10(1), 58; https://doi.org/10.3390/fractalfract10010058 - 14 Jan 2026
Viewed by 157
Abstract
Cementitious composites are heterogeneous porous materials whose pore structure plays a critical role in resistance to chloride-ion penetration. A waterborne nano-silicate-based densifier (CF-S5) was used to examine its influence on the pore structure and resistance to the chloride ion penetration of mortar. We [...] Read more.
Cementitious composites are heterogeneous porous materials whose pore structure plays a critical role in resistance to chloride-ion penetration. A waterborne nano-silicate-based densifier (CF-S5) was used to examine its influence on the pore structure and resistance to the chloride ion penetration of mortar. We investigated the resistance to the chloride ion penetration of mortar with added CF-S5 admixture through the Rapid Chloride Permeability Test (RCPT). We investigated the pore structure characteristics of mortar by mercury intrusion porosimetry (MIP) coupled with fractal theory and investigated the degree of hydration of the cement paste by thermogravimetric analysis (TG). Ultimately, the degree of correlation between multifractal parameters and the chloride ion migration coefficient of mortar was examined using gray relational analysis (GRA). Results indicate that the CF-S5 admixture reduces mortar porosity and the content of harmful pores while increasing pore tortuosity, thus improving the resistance to the chloride ion penetration of mortar. Multifractal analysis indicated that the CF-S5 admixture decreased the connectivity and increased the complexity of the mortar pore structure. The CF-S5 admixture did not reduce the hydration degree of cement paste at 28 d. Additionally, the multifractal parameters show a high gray relational degree with the chloride migration coefficient; therefore, they may serve as potential indicators to reflect the resistance to the chloride ion penetration of mortar. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Materials Science)
Show Figures

Figure 1

16 pages, 11595 KB  
Article
Synergistic Effects of Steel Fiber and Rubber Powder on the Physico-Mechanical Properties of UHPC
by Changqing Luo, Hao Wang, Dongbo Cai, Anni Wang, Lianzhen Zhang, Deming Wang, Chao Wang, Degao Kong, Sining Huang and Chaohui Xu
Sustainability 2026, 18(2), 846; https://doi.org/10.3390/su18020846 - 14 Jan 2026
Viewed by 46
Abstract
This study investigates the synergistic effects of steel fibers and waste rubber powder on the properties of ultra-high-performance concrete (UHPC) to advance its sustainable development. A comprehensive experimental program was conducted, incorporating three types of steel fibers (8 mm straight, and 14 mm [...] Read more.
This study investigates the synergistic effects of steel fibers and waste rubber powder on the properties of ultra-high-performance concrete (UHPC) to advance its sustainable development. A comprehensive experimental program was conducted, incorporating three types of steel fibers (8 mm straight, and 14 mm and 20 mm hook-end) at volumes up to 2.5%, and rubber powder as quartz sand replacement at levels from 5% to 30%. The flowability, compressive strength, splitting tensile strength, abrasion resistance, and chloride ion penetration resistance of the mixtures were evaluated. The results indicate that steel fiber reinforcement significantly enhances the mechanical and durability properties. Specifically, a 2.5% steel fiber content increased the compressive strength, splitting tensile strength, and abrasion resistance by 28.9%, 55.3%, and 72.4%, respectively. Conversely, the incorporation of rubber powder improved flowability (optimal at 10% replacement) and abrasion resistance (increased by 41.1% at 30% content) but at the expense of reduced mechanical strength and increased chloride ion permeability. The primary novelty of this work lies in systematically quantifying the trade-offs and synergistic interactions between a wide range of steel fiber geometries and high-volume rubber powder content, providing a practical basis for designing UHPC with balanced performance and enhanced sustainability. Full article
(This article belongs to the Topic Advances and Innovations in Waste Management)
Show Figures

Figure 1

17 pages, 5296 KB  
Article
Synergistic Effects of Hybrid Basalt Fibers on the Durability of Recycled Aggregate Concrete Under Freeze–Thaw and Chloride Conditions
by Qiao Sun, Zehui Ye, Renjie Cai and Dongwei Li
Appl. Sci. 2025, 15(23), 12520; https://doi.org/10.3390/app152312520 - 25 Nov 2025
Viewed by 452
Abstract
To address the poor resistance of recycled aggregate concrete (RAC) to chloride ion penetration and freeze–thaw deterioration in cold coastal regions, this study introduces basalt fibers (BFs) as a reinforcement to improve its durability and structural integrity. Rapid freeze–thaw and electric flux tests, [...] Read more.
To address the poor resistance of recycled aggregate concrete (RAC) to chloride ion penetration and freeze–thaw deterioration in cold coastal regions, this study introduces basalt fibers (BFs) as a reinforcement to improve its durability and structural integrity. Rapid freeze–thaw and electric flux tests, combined with scanning electron microscopy (SEM), were employed to systematically evaluate the effects of fiber volume fraction and length configuration on the frost resistance and chloride impermeability of basalt fiber-reinforced RAC (BFRAC). The experimental results demonstrated that the incorporation of basalt fibers markedly enhanced the coupled durability of RAC, with the mixture containing 0.15% fiber volume and a balanced hybrid of short (12 mm) and long (18 mm) fibers achieving the most favorable performance. This mixture effectively reduced mass loss and strength degradation under repeated freeze–thaw cycles while substantially lowering chloride ion penetration compared with plain RAC. Microstructural observations revealed that the hybrid fiber system formed a multi-scale three-dimensional network, in which short fibers restrained microcrack initiation and long fibers bridged macrocracks, jointly refining the pore structure and improving the interfacial bonding between recycled aggregates and the cement matrix. This synergistic mechanism enhanced matrix compactness and obstructed chloride transport, leading to a more stable and durable composite. The findings not only establish an optimal basalt fiber design for improving RAC durability but also elucidate the fundamental mechanism underlying hybrid fiber synergy. These insights provide valuable theoretical guidance and practical strategies for developing sustainable, high-performance concrete suitable for long-term service in cold-region coastal infrastructures. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

38 pages, 3765 KB  
Review
Classifying Concrete Permeability Using Rapid Chloride Permeability and Surface Resistivity Tests: Benefits, Limitations, and Predictive Models—A State-of-the-Art Review
by Seyedsaleh Mousavinezhad, Shahin Nozari and Craig M. Newtson
Buildings 2025, 15(23), 4216; https://doi.org/10.3390/buildings15234216 - 21 Nov 2025
Viewed by 914
Abstract
Penetration of harmful substances, such as chloride ions, is a major contributor to durability issues in concrete structures. Low permeability is critical for long-term performance, prompting the assessment and classification of concrete based on its resistance to ionic transport. However, the transport mechanisms [...] Read more.
Penetration of harmful substances, such as chloride ions, is a major contributor to durability issues in concrete structures. Low permeability is critical for long-term performance, prompting the assessment and classification of concrete based on its resistance to ionic transport. However, the transport mechanisms are complicated and influenced by a range of interdependent factors including binder type, mixture proportions, specimen age, and curing conditions. There are two widely adopted test methods used for assessing chloride ion permeability: the Rapid Chloride Permeability Test (RCPT) and the Surface Resistivity Test (SRT), a non-destructive alternative. While RCPT is well-established, its long testing time as well as its high costs and sensitivity to specimen preparation limit its practicality. The SRT offers faster, more repeatable, and easier implementation. This state-of-the-art review systematically compares RCPT and SRT results across studies, revealing a strong inverse correlation with coefficients of determination (R2) from 0.85 to 0.95, as influenced by compressive strength, testing age, water-to-cement ratio, and supplementary cementitious material (SCM) type. Results showed that RCPT often has standard deviation (SD) values exceeding 300 coulombs and coefficient of variation (COV) values up to 10%, while SRT has lower variability (SD < 3 kΩ·cm and COV ≈ 5%). The review concludes that, with appropriate calibration, the SRT can reliably classify concrete permeability, closely aligning with RCPT results. However, research gaps remain regarding the applicability of existing models to less conventional SCMs and concrete types. Future research should prioritize the development of binder-specific correlations, validation using diffusion-based methods, and exploration of alternative SCMs and curing regimens to expand SRT applicability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5786 KB  
Article
Polymer–Silicate Composite Gel Systems for Enhanced Chloride Resistance of Cement-Based Materials
by Tianhang Zhang, Yonggui Dai, Shuai Ren, Zhengqiang Huang, Chong Han and Wencheng Ding
Gels 2025, 11(12), 936; https://doi.org/10.3390/gels11120936 - 21 Nov 2025
Viewed by 479
Abstract
To address the issues of insufficient protection and poor durability in concrete during service, this study developed a novel polymer–silicate composite gel system by combining silane with fluorocarbon resin emulsion and applied it to mortar specimens. The chloride ion resistance enhancement of mortar [...] Read more.
To address the issues of insufficient protection and poor durability in concrete during service, this study developed a novel polymer–silicate composite gel system by combining silane with fluorocarbon resin emulsion and applied it to mortar specimens. The chloride ion resistance enhancement of mortar provided by the novel gel system was evaluated using the RCM method and natural chloride ion penetration tests, with SEM images employed to analyze its anti-permeation mechanism. Results indicate that the chloride ion migration coefficient of the novel composite gel system is 4.91 × 10−12 m2/s, representing a 63.97% reduction compared to the single fluorocarbon gel system. Within the 0–5 mm depth range, free chloride ion contents at 14, 28, and 56 days decreased by 55.35%, 50.10%, and 43.64%, respectively, demonstrating excellent resistance to chloride penetration. Acid and alkali resistance tests demonstrated that the system retained the inherent corrosion resistance of the fluorocarbon component. Carbonation tests demonstrated that the system exhibited a slight decrease in carbonation resistance compared with the pure fluorocarbon gel system, while still maintaining a satisfactory performance level. Overall, the polymer-silicate composite gel system significantly enhanced the mortar’s resistance to chloride ion penetration. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Graphical abstract

16 pages, 5351 KB  
Article
Effect of Aluminum Content on the Corrosion Behavior of Fe-Mn-Al-C Structural Steels in Marine Environments
by Suotao Wang, Zhidong Sun, Dongjie Li, Qiang Yu and Qingfeng Wang
Metals 2025, 15(11), 1249; https://doi.org/10.3390/met15111249 - 15 Nov 2025
Viewed by 443
Abstract
Fe-Mn-Al-C lightweight steel is an alternative to traditional low-alloy structural steels. It is lightweight and can be used to reduce the weight of structures without increasing their density. However, in the marine environment, traditional low-alloy structural steels can be damaged by chloride ions, [...] Read more.
Fe-Mn-Al-C lightweight steel is an alternative to traditional low-alloy structural steels. It is lightweight and can be used to reduce the weight of structures without increasing their density. However, in the marine environment, traditional low-alloy structural steels can be damaged by chloride ions, which shortens their service life. We do not yet understand how aluminum, an important alloying element in lightweight steel, affects the process of corrosion. In this study, we examined Fe-Mn-Al-C lightweight steels with different amounts of aluminum. We used full-immersion simulated marine corrosion tests and multi-dimensional characterization techniques, such as microstructure observation and electrochemical measurements, to explore the relationship between aluminum content and the steel’s corrosion rate, corrosion product structure, and corrosion resistance. The results showed that, compared with CS, the weight loss and rate of corrosion of steels that contain aluminum were a lot lower. While the corrosion rate of CS is approximately 0.068 g·h−1·m−2, that of 7Al steel is reduced to 0.050 g·h−1·m−2. The stable phases α-FeOOH and FeAl2O4 are formed in the corrosion products when Al is added. As the Al content increases, so does the relative content of these phases. Furthermore, FeAl2O4 acts as a nucleation site that refines corrosion product grains, reduces pores and cracks, and significantly improves the compactness of corrosion products. It also forms a dense inner rust layer that blocks the penetration of corrosive ions such as Cl. This study confirmed that aluminum improves the corrosion resistance of steel synergistically by regulating the structure of the corrosion products, optimizing the phase composition, and improving the electrochemical properties. The optimal aluminum content for lightweight steel in marine environments is 7%, within a range of 5–9%. Full article
Show Figures

Figure 1

22 pages, 3002 KB  
Article
Chloride Resistance of High-Strength Concrete Subjected to Different Curing Conditions and Chloride Concentrations
by Zhengyu Wu, Dayou Luo, Shuai Li and Zhiguo Li
Infrastructures 2025, 10(11), 300; https://doi.org/10.3390/infrastructures10110300 - 8 Nov 2025
Viewed by 843
Abstract
High-strength concrete (HSC) is widely used in coastal regions, but its durability and structural safety is threatened by chloride ingress in marine environments. This study investigates the effects of different curing methods, normal, steam, and high-temperature autoclave on the chloride resistance of HSC [...] Read more.
High-strength concrete (HSC) is widely used in coastal regions, but its durability and structural safety is threatened by chloride ingress in marine environments. This study investigates the effects of different curing methods, normal, steam, and high-temperature autoclave on the chloride resistance of HSC using the electric flux test. A critical chloride concentration of 4.5% was identified, and accelerated deterioration tests were conducted to evaluate mechanical properties development (compressive strength, elastic modulus, toughness, specific toughness) under the various curing conditions. Additionally, the development of hydration products and microstructural characteristics were analyzed to elucidate the mechanisms underlying the observed differences. The results indicate that steam and autoclave curing enhance cement hydration and the initial mechanical properties of HSC but also increase permeability and susceptibility to chloride ion penetration compared to normal curing. Chloride penetration was found to be most severe at moderate chloride concentrations (~4.5%), while higher concentrations resulted in reduced ion migration. Although intensive curing under elevated temperature and pressure improves early strength and stiffness, it accelerates mechanical degradation under chloride exposure, highlighting a trade-off between short-term performance and long-term durability. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

21 pages, 7853 KB  
Article
The Effect of Surface Corrosion Damage and Fe Content on the Fatigue Life of an AlSi7Mg0.6 Cast Alloy Used in the Electric Automotive Industry
by Lenka Kuchariková, Eva Tillová, Zuzana Šurdová, Mária Chalupová, Viera Zatkalíková, Edita Illichmanová and Ivana Švecová
Metals 2025, 15(11), 1222; https://doi.org/10.3390/met15111222 - 5 Nov 2025
Viewed by 643
Abstract
The aluminum casting alloy AlSi7Mg0.6 (A357) is extensively used in the automotive industry due to its favorable balance of mechanical properties, castability, lightweight characteristics, and corrosion resistance. Castings made from this alloy are often subjected to harsh service environments, where surface degradation and [...] Read more.
The aluminum casting alloy AlSi7Mg0.6 (A357) is extensively used in the automotive industry due to its favorable balance of mechanical properties, castability, lightweight characteristics, and corrosion resistance. Castings made from this alloy are often subjected to harsh service environments, where surface degradation and microstructural variability can significantly impact fatigue performance. This study investigates the combined effects of surface corrosion damage and higher Fe content on the fatigue life of the AlSi7Mg0.6 alloy, using a rotating bending fatigue test under simultaneous corrosion exposure in a 3.5 wt. % NaCl solution. The effect of corrosion and Fe content on fatigue life was then investigated and analyzed using Wöhler curves and scanning electron microscopy (SEM). The results demonstrate that the corrosion-fatigue interaction accelerated the kinetics of the fatigue process, while the fracture mechanism and crack initiation places are not fundamentally altered compared to alloys in the state without corrosion damage. A comparison of the fatigue lifetime of samples in an air environment and a corrosive environment shows that the corrosive environment (3.5% NaCl) reduces the fatigue lifetime of alloys without T6 by an average of 7.5 MPa and alloys after T6 by 6 MPa. The results are probably due to the penetration of chloride ions into casting defects located on the surface of the samples. Surface pits formed during corrosion act as stress concentrators, increasing the likelihood of stress-induced failure. Microstructural feature morphology, especially Fe-rich intermetallic phases, influences crack propagation mechanisms. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Light Alloys)
Show Figures

Graphical abstract

20 pages, 8748 KB  
Article
Effect of Basalt Fibers on the Performance of CO2-Cured Recycled Aggregate Concrete Composite Slab–Column Assemblies with Bolted Connections Under NaCl Erosion
by Di Wang, Yuanfeng Wu, Zhiqiang Xu, Na Xu, Chuanqi Li, Xu Tian, Feiting Shi and Hui Wang
Coatings 2025, 15(9), 1053; https://doi.org/10.3390/coatings15091053 - 8 Sep 2025
Viewed by 1032
Abstract
Basalt fibers possess high tensile strength and excellent corrosion resistance, properties that may enhance the chloride resistance of recycled aggregate concrete (RAC) structures. Nevertheless, the effects of basalt fibers on RAC structures under chloride attack remain poorly understood. This study investigates mass loss [...] Read more.
Basalt fibers possess high tensile strength and excellent corrosion resistance, properties that may enhance the chloride resistance of recycled aggregate concrete (RAC) structures. Nevertheless, the effects of basalt fibers on RAC structures under chloride attack remain poorly understood. This study investigates mass loss and the deterioration of key mechanical properties in basalt fiber-reinforced RAC composite slab–column assemblies (RAC composite assemblies) subjected to NaCl freeze–thaw cycles (F-Cs) and dry–wet alternations (D-As) and further explores the damage mechanisms of the concrete matrix through microscopic characterization. The results show that, compared with NaCl F-Cs, NaCl D-As have a more pronounced impact on the performance degradation of RAC composite slab–column assemblies. Moreover, basalt fibers effectively mitigate the deterioration of RAC composite assemblies in chloride-rich environments, particularly under NaCl D-As, where their protective effect is more evident. At 2.5 vol% fiber content, impact toughness peaked at an 83.7% improvement after 30 D-As, while flexural toughness showed a maximum enhancement of 773.6% after 100 F-Cs. Scanning electron microscopy energy-dispersive spectroscopy (SEM-EDS) analysis revealed a marked increase in Cl content within RAC, with NaCl D-As causing more severe erosion than NaCl F-Cs. Additionally, basalt fibers significantly inhibited chloride ion penetration and associated erosion in RAC. These findings provide valuable insights into utilizing basalt fibers to enhance the durability of RAC in coastal infrastructure exposed to chloride attacks. Further research on long-term performance and fiber parameter optimization is needed to support practical implementation. Full article
Show Figures

Figure 1

16 pages, 5762 KB  
Article
Corrosion Characteristics and Strength Degradation Mechanism of Metro Steel Fiber-Reinforced Cementitious Materials Under the Low-Carbon Target
by Zhiqiang Yuan, Zhaojun Chen, Liming Yang, Bo Liu, Minghui Liu and Yurong Zhang
J. Compos. Sci. 2025, 9(9), 463; https://doi.org/10.3390/jcs9090463 - 1 Sep 2025
Viewed by 715
Abstract
In the context of sustainable development, improving the durability of engineering materials and the service life of engineering projects is an important path to address engineering sustainability and low-carbon development. This study addresses the durability issues of steel fiber-reinforced cementitious materials (SFRCMs) under [...] Read more.
In the context of sustainable development, improving the durability of engineering materials and the service life of engineering projects is an important path to address engineering sustainability and low-carbon development. This study addresses the durability issues of steel fiber-reinforced cementitious materials (SFRCMs) under the combined action of stray current and chloride ions in metro engineering. Through simulated stray current-accelerated corrosion tests, combined with compressive strength tests and X-ray computed tomography (X-CT) analysis, the effects of steel fiber volume content (0.5%, 1.0%, 1.5%) and electrification duration (0–72 h) on the mechanical properties and corrosion mechanisms were systematically investigated. The results indicate that steel fiber content significantly influences corrosion rate and strength degradation. Specimens with 1.5% fiber content exhibited the highest initial compressive strength (58.43 MPa), but suffered a severe strength loss rate of 37.67% after 72 h of electrification. In contrast, specimens with 1.0% fiber content demonstrated balanced performance, achieving both high initial strength and superior corrosion resistance (19.66% strength loss after 72 h). X-CT analysis revealed that corrosion products initially filled pores during early stages but later induced microcracks in the matrix. Higher fiber content specimens exhibited increased large-pore ratios due to fiber agglomeration, accelerating chloride ion penetration. Furthermore, digital volume correlation (DVC) analysis demonstrated that steel fibers effectively dispersed loads and reduced stress concentration. However, post-corrosion fiber volume loss weakened their crack resistance capacity, highlighting the critical role of fiber integrity in structural durability. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

21 pages, 13539 KB  
Article
Impact of Fiber Type on Chloride Ingress in Concrete: A MacroXRF Imaging Analysis
by Suânia Fabiele Moitinho da Silva, Wanderson Santos de Jesus, Thalles Murilo Santos de Almeida, Renato Quinto de Oliveira Novais, Laio Andrade Sacramento, Joaquim Teixeira de Assis, Marcelino José dos Anjos and José Renato de Castro Pessôa
Appl. Sci. 2025, 15(15), 8495; https://doi.org/10.3390/app15158495 - 31 Jul 2025
Viewed by 873
Abstract
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural [...] Read more.
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural longevity. Fiber-reinforced concrete (FRC) is widely used to improve durability; however, the effects of different fiber types on chloride resistance remain unclear. This study examines the influence of glass and polypropylene fibers on concrete’s microstructure and chloride penetration resistance. Cylindrical specimens were prepared, including a reference mix without fibers and mixes with 0.25% and 0.50% fiber content by volume. Both fiber types were tested for chloride resistance. The accelerated non-steady-state migration method was employed to determine the resistance coefficients to chloride ion penetration, while X-ray macrofluorescence (MacroXRF) mapped the chlorine infiltration depth in the samples. Compressive strength decreased in all fiber-reinforced samples, with 0.50% glass fiber leading to a 56% reduction in strength. Nevertheless, the XRF results showed that a 0.25% fiber content significantly reduced chloride penetration, with polypropylene fibers outperforming glass fibers. These findings highlight the critical role of fiber type and volume in improving concrete durability, offering insights for designing long-lasting FRC structures in chloride-rich environments. Full article
Show Figures

Figure 1

17 pages, 12649 KB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Cited by 2 | Viewed by 937
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

20 pages, 8022 KB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Cited by 1 | Viewed by 526
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

31 pages, 16466 KB  
Article
Study on the Influencing Factors of UHPC Durability and Its Microscopic Performance Characterization
by Risheng Wang, Yongzhuang Zhang, Hongrui Wu and Xueni Jiang
Materials 2025, 18(14), 3268; https://doi.org/10.3390/ma18143268 - 10 Jul 2025
Viewed by 872
Abstract
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing [...] Read more.
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing methods, aggregate types, and mineral admixtures on key durability indicators, including chloride ion permeability, compressive strength loss, and mass loss. Scanning electron microscopy (SEM) examined microstructural changes under various conditions. Results showed that curing method significantly affected chloride ion permeability and sulfate resistance. High-temperature curing (70 ± 2 °C) reduced 28-day chloride ion electric flux by about 50%, and the compressive strength loss rate of specimens subjected to sulfate attack decreased by 2.7% to 45.7% compared to standard curing. Aggregate type had minimal impact on corrosion resistance, while mineral admixtures improved durability more effectively. Frost resistance was excellent, with mass loss below 0.87% after 500 freeze–thaw cycles. SEM analysis revealed that high-temperature curing decreased free cement particles, and mineral admixtures refined pore structure, enhancing matrix compactness. Among all mixtures, Mix Proportion 4 demonstrated the best overall durability. This study offers valuable insights for UHPC design in aggressive marine conditions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

14 pages, 6398 KB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Cited by 1 | Viewed by 1069
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

Back to TopTop