Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = chiral auxiliary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1031 KB  
Article
Modular Stereoselective Synthesis of Sex Pheromone of Lambdina fiscellaria lugubrosa (Hulst) and Discovery of Cross-Species Attraction in Semiothisa cinerearia (Bremer & Grey)
by Yun Zhou, Jionglin Wang, Yueru Zhang, Xiaochen Fu, Xiaoyang Li, Jianan Wang, Xianchang Wang, Jianhua Zhang, Yanbing Gu, Jinlong Han, Jiangchun Zhong and Chenggang Shan
Molecules 2025, 30(21), 4216; https://doi.org/10.3390/molecules30214216 - 28 Oct 2025
Cited by 1 | Viewed by 647 | Correction
Abstract
The western hemlock looper, Lambdina fiscellaria lugubrosa (Hulst) is a destructive defoliator of coniferous forests and a major cause of economic losses in forestry. A novel and efficient stereoselective synthesis of the sex pheromone of the western hemlock looper (1, 2 [...] Read more.
The western hemlock looper, Lambdina fiscellaria lugubrosa (Hulst) is a destructive defoliator of coniferous forests and a major cause of economic losses in forestry. A novel and efficient stereoselective synthesis of the sex pheromone of the western hemlock looper (1, 2 and 3) has been successfully achieved. The synthetic strategy integrates several key transformations, including Evans’ chiral auxiliaries, Grignard cross-coupling, hydroboration–oxidation, sulfone alkylation, and hydrogenation, providing an efficient and scalable approach for sex pheromone production. The three synthesized pheromone components were subsequently tested for their ability to attract Semiothisa cinerearia (Bremer & Grey) using both Y-tube and cage bioassays. Notably, compound 1 exhibited a cross-species attractive effect on S. cinerearia, a species that had not previously been documented to respond to the pheromone of L. fiscellaria lugubrosa. This discovery underscores the potential for cross-species attraction, broadens our understanding of pheromone specificity, and emphasizes the value of stereoselectively synthesized pheromones as molecular tools for cross-species pest monitoring and integrated pest management. Full article
Show Figures

Graphical abstract

11 pages, 1040 KB  
Article
A Concise Asymmetric Synthesis of Sex Pheromone of Euproctis pseudoconspersa (Strand) and Its Enantiomer
by Biyu An, Shengli Liu, Jianan Wang, Dan Liu, Qinghua Bian and Jiangchun Zhong
Molecules 2025, 30(12), 2494; https://doi.org/10.3390/molecules30122494 - 6 Jun 2025
Viewed by 855
Abstract
The tea tussock moth, Euproctis pseudoconspersa (Strand), is a serious pest, and its sex pheromone is (R)-10,14-dimethylpentadecyl isobutyrate. A new and concise asymmetric synthesis of the sex pheromone and its enantiomer was accomplished. The chiral methyl of the pheromone was introduced [...] Read more.
The tea tussock moth, Euproctis pseudoconspersa (Strand), is a serious pest, and its sex pheromone is (R)-10,14-dimethylpentadecyl isobutyrate. A new and concise asymmetric synthesis of the sex pheromone and its enantiomer was accomplished. The chiral methyl of the pheromone was introduced by Evans’s template, while the extension of the carbon chain was achieved through Li2CuCl4-catalyzed coupling of chiral tosylate with Grignard reagent. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Figure 1

43 pages, 3579 KB  
Review
The Multifaceted Health Benefits of Broccoli—A Review of Glucosinolates, Phenolics and Antimicrobial Peptides
by Celia María Curieses Andrés, José Manuel Pérez de la Lastra, Elena Bustamante Munguira, Celia Andrés Juan and Eduardo Pérez-Lebeña
Molecules 2025, 30(11), 2262; https://doi.org/10.3390/molecules30112262 - 22 May 2025
Cited by 6 | Viewed by 15636
Abstract
Broccoli, a highly valued Brassica vegetable, is renowned for its rich content of bioactive substances, including glucosinolates, phenolic compounds, vitamins, and essential minerals. Glucosinolates (GSLs), secondary plant metabolites, are particularly abundant in broccoli. The global consumption of broccoli has increased due to its [...] Read more.
Broccoli, a highly valued Brassica vegetable, is renowned for its rich content of bioactive substances, including glucosinolates, phenolic compounds, vitamins, and essential minerals. Glucosinolates (GSLs), secondary plant metabolites, are particularly abundant in broccoli. The global consumption of broccoli has increased due to its high nutritional value. This review examines the essential bioactive compounds in broccoli and their biological properties. Numerous in vitro and in vivo studies have demonstrated that broccoli exhibits various biological activities, including antioxidant, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic effects. This review analyzes several aspects of the chemical and biological activity of GSLs and their hydrolysis products, isothiocyanates such as sulforaphane, as well as phenolic compounds. Particular emphasis is placed on sulforaphane’s chemical structure, the reactivity of its isothiocyanate fraction (-NCS), and given the different behavior of SFN enantiomers, a wide and detailed review of the chemical synthesis methods described, by microbial oxidation, or using a chiral ruthenium catalyst and more widely using chiral auxiliaries for synthesizing sulforaphane enantiomers. In addition, the methods of chiral resolution of racemates by HPLC are reviewed, explaining the different chiral fillers used for this resolution and a third section on resolution using the formation of diastereomeric complexes and subsequent separation on achiral columns. Additionally, this review highlights the presence of antimicrobial peptides in broccoli, which have shown potential applications in food preservation and as natural alternatives to synthetic antibiotics. The antimicrobial peptides (AMPs) derived from broccoli target bacterial membranes, enzymes, oxidative stress pathways and inflammatory mediators, contributing to their effectiveness against a wide range of pathogens and with potential therapeutic applications. Full article
(This article belongs to the Special Issue Natural Antioxidants in Functional Food)
Show Figures

Figure 1

12 pages, 1656 KB  
Article
Organophotoredox-Catalyzed Stereoselective Synthesis of Bicyclo[3.2.0]heptanes via [2+2] Photocycloaddition
by Tommaso Benettin, Simonetta Resta, Alessandra Forni, Laura Raimondi, Alessandra Puglisi and Sergio Rossi
Molecules 2025, 30(10), 2090; https://doi.org/10.3390/molecules30102090 - 8 May 2025
Viewed by 1538
Abstract
The stereoselective synthesis of bicyclo[3.2.0]heptanes via an anion radical [2+2] photocycloaddition of aryl bis-enone derivatives was investigated. By employing chiral oxazolidinone auxiliaries bound to aryl bis-enone substrates, enantioenriched, highly substituted bicyclo[3.2.0]heptanes have been synthesized. The reaction, mediated by Eosin Y and promoted by [...] Read more.
The stereoselective synthesis of bicyclo[3.2.0]heptanes via an anion radical [2+2] photocycloaddition of aryl bis-enone derivatives was investigated. By employing chiral oxazolidinone auxiliaries bound to aryl bis-enone substrates, enantioenriched, highly substituted bicyclo[3.2.0]heptanes have been synthesized. The reaction, mediated by Eosin Y and promoted by LiBr under visible light irradiation, has been studied both experimentally and computationally to elucidate the mechanism and stereoselective outcomes. The process proceeds via a syn-closure pathway, leading to the formation of the corresponding cis-anti diastereoisomers as major products isolated and characterized by X-ray analysis; DFT calculations provided useful insights and computational support which allow a plausible reaction mechanism to be proposed that agrees with the collected experimental data. Full article
(This article belongs to the Special Issue Cyclization Reactions in Organic Synthesis: Recent Developments)
Show Figures

Graphical abstract

11 pages, 2464 KB  
Communication
Thioureas Derived from (S)-1-(2-pyridyl)ethylamine Enantiomer: Synthesis and Selected Applications as an Organocatalyst
by Jacek Chrzanowski, Luca Sancineto, Malgorzata Deska, Michal Rachwalski and Jozef Drabowicz
Symmetry 2025, 17(2), 216; https://doi.org/10.3390/sym17020216 - 31 Jan 2025
Viewed by 1390
Abstract
In order to expand the group of chiral thiourea structures, several optically active thioureas derived from the (S)-1-(2-pyridyl)ethylamine enantiomer were prepared via its reaction with achiral or optically active isothiocyanates. To show their synthetic potential as chiral auxiliaries the isolated thioureas [...] Read more.
In order to expand the group of chiral thiourea structures, several optically active thioureas derived from the (S)-1-(2-pyridyl)ethylamine enantiomer were prepared via its reaction with achiral or optically active isothiocyanates. To show their synthetic potential as chiral auxiliaries the isolated thioureas were tested as an optically active organocatalyst in the asymmetric version of the selected aldol condensation and addition of diethylzinc to benzaldehyde. The observation of asymmetric induction in these model reactions encourages further research on the use of this group of thioureas in asymmetric versions of multicomponent reactions and cycloadditions. The mechanistic aspects of the reactions under study are also briefly discussed. Full article
Show Figures

Scheme 1

24 pages, 2465 KB  
Article
Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis
by Yu Wang, Ting Xu, Ankit Pandey, Shengzhou Jin, Jasmine X. Yan, Qingkai Yuan, Sai Zhang, Jia-Yin Wang, Ruibin Liang and Guigen Li
Molecules 2025, 30(3), 603; https://doi.org/10.3390/molecules30030603 - 29 Jan 2025
Cited by 1 | Viewed by 1637
Abstract
Enantiopure turbo chirality in small organic molecules, without other chiral elements, is a fascinating topic that has garnered significant interest within the chemical and materials science community. However, further research into and application of this concept have been severely limited by the lack [...] Read more.
Enantiopure turbo chirality in small organic molecules, without other chiral elements, is a fascinating topic that has garnered significant interest within the chemical and materials science community. However, further research into and application of this concept have been severely limited by the lack of effective asymmetric tools. To date, only a few enantiomers of turbo chiral targets have been isolated, and these were obtained through physical separation using chiral HPLC, typically on milligram scales. In this work, we report the first asymmetric approach to enantiopure turbo chirality in the absence of other chiral elements such as central and axial chirality. This is demonstrated by assembling aromatic phosphine oxides, where three propeller-like groups are anchored to a P(O) center via three axes. Asymmetric induction was successfully carried out using a chiral sulfonimine auxiliary, with absolute configurations and conformations unambiguously determined by X-ray diffraction analysis. The resulting turbo frameworks exhibit three propellers arranged in either a clockwise (P,P,P) or counterclockwise (M,M,M) configuration. In these arrangements, the bulkier sides of the aromatic rings are oriented toward the oxygen atom of the P=O bond rather than in the opposite direction. Additionally, the orientational configuration is controlled by the sulfonimine auxiliary as well, showing that one of the Naph rings is pushed away from the auxiliary group (-CH2-NHSO2-tBu) of the phenyl ring. Computational studies were conducted on relative energies for the rotational barriers of a turbo target along the P=O axis and the transition pathway between two enantiomers, meeting our expectations. This work is expected to have a significant impact on the fields of chemistry, biomedicine, and materials science in the future. Full article
Show Figures

Figure 1

39 pages, 14151 KB  
Review
Syntheses of Marine Natural Products via Matteson Homologations and Related Processes
by Uli Kazmaier
Mar. Drugs 2025, 23(1), 20; https://doi.org/10.3390/md23010020 - 2 Jan 2025
Cited by 4 | Viewed by 5399
Abstract
Matteson homologation, a successive extension of chiral boronic esters, is perfectly suited for the synthesis of complex molecular structures containing several stereogenic centers. The “classical version” allows the introduction of various functional groups in a 1,2-anti-configuration. The absolute configuration is determined [...] Read more.
Matteson homologation, a successive extension of chiral boronic esters, is perfectly suited for the synthesis of complex molecular structures containing several stereogenic centers. The “classical version” allows the introduction of various functional groups in a 1,2-anti-configuration. The absolute configuration is determined by the choice of the chiral auxiliary, which can be used to introduce several stereogenic centers. In contrast, in Aggarwal’s lithiation-borylation strategy, new chiral auxiliary reagents must be used in each reaction step, which on the other hand allows the individual insertion of the desired stereogenic centers. Both methods have their individual advantages and disadvantages and are well suited for the synthesis of marine natural products. Full article
Show Figures

Figure 1

22 pages, 3296 KB  
Article
Regioselective Synthesis of Potential Non-Quinonoid Prodrugs of Plasmodione: Antiparasitic Properties Against Two Hemoglobin-Feeding Parasites and Drug Metabolism Studies
by Elena Cesar-Rodo, Baptiste Dupouy, Cécile Häberli, Jean-Marc Strub, David L. Williams, Pascal Mäser, Matthias Rottmann, Jennifer Keiser, Don Antoine Lanfranchi and Elisabeth Davioud-Charvet
Molecules 2024, 29(22), 5268; https://doi.org/10.3390/molecules29225268 - 7 Nov 2024
Cited by 2 | Viewed by 2324
Abstract
Ψ-1,4-naphthoquinones (Ψ-NQ) are non-quinoid compounds in which aromaticity—found in 1,4-naphthoquinones—is broken by the introduction of an angular methyl at C-4a or -8a. This series was designed to act as prodrugs of 1,4-naphthoquinones in an oxidative environment. Furthermore, from a medicinal chemistry point of [...] Read more.
Ψ-1,4-naphthoquinones (Ψ-NQ) are non-quinoid compounds in which aromaticity—found in 1,4-naphthoquinones—is broken by the introduction of an angular methyl at C-4a or -8a. This series was designed to act as prodrugs of 1,4-naphthoquinones in an oxidative environment. Furthermore, from a medicinal chemistry point of view, the loss of planarity of the scaffold might lead to an improved solubility and circumvent the bad reputation of quinones in the pharmaceutical industry. In this work, we illustrated the concept by the synthesis of Ψ -plasmodione regioisomers as prodrugs of the antimalarial plasmodione. The presence of a chiral center introduces a new degree of freedom to be controlled by enantioselectivity and regioselectivity of the cycloaddition in the Diels–Alder reaction. The first strategy that was followed was based on the use of a chiral enantiopure sulfoxide to govern the stereoselective formation of (+)Ψ-NQ or (−)Ψ-NQ, depending on the chirality of the sulfoxide (R or S). New sulfinylquinones were synthesized but were found to be ineffective in undergoing cycloaddition with different dienes under a wide range of conditions (thermal, Lewis acid). The second strategy was based on the use of boronic acid-substituted benzoquinones as auxiliaries to control the regioselectivity. Using this methodology to prepare the (±)Ψ-NQ racemates, promising results (very fast cycloaddition time: ~2 h) were obtained with boronic acid-based quinones 25 and 27 in the presence of 1-methoxy-1,3-butadiene, to generate the 4a- and the 8a-Ψ-plasmodione regioisomers 1 and 2 (synthesized in six steps with a total yield of 10.5% and 4.1%, respectively. As the expected prodrug effect can only be revealed if the molecule undergoes an oxidation of the angular methyl, e.g., in blood-feeding parasites that digest hemoglobin from the host, the antimalarial and the antischistosomal properties of both (±)Ψ-NQ regioisomers were determined in drug assays with Plasmodium falciparum and Schistosoma mansoni. Metabolic studies under quasi-physiological conditions and LC-MS analyses were undertaken to reveal the generation of plasmodione from both the 4a- and the 8a-Ψ-plasmodione regioisomers. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry II)
Show Figures

Graphical abstract

12 pages, 1355 KB  
Article
Asymmetric Synthesis and Biological Activity of Contact Pheromone of Western Flower Thrips, Frankliniella occidentalis
by Chuanwen Lin, Wenya Zhu, Shuai Wu, Qinghua Bian and Jiangchun Zhong
Int. J. Mol. Sci. 2024, 25(21), 11699; https://doi.org/10.3390/ijms252111699 - 31 Oct 2024
Cited by 1 | Viewed by 1412
Abstract
Western flower thrips, Frankliniella occidentalis, is a serious worldwide pest of agriculture and horticulture, and its contact pheromone is 7-methyltricosane. Two enantiomers of 7-methyltricosane were synthesized for the first time. The centra of our strategy were chiral auxiliaries to introduce stereocenter, and [...] Read more.
Western flower thrips, Frankliniella occidentalis, is a serious worldwide pest of agriculture and horticulture, and its contact pheromone is 7-methyltricosane. Two enantiomers of 7-methyltricosane were synthesized for the first time. The centra of our strategy were chiral auxiliaries to introduce stereocenter, and Wittig coupling to connect two blocks. The overall yields of our synthesis were 29–30% with seven steps. The electroantennogram (EAG) and the contact behavioral responses revealed that (R)-, (S)- and racemic 7-methyltricosane were separately bioactive, and the racemate was the most bioactive in the male arrestant activity and the female EAG test. This result provides valuable insights, showing that the racemate could be used for the support of the control of western flower thrips, which could be more easily prepared relative to more expensive enantiopure pheromone. Full article
(This article belongs to the Special Issue Molecular Signalling in Multitrophic Systems Involving Arthropods)
Show Figures

Figure 1

56 pages, 4348 KB  
Review
Review of Applications of β-Cyclodextrin as a Chiral Selector for Effective Enantioseparation
by Ewa Napiórkowska and Łukasz Szeleszczuk
Int. J. Mol. Sci. 2024, 25(18), 10126; https://doi.org/10.3390/ijms251810126 - 20 Sep 2024
Cited by 17 | Viewed by 4486
Abstract
The significance and necessity of separating enantiomers in food, pharmaceuticals, pesticides, and other samples remains constant and unrelenting. The successful chiral separation usually includes the application of a chiral auxiliary compound, known also as a chiral selector (CS), that forms complexes with enantiomers [...] Read more.
The significance and necessity of separating enantiomers in food, pharmaceuticals, pesticides, and other samples remains constant and unrelenting. The successful chiral separation usually includes the application of a chiral auxiliary compound, known also as a chiral selector (CS), that forms complexes with enantiomers of different physicochemical properties, enabling efficient separation. While both native and substituted cyclodextrins (CDs) are commonly used as CSs, β-CD is undoubtedly the most popular one among them. This review includes recent advancements in the application of β-CD as a CS. While the theoretical background behind the enantioseparation is also part of this work, the main emphasis is put on the factors that affect the efficacy of this process such as temperature, pH, solvent, and the choice of other additives. Also, the different analytical methods: Nuclear Magnetic Resonance (NMR) spectroscopy, Capillary Electrophoresis (CE), fluorescence spectroscopy (FS), High-Performance Liquid Chromatography (HPLC), Isothermal Titration Calorimetry (ITC), and UV–vis spectroscopy, used for enantioseparation with the aid of β-CD as CS, are thoroughly compared. Also, since some of the chiral compounds have been studied in the context of their enantioseparation more than once, those works are compared and critically analyzed. In conclusion, while β-CD can be in most cases used as CS, the choice of the experimental conditions and method of analysis is crucial to achieve the success. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 1511 KB  
Article
Enantioselective Synthesis of the Active Sex Pheromone Components of the Female Lichen Moth, Lyclene dharma dharma, and Their Enantiomers
by Yun Zhou, Jianan Wang, Yueru Zhang, Xiaochen Fu, Hongqing Xie, Jinlong Han, Jianhua Zhang, Jiangchun Zhong and Chenggang Shan
Molecules 2024, 29(12), 2918; https://doi.org/10.3390/molecules29122918 - 19 Jun 2024
Viewed by 1792
Abstract
The Lichen moth, Lyclene dharma dharma (Arctiidae, Lithosiinae), plays a significant role in forest ecosystem dynamics. A concise and novel method to synthesize the active sex pheromone components, (S)-14-methyloctadecan-2-one ((S)-1), (S)-6-methyloctadecan-2-one (( [...] Read more.
The Lichen moth, Lyclene dharma dharma (Arctiidae, Lithosiinae), plays a significant role in forest ecosystem dynamics. A concise and novel method to synthesize the active sex pheromone components, (S)-14-methyloctadecan-2-one ((S)-1), (S)-6-methyloctadecan-2-one ((S)-2), and their enantiomers has been developed. Key steps in the synthesis include the use of Evans’ chiral auxiliaries, Grignard cross-coupling reactions, hydroboration–oxidation, and Wacker oxidation. The synthesized sex pheromone components hold potential value for studies on communication mechanisms, species identification, and ecological management. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

28 pages, 13767 KB  
Review
Strategies for Accessing cis-1-Amino-2-Indanol
by Inès Mendas, Stéphane Gastaldi and Jean-Simon Suppo
Molecules 2024, 29(11), 2442; https://doi.org/10.3390/molecules29112442 - 22 May 2024
Cited by 1 | Viewed by 2927
Abstract
cis-1-amino-2-indanol is an important building block in many areas of chemistry. Indeed, this molecule is currently used as skeleton in many ligands (BOX, PyBOX…), catalysts and chiral auxiliaries. Moreover, it has been incorporated in numerous bioactive structures. The major issues during its [...] Read more.
cis-1-amino-2-indanol is an important building block in many areas of chemistry. Indeed, this molecule is currently used as skeleton in many ligands (BOX, PyBOX…), catalysts and chiral auxiliaries. Moreover, it has been incorporated in numerous bioactive structures. The major issues during its synthesis are the control of cis-selectivity, for which various strategies have been devised, and the enantioselectivity of the reaction. This review highlights the various methodologies implemented over the last few decades to access cis-1-amino-2-indanol in racemic and enantioselective manners. In addition, the various substitution patterns on the aromatic ring and their preparations are listed. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Scheme 1

17 pages, 4102 KB  
Article
A Squaramide-Based Organocatalyst as a Novel Versatile Chiral Solvating Agent for Carboxylic Acids
by Fabio Spiaggia, Gloria Uccello Barretta, Anna Iuliano, Carlo Baldassari, Federica Aiello and Federica Balzano
Molecules 2024, 29(10), 2389; https://doi.org/10.3390/molecules29102389 - 19 May 2024
Cited by 5 | Viewed by 2274
Abstract
A squaramide-based organocatalyst for asymmetric Michael reactions has been tested as a chiral solvating agent (CSA) for 26 carboxylic acids and camphorsulfonic acid, encompassing amino acid derivatives, mandelic acid, as well as some of its analogs, propionic acids like profens (ketoprofen and ibuprofen), [...] Read more.
A squaramide-based organocatalyst for asymmetric Michael reactions has been tested as a chiral solvating agent (CSA) for 26 carboxylic acids and camphorsulfonic acid, encompassing amino acid derivatives, mandelic acid, as well as some of its analogs, propionic acids like profens (ketoprofen and ibuprofen), butanoic acids and others. In many cases remarkably high enantiodifferentiations at 1H, 13C and 19F nuclei were observed. The interaction likely involves a proton transfer from the acidic substrates to the tertiary amine sites of the organocatalyst, thus allowing for pre-solubilization of the organocatalyst (when a chloroform solution of the substrate is employed) or the simultaneous solubilization of both the catalyst and the substrate. DOSY experiments were employed to evaluate whether the catalyst–substrate ionic adduct was a tight one or not. ROESY experiments were employed to investigate the role of the squaramide unit in the adduct formation. A mechanism of interaction was proposed in accordance with the literature data. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

27 pages, 4302 KB  
Review
Recent Advances in π-Stacking Interaction-Controlled Asymmetric Synthesis
by Jiaxi Xu
Molecules 2024, 29(7), 1454; https://doi.org/10.3390/molecules29071454 - 24 Mar 2024
Cited by 17 | Viewed by 5848
Abstract
The π-stacking interaction is one of the most important intramolecular and intermolecular noncovalent interactions in organic chemistry. It plays an important role in stabilizing some structures and transition states in certain reactions via both intramolecular and intermolecular interactions, facilitating different selectivities, such as [...] Read more.
The π-stacking interaction is one of the most important intramolecular and intermolecular noncovalent interactions in organic chemistry. It plays an important role in stabilizing some structures and transition states in certain reactions via both intramolecular and intermolecular interactions, facilitating different selectivities, such as chemo-, regio-, and stereoselectivities. This minireview focuses on the recent examples of the π-stacking interaction-controlled asymmetric synthesis, including auxiliary-induced asymmetric synthesis, kinetic resolution, asymmetric synthesis of helicenes and heterohelicenes, and multilayer 3D chiral molecules. Full article
(This article belongs to the Special Issue Current Development of Asymmetric Catalysis and Synthesis)
Show Figures

Scheme 1

14 pages, 2291 KB  
Article
A Thiourea Derivative of 2-[(1R)-1-Aminoethyl]phenol as a Chiral Sensor for the Determination of the Absolute Configuration of N-3,5-Dinitrobenzoyl Derivatives of Amino Acids
by Federica Aiello, Alessandra Recchimurzo, Federica Balzano, Gloria Uccello Barretta and Federica Cefalì
Molecules 2024, 29(6), 1319; https://doi.org/10.3390/molecules29061319 - 15 Mar 2024
Cited by 3 | Viewed by 1985
Abstract
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in [...] Read more.
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in the enantiodifferentiation of N-3,5-dinitrobenzoyl (N-DNB) amino acids. In order to broaden the application of 1-TU for configurational assignment, enantiomerically enriched N-DNB amino acids were analyzed via NMR. A robust correlation was established between the relative position of specific 1H and 13C NMR resonances of the enantiomers in the presence of 1-TU. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was selected for the complete solubilization of amino acid substrates. Notably, the para and ortho protons of the N-DNB moiety displayed higher frequency shifts for the (R)-enantiomers as opposed to the (S)-enantiomers. This trend was consistently observed in the 13C NMR spectra for quaternary carbons bonded to NO2 groups. Conversely, an inverse correlation was noted for quaternary carbon resonances of the carboxyl moiety, amide carbonyl, and methine carbon at the chiral center. This observed trend aligns with the interaction mechanism previously reported for the same chiral auxiliary. The configurational correlation can be effectively exploited under conditions of high dilution or, significantly, under sub-stoichiometric conditions. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop