Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (581)

Search Parameters:
Keywords = chemo-mechanical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1593 KB  
Review
Nano-Engineered Delivery of the Pro-Apoptotic KLA Peptide: Strategies, Synergies, and Future Directions
by Yunmi Cho, Ha Gyeong Kim and Eun-Taex Oh
Biomolecules 2026, 16(1), 74; https://doi.org/10.3390/biom16010074 - 2 Jan 2026
Viewed by 336
Abstract
Antimicrobial peptides have been increasingly recognized as potential anticancer agents, with the KLA peptide (KLAKLAK2) being one of the most well-known and successful examples. The research interest in the KLA peptide is attributed to its ability to induce apoptosis in cancer [...] Read more.
Antimicrobial peptides have been increasingly recognized as potential anticancer agents, with the KLA peptide (KLAKLAK2) being one of the most well-known and successful examples. The research interest in the KLA peptide is attributed to its ability to induce apoptosis in cancer cells by disrupting the mitochondrial membrane. However, the KLA peptide exhibits poor cellular uptake and it lacks targeting specificity, limiting its clinical potential in cancer therapy. In this review, recent advances in nano-engineered delivery platforms for overcoming the limitations of KLA peptides and enhancing their anticancer efficacy are discussed. Specifically, various nanocarrier systems that enable targeted delivery, controlled release and/or improved bioavailability, including pH-responsive nanosystems, photo-chemo combination liposomes, self-assembled peptide-based nanostructures, nanogel-based delivery systems, homing domain-conjugated KLA structures, inorganic-based nanoparticles, and biomimetic nanocarriers, are highlighted. Additionally, synergistic strategies for combining KLA with chemotherapeutic agents or immunotherapeutic agents to overcome resistance mechanisms in cancer cells are examined. Finally, key challenges for the clinical application of these nanotechnologies are summarized and future directions are proposed. Full article
(This article belongs to the Special Issue Advances in Nano-Based Drug Delivery Systems)
Show Figures

Figure 1

25 pages, 905 KB  
Review
Advances in Near-Infrared BODIPY Photosensitizers: Design Strategies and Applications in Photodynamic and Photothermal Therapy
by Dorota Bartusik-Aebisher, Kacper Rogóż, Gabriela Henrykowska and David Aebisher
Pharmaceuticals 2026, 19(1), 53; https://doi.org/10.3390/ph19010053 - 26 Dec 2025
Viewed by 346
Abstract
Background/Objectives: Boron-dipyrromethene (BODIPY) derivatives are a superior class of fluorophores prized for their exceptional photostability and tunable photophysical properties. While ideal for imaging, their translation to photodynamic therapy (PDT) has been hampered by excitation in the visible range, leading to poor tissue penetration. [...] Read more.
Background/Objectives: Boron-dipyrromethene (BODIPY) derivatives are a superior class of fluorophores prized for their exceptional photostability and tunable photophysical properties. While ideal for imaging, their translation to photodynamic therapy (PDT) has been hampered by excitation in the visible range, leading to poor tissue penetration. To overcome this, intense research has focused on developing near-infrared (NIR)-absorbing BODIPY photosensitizers (PS). This review aims to systematically summarize the hierarchical design strategies, from molecular engineering to advanced nanoplatform construction, that underpin the recent progress of NIR-BODIPY PS in therapeutic applications. Methods: We conducted a comprehensive literature review using PubMed, Scopus, and Web of Science databases. The search focused on keywords such as “BODIPY”, “aza-BODIPY”, “near-infrared”, “photodynamic therapy”, “photothermal therapy”, “nanocarriers”, “hypoxia”, “immuno-phototherapy”, and “antibacterial.” This review analyzes key studies describing molecular design, chemical modification strategies (e.g., heavy-atom effect, π-extension), nanoplatform formulation, and therapeutic applications in vitro and in vivo. Results: Our analysis reveals a clear progression in design complexity. At the molecular level, we summarize strategies to enhance selectivity, including active targeting, designing “smart” PS responsive to the tumor microenvironment (TME) (e.g., hypoxia or low pH), and precise subcellular localization (e.g., mitochondria, lysosomes). We then detail the core chemical strategies for achieving NIR absorption and high singlet oxygen yield, including π-extension, the internal heavy-atom effect, and heavy-atom-free mechanisms (e.g., dimerization). The main body of the review categorizes the evolution of advanced theranostic nanoplatforms, including targeted systems, stimuli-responsive ‘smart’ systems, photo-immunotherapy (PIT) platforms inducing immunogenic cell death (ICD), hypoxia-overcoming systems, and synergistic chemo-phototherapy carriers. Finally, we highlight emerging applications beyond oncology, focusing on the use of NIR-BODIPY PS for antibacterial therapy and biofilm eradication. Conclusions: NIR-BODIPY photosensitizers are a highly versatile and powerful class of theranostic agents. The field is rapidly moving from simple molecules to sophisticated, multifunctional nanoplatforms designed to overcome key clinical hurdles like hypoxia, poor selectivity, and drug resistance. While challenges in scalability and clinical translation remain, the rational design strategies and expanding applications, including in infectious diseases, confirm that NIR-BODIPY derivatives will be foundational to the next generation of precision photomedicine. Full article
Show Figures

Figure 1

24 pages, 1329 KB  
Review
Geotechnical Controls on Land Degradation in Drylands: Indicators and Mitigation for Infrastructure and Renewable Energy
by Hani S. Alharbi
Sustainability 2026, 18(1), 242; https://doi.org/10.3390/su18010242 - 25 Dec 2025
Viewed by 350
Abstract
Land degradation in drylands increasingly threatens infrastructure and the performance of renewable energy (RE) systems through coupled hydro-chemo-mechanical changes in soil fabric, density, matric suction, and pore–water chemistry. A key gap is the limited integration of unsaturated soil mechanics with practical indicator sets [...] Read more.
Land degradation in drylands increasingly threatens infrastructure and the performance of renewable energy (RE) systems through coupled hydro-chemo-mechanical changes in soil fabric, density, matric suction, and pore–water chemistry. A key gap is the limited integration of unsaturated soil mechanics with practical indicator sets used in engineering screening and operations. This narrative review synthesizes evidence from targeted searches of Scopus, Web of Science, and Google Scholar. Searches are complemented by key organizational reports and standards, as well as citation tracking. Priority is given to sources that report mechanisms linked to measurable indicators, thresholds, tests, or models relevant to dryland infrastructure. The synthesis uses the soil-water characteristic curve (SWCC) and hydraulic conductivity k(θ) to connect hydraulic state to strength and deformation and couples these with chemical indices, including electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR). Practical diagnostics include the dynamic cone penetrometer (DCP) and California Bearing Ratio (CBR) tests, infiltration and crust-strength tests, monitoring with unmanned aerial vehicles (UAVs), geophysics, and in situ moisture and suction sensing. The contribution is an indicator-driven, practice-oriented framework linking mechanisms, monitoring, and mitigation for photovoltaic (PV), concentrating solar power (CSP), wind, transmission, and well-pad corridors. This framework is implemented by consistently linking unsaturated soil state (SWCC, k(θ), and matric suction) to degradation processes, measurable indicator/test sets, and trigger-based interventions across the review. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

19 pages, 7458 KB  
Article
Transient Pressure Build-Up in Saturated Column System from Buffering-Induced CO2 Generation: Implications for Soil Liquefaction in Lignite Overburden Dumps
by Donata N. W. Wardani, Nils Hoth, Sarah Amos, Kofi Moro, Johanes Maria Vianney and Carsten Drebenstedt
Geotechnics 2026, 6(1), 1; https://doi.org/10.3390/geotechnics6010001 - 24 Dec 2025
Viewed by 138
Abstract
Spontaneous liquefaction in the Lusatian lignite dump sites has raised significant geotechnical and environmental concerns. While mechanical influences have been extensively studied, hydrochemical investigations suggest an inner initial that is highly correlated to CO2 generation, attributed to buffering reactions, which lays the [...] Read more.
Spontaneous liquefaction in the Lusatian lignite dump sites has raised significant geotechnical and environmental concerns. While mechanical influences have been extensively studied, hydrochemical investigations suggest an inner initial that is highly correlated to CO2 generation, attributed to buffering reactions, which lays the foundation for this study. This study aims to understand the process behind and to quantify the transient evolution of excess pore-pressure induced by CO2 accumulation, both dissolved and as free gas, in saturated medium using a series of column experiments. Excess pore-pressures up to 7.7 kPa were recorded following a period of buffering reaction, with discharged gas confirmed as CO2. The results demonstrate that the buffering process strongly influences the elevated pressure, while, in turn, elevated pressures affect the chemical conditions within the column. Secondary mineral precipitation, as one of the effects, was observed to reduce buffering reactivity and modify pore structure, thereby altering pore-pressure response. These findings highlight hydrochemical feedback as critical internal triggers and amplifiers in liquefaction events, complementing mechanical explanations and advancing understanding of coupled hydro-chemo-mechanical processes in dump site stability. Full article
Show Figures

Figure 1

16 pages, 2368 KB  
Article
Thermo-Chemo-Mechanical Coupling in TGO Growth and Interfacial Stress Evolution of Coated Dual-Pipe System
by Weiao Song, Tianliang Wu, Junxiang Gao, Xiaofeng Guo, Bo Yuan and Kun Lv
Coatings 2025, 15(12), 1498; https://doi.org/10.3390/coatings15121498 - 18 Dec 2025
Viewed by 211
Abstract
Improving the energy efficiency of advanced ultra-supercritical (USC) power plants by increasing steam operating temperature up to 700 °C can be achieved, at reduced cost, by using novel engineering design concepts, such as coated steam pipe systems manufactured from high temperature materials commonly [...] Read more.
Improving the energy efficiency of advanced ultra-supercritical (USC) power plants by increasing steam operating temperature up to 700 °C can be achieved, at reduced cost, by using novel engineering design concepts, such as coated steam pipe systems manufactured from high temperature materials commonly used in current operational power plants. The durability of thermal barrier coatings (TBC) in advanced USC coal power systems is critically influenced by thermally grown oxide (TGO) evolution and interfacial stress under thermo-chemo-mechanical coupling. This study investigates a novel dual-pipe coating system comprising an inner P91 steel pipe with dual coatings and external cooling, designed to mitigate thermal mismatch stresses while operating at 700 °C. A finite element framework integrating thermo-chemo-mechanical coupling theory is developed to analyze TGO growth kinetics, oxygen diffusion, and interfacial stress evolution. Results reveal significant thermal gradients across the coating, reducing the inner pipe surface temperature to 560 °C under steady-state conditions. Oxygen diffusion and interfacial curvature drive non-uniform TGO thickening, with peak regions exhibiting 23% greater thickness than troughs after 500 h of oxidation. Stress analysis identifies axial stress dominance at top coat/TGO and TGO/bond coat interfaces, increasing from 570 MPa to 850 MPa due to constrained volumetric changes and incompatible growth strains. The parabolic TGO growth kinetics and stress redistribution mechanisms underscore the critical role of thermo-chemo-mechanical interactions in interfacial degradation. These research findings will facilitate the optimization of coating architectures and the enhancement of structural integrity in high-temperature energy systems. Meanwhile, clarifying the stress evolution within the coating can improve the ability to predict failures in USC coal power technology. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

18 pages, 1484 KB  
Article
Insights into Chemo-Mechanical Yielding and Eigenstrains in Lithium-Ion Battery Degradation
by Fatih Uzun
Batteries 2025, 11(12), 465; https://doi.org/10.3390/batteries11120465 - 18 Dec 2025
Viewed by 373
Abstract
In lithium-ion battery electrodes, repeated lithium insertion and extraction generate compositional gradients and volumetric changes that produce evolving stress fields and eigenstrains, accelerating mechanical degradation. While existing diffusion-induced stress models often capture only elastic behavior, they rarely provide a closed-form analytical treatment of [...] Read more.
In lithium-ion battery electrodes, repeated lithium insertion and extraction generate compositional gradients and volumetric changes that produce evolving stress fields and eigenstrains, accelerating mechanical degradation. While existing diffusion-induced stress models often capture only elastic behavior, they rarely provide a closed-form analytical treatment of irreversible deformation or its connection to cyclic degradation. In this work, a transparent analytical framework is developed for a planar electrode that explicitly couples lithium diffusion with elastic-plastic deformation, eigenstrain formation, and fracture-aware stress relaxation. The framework provides a means to quantitatively model the evolution of residual stress gradients, revealing the formation of a damaging tensile state at the electrode surface after delithiation and demonstrating how path-dependent irreversible deformation establishes a degradation memory. A parametric study is used to demonstrate the framework’s capability to clarify the influence of diffusivity and yield strength on residual stress development. This framework, which unifies diffusion, plasticity, and fracture in closed-form mechanical relations, provides new physical insight into the origins of chemo-mechanical degradation and offers a computationally efficient tool for guiding the design of durable next-generation electrode materials where chemo-mechanical strains are moderate. Full article
Show Figures

Graphical abstract

14 pages, 1527 KB  
Article
The HER2MtGx Metagene Score as a Reliable Tool to Select HER2 Breast Cancer Patients for Neoadjuvant Targeted Therapy
by Daniel Guimarães Tiezzi, Isabela Panzeri Carlotti Buzatto, Willian Abraham da Silveira, Anna Clara Monti, Fabiana de Oliveira Buono, Juliana Meola, Omero Benedicto Poli-Neto and Stefano Maria Pagnotta
Int. J. Mol. Sci. 2025, 26(24), 11809; https://doi.org/10.3390/ijms262411809 - 6 Dec 2025
Viewed by 338
Abstract
The cHER2+ breast cancer subtype is characterized by the overexpression of the HER2 oncoprotein based on immunohistochemistry (IHC)/or by ERBB2 gene amplification using in situ hybridization (ISH) techniques. Targeted therapies are significantly changing cancer treatment outcomes. However, not all patients benefit from it [...] Read more.
The cHER2+ breast cancer subtype is characterized by the overexpression of the HER2 oncoprotein based on immunohistochemistry (IHC)/or by ERBB2 gene amplification using in situ hybridization (ISH) techniques. Targeted therapies are significantly changing cancer treatment outcomes. However, not all patients benefit from it due to misclassification or intrinsic mechanisms of resistance. Identifying predictive factors of response to therapy is thus crucial for optimizing treatment protocol. In addition, with the development of effective antibody–drug conjugates for targeting HER2-low subtypes, enhancing the HER2 molecular classification is crucial. In this study, a comprehensive analysis of publicly available datasets (TCGA, METABRIC, I-SPY, NOAH and CHER-LOB trials) has been considered. We present a metagene expression score (HER2MtGx 31-gene assay) based on the most informative genes associated with each molecular profile. HER2MtGx scores represent three linear subspaces associated with the HER2, Luminal and Basal-like profiles (STAT). In the METABRIC cohort, the scores are useful to discriminate against the HER2-enriched phenotype and this classification is significantly associated with long-term survival in cHER2+ patients (HR = 1.76; 95%CI = 1.09–2.86). In terms of response to neoadjuvant chemo/target therapy including I-SPY, NOAH, and CHER-LOB trials, the metagene scores are associated with the pathological response to therapy (OR = 2.26; 95%CI = 1.74–2.98). The HER2MtGx assay is a reliable tool for selecting patients for HER2-targeted therapy. Full article
(This article belongs to the Special Issue Computational Cancer Genomics and Molecular Profile in Breast Cancer)
Show Figures

Figure 1

12 pages, 513 KB  
Article
Fluorescence as a Quantitative Indicator of Cariogenic Bacteria During Chemo-Mechanical Caries Excavation with BRIX 3000 in Primary Teeth
by Zornitsa Lazarova, Raina Gergova and Nadezhda Mitova
J. Funct. Biomater. 2025, 16(12), 453; https://doi.org/10.3390/jfb16120453 - 6 Dec 2025
Viewed by 456
Abstract
Minimally invasive treatment is increasingly successful in managing carious lesions in primary teeth, owing to the regenerative capacity of the dental pulp and the possibility to influence the pulp–dentin complex. Chemo-mechanical caries excavation (CME) with Brix 3000, a papain-based enzymatic agent, allows selective [...] Read more.
Minimally invasive treatment is increasingly successful in managing carious lesions in primary teeth, owing to the regenerative capacity of the dental pulp and the possibility to influence the pulp–dentin complex. Chemo-mechanical caries excavation (CME) with Brix 3000, a papain-based enzymatic agent, allows selective removal of infected dentin while preserving affected dentin for potential remineralization. Fluorescence-aided caries excavation (FACE) enables visualization of porphyrins produced by cariogenic microorganisms, guiding selective dentin removal. In this study, 42 children aged 4–7 years with ICDAS II code 05–06 lesions in primary molars were treated, and the correlation between fluorescence intensity and cariogenic microbial load was evaluated. CME was performed using Brix 3000, and residual dentin was categorized by fluorescence as red, red with pale-pink areas, pale-pink, or non-fluorescent. Microbiological samples were collected pre- and post-excavation, cultured under standardized laboratory conditions, and quantitatively analyzed. Results showed that higher fluorescence intensity corresponded to increased presence of S. mutans (ρ = 0.945, p < 0.001), while other species were present in lower quantities. CME with Brix 3000 significantly reduced microbial load, and fluorescence reliably indicated areas requiring removal. These findings demonstrate that combining FACE with Brix 3000 allows precise, minimally invasive caries removal in primary teeth, providing an objective method to guide tissue-preserving excavation while effectively controlling cariogenic microorganisms. Full article
(This article belongs to the Special Issue Biomaterials for Management of Dental Caries and Periodontal Disease)
Show Figures

Figure 1

19 pages, 2107 KB  
Article
Analytical Study of Microstructural Effects on the Degradation of Elastic Properties in Cement Paste
by Jing Xue and Jianfu Shao
Sci 2025, 7(4), 173; https://doi.org/10.3390/sci7040173 - 1 Dec 2025
Viewed by 404
Abstract
This study presents an analytical and multiscale investigation of the degradation of elastic properties in ordinary Portland cement (OPC) paste subjected to calcium leaching. Eight representative microstructures and three homogenization schemes (Mori–Tanaka, Hashin–Shtrikman, and Voigt) were evaluated to determine the most suitable configuration [...] Read more.
This study presents an analytical and multiscale investigation of the degradation of elastic properties in ordinary Portland cement (OPC) paste subjected to calcium leaching. Eight representative microstructures and three homogenization schemes (Mori–Tanaka, Hashin–Shtrikman, and Voigt) were evaluated to determine the most suitable configuration for predicting stiffness evolution. Model validation against benchmark experimental data at 14 and 56 days demonstrated good agreement, with prediction errors within 10%. Simulation results reveal that progressive decalcification leads to significant reductions in both bulk and shear moduli, with the calcium hydroxide (CH) phase being the most sensitive, followed by low-density (LD) and high-density (HD) calcium silicate hydrate (CSH). The overall stiffness loss increases with the water-to-cement ratio (w/c), exceeding 90% at w/c=0.5 under complete decalcification. A sensitivity analysis further shows that the rate of modulus degradation decreases with increasing w/c, reflecting a mechanical normalization effect rather than improved chemical stability. These findings highlight the dominant role of calcium preservation in maintaining mechanical integrity and provide a robust theoretical framework for predicting the chemo-mechanical degradation and long-term durability of cement-based materials in aggressive environments. Full article
Show Figures

Figure 1

17 pages, 7634 KB  
Article
CLSM-Guided Imaging to Visualize the Depth of Effective Disinfection in Endodontics
by Rebecca Mattern, Sarah Böcher, Gerhard Müller-Newen, Georg Conrads, Johannes-Simon Wenzler and Andreas Braun
Antibiotics 2025, 14(12), 1201; https://doi.org/10.3390/antibiotics14121201 - 1 Dec 2025
Viewed by 416
Abstract
Background/Objectives: Important goals of endodontic treatment procedures are to effectively eliminate microorganisms from the root canal system and prevent reinfection. Despite advances in techniques, these goals continue to be difficult to achieve due to the complex anatomy of the root canal system and [...] Read more.
Background/Objectives: Important goals of endodontic treatment procedures are to effectively eliminate microorganisms from the root canal system and prevent reinfection. Despite advances in techniques, these goals continue to be difficult to achieve due to the complex anatomy of the root canal system and bacterial invasion into the dentinal tubules of the surrounding root dentin. This pilot study aimed to refine a confocal laser scanning microscopy (CLSM) model with LIVE/DEAD staining to quantitatively assess the depth of effective disinfection by endodontic disinfection measures. Methods: Thirty caries-free human teeth underwent standardized chemo-mechanical root canal preparation and were inoculated with Enterococcus faecalis. Following treatment, CLSM-guided imaging with LIVE/DEAD staining allowed for differentiation between vital and dead bacteria and quantification of the depth of effective disinfection. Results: An average depth of bacterial eradication of 450 µm for conventional and 520 µm for sonically activated irrigation (EDDY) could be observed with significant differences (p < 0.05) in the coronal and medial positions. Conclusions: The results indicated that sonically activated irrigation (EDDY) provided a more homogeneous (omnidirectional) irrigation pattern compared to conventional irrigation. The study highlights the importance of effective disinfection strategies in endodontics, emphasizing the need for further research on the depth of effective disinfection of endodontic disinfection measures and the optimization of disinfection protocols. Full article
Show Figures

Figure 1

17 pages, 3078 KB  
Article
Modeling the Coupled Stress Relaxation and SEI Evolution in Preload-Constrained Lithium-Ion Cells
by Jinhan Li, Xue Li, Zhihao Yang, Hao Li, Shuaibang Liu, Jintao Shi, Xingcun Fan, Zifeng Cong, Xiaolong Feng and Xiao-Guang Yang
Appl. Sci. 2025, 15(23), 12528; https://doi.org/10.3390/app152312528 - 26 Nov 2025
Viewed by 389
Abstract
This work investigates the role of preload pressure in governing the electro-chemo-mechanical (ECM) behavior of lithium iron phosphate (LFP)/graphite pouch cells during calendar aging. Cells aged at 60 °C under different preload levels were systematically evaluated through in situ monitoring of force evolution [...] Read more.
This work investigates the role of preload pressure in governing the electro-chemo-mechanical (ECM) behavior of lithium iron phosphate (LFP)/graphite pouch cells during calendar aging. Cells aged at 60 °C under different preload levels were systematically evaluated through in situ monitoring of force evolution and capacity retention. To interpret these behaviors, a coupled model was developed that integrates solid electrolyte interphase (SEI)-induced electrode expansion, viscoelastic relaxation, and stiffness evolution, and it was validated against multi-rate discharge experiments, showing excellent agreement with measured voltage and force responses. The results reveal that higher preload amplifies internal pressure fluctuations, prolongs viscoelastic relaxation, and delays irreversible force recovery, while the overall capacity fade remains largely unaffected. A slight mitigation in capacity loss is observed at high preload, primarily due to suppressed SEI growth resulting from reduced electrode porosity and a decrease in active surface area available for interfacial reactions. Fitting parameters for stiffness correction, relaxation amplitude, and relaxation time exhibited systematic preload dependence. By decoupling irreversible and relaxation forces, the framework enables quantitative analysis of aging-induced pressure accumulation. Overall, this study underscores the critical role of mechanical constraints in long-term battery degradation and demonstrates the predictive capability of the proposed ECM model for guiding preload design in practical modules. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 1515 KB  
Article
Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure
by Aihua Lu and Yongxing Zhang
Materials 2025, 18(22), 5091; https://doi.org/10.3390/ma18225091 - 9 Nov 2025
Viewed by 824
Abstract
Corrosion-induced cracking poses a significant threat to the longevity of reinforced concrete (RC) structures, yet precisely forecasting its advancement continues to be a considerable scientific obstacle. The principal shortcoming of current numerical models is their excessive simplification, frequently presuming totally saturated conditions and [...] Read more.
Corrosion-induced cracking poses a significant threat to the longevity of reinforced concrete (RC) structures, yet precisely forecasting its advancement continues to be a considerable scientific obstacle. The principal shortcoming of current numerical models is their excessive simplification, frequently presuming totally saturated conditions and disregarding the dynamic interplay between environmental (hygro-thermal) variations and developing mesoscale damage. This study presents a thorough hygro-thermo-electro-chemo-mechanical (HTECM) phase-field model to fill this research need. The model uniquely combines dynamic unsaturated hygro-thermal transport with multi-ion reactive electrochemistry and meso-scale fracture mechanics. A rigorous comparison with published experimental data validates the model’s exceptional accuracy. The anticipated progression of fracture width exhibited remarkable concordance with experimental data, indicating a substantial enhancement in precision compared to uncoupled, saturated-state models. A key finding is the quantification of the damage-induced “transport-corrosion” positive feedback loop: initial corrosion-induced microcracks significantly expedite the transport of local moisture and corrosive agents, leading to nonlinear structural degradation. This work presents a high-fidelity numerical platform that enhances the understanding of linked deterioration in materials science and improves the durability design of reinforced concrete structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 1887 KB  
Article
Ultrasonic-Responsive Pluronic P105/F127 Nanogels for Overcoming Multidrug Resistance in Cancer
by Shangpeng Liu, Min Sun and Zhen Fan
Gels 2025, 11(11), 878; https://doi.org/10.3390/gels11110878 - 1 Nov 2025
Viewed by 595
Abstract
Effective management of multidrug-resistant cancers depends on effective, localized drug release and accumulation within the tumor microenvironment. In our work, Pluronic P105 and F127 mixed nanogels (PM) were fabricated through self-assembly to combat multidrug-resistant cancer. The approximate diameter of our prepared PM is [...] Read more.
Effective management of multidrug-resistant cancers depends on effective, localized drug release and accumulation within the tumor microenvironment. In our work, Pluronic P105 and F127 mixed nanogels (PM) were fabricated through self-assembly to combat multidrug-resistant cancer. The approximate diameter of our prepared PM is 115.7 nm, an optimal size for tumor accumulation through the enhanced permeability and retention (EPR) effect. An in vitro drug release assay indicated that ultrasound could accelerate the drug release rate in doxorubicin-loaded Pluronic nanogels (PM/D). Additionally, the resistance reversion index (RRI) in the ultrasound-treated PM/D group was 4.55 and was two times higher than that in the free PM/D group, which represented better MDR reverse performance. Cell experiments demonstrated that, after 3 min of ultrasound, a greater amount of chemo-drug was released and absorbed by the MDR human breast cell line (MCF-7/ADR), resulting in significant cytotoxicity. Such enhanced therapeutic efficiency could be attributed to the combined effects of the two independent mechanisms: (i) ultrasound-controllable drug release realized effective release within resistant tumors with spatial and temporal precision and (ii) the contained Pluronic in the PM/D inhibited P-gp-mediated efflux activity to overcome MDR in tumors. Collectively, our findings support the feasibility of ultrasound-responsive PM as a drug-delivery platform for resistant cancers. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

16 pages, 2195 KB  
Article
State-of-Charge-Dependent Anisotropic Lithium Diffusion and Stress Development in Ni-Rich NMC Cathodes: A Multiscale Simulation Study
by Ijaz Ul Haq, Haseeb Ul Hassan and Seungjun Lee
Appl. Sci. 2025, 15(21), 11566; https://doi.org/10.3390/app152111566 - 29 Oct 2025
Viewed by 617
Abstract
Understanding the relationship between state-of-charge (SOC) and anisotropic lithium diffusion is essential for improving the durability of Ni-rich layered oxide cathodes. However, quantitative insights into directional lithium diffusivity and its influence on mechanical degradation remain limited. In this study, molecular dynamics (MD) simulations [...] Read more.
Understanding the relationship between state-of-charge (SOC) and anisotropic lithium diffusion is essential for improving the durability of Ni-rich layered oxide cathodes. However, quantitative insights into directional lithium diffusivity and its influence on mechanical degradation remain limited. In this study, molecular dynamics (MD) simulations were performed for LiNixMnyCozO2 (NMC) compositions with varying nickel content and SOC levels to reveal composition- and direction-dependent lithium transport behavior. The numerical indices in NMC compositions (e.g., NMC111, NMC532, NMC811) indicate the relative molar ratios of Ni, Mn, and Co, respectively, in LiNixMnyCozO2. The results show that lithium diffusion is enhanced at low SOC, owing to the abundance of vacant sites, while diffusion along the out-of-plane (c-axis) direction is strongly constrained, particularly in Ni-rich systems. To bridge the atomistic and continuum scales, the SOC-dependent anisotropic diffusivities obtained from MD simulations were incorporated into a chemo-mechanical finite-element model of an NMC811 particle. The coupled analysis demonstrates that anisotropic and SOC-dependent diffusion accelerates lithium depletion and stress localization, elucidating the origin of particle cracking in Ni-rich cathodes. This multiscale framework provides quantitative parameters and mechanistic understanding critical for designing durable next-generation lithium-ion batteries. Full article
Show Figures

Figure 1

23 pages, 3482 KB  
Article
Understanding the Limitations of Modifying Bitumen with Re-Refined Engine Oil Bottom (REOB)
by Lucas Mortier, Xueyan Liu, Sayeda N. Nahar and Hinrich Grothe
Materials 2025, 18(21), 4825; https://doi.org/10.3390/ma18214825 - 22 Oct 2025
Viewed by 493
Abstract
The evolving bitumen market is increasingly complex due to variations in crude sources and transitions in refining processes, affecting the properties of bitumen. Unexpected additions of materials to alter bitumen’s properties could occur, where traditional PEN grade testing fails to detect modifications by [...] Read more.
The evolving bitumen market is increasingly complex due to variations in crude sources and transitions in refining processes, affecting the properties of bitumen. Unexpected additions of materials to alter bitumen’s properties could occur, where traditional PEN grade testing fails to detect modifications by inclusion of, for example, Re-refined Engine Oil Bottoms. This is the first study to comprehensively compare REOBs from European vs. North American sources and assess their effects on binder performance in a unified framework, performed by assessing the REOB-modified binders by identification, stability, compatibility, ageing susceptibility, and low-temperature properties. Two series of REOB-modified bitumen were prepared by blending 5, 10, and 15 wt.% REOB into hard grade bitumen. Results showed increased carbonyl formations (likely caused by lubricant additives) and phase instability during storage which can be attributed to saturates exudation. Rheological assessment demonstrated that REOB softens bitumen, although ageing causes a pronounced gain in stiffness. Low temperature rheological measurements showed that REOB-modified bitumen is prone to brittle fracture, suggesting a loss of relaxation properties. This study highlights that REOB is a material of inconsistent nature, with complex interactions with molecular groups of the base bitumen, causing increased ageing, phase instability, and brittle fracture susceptibilities. Full article
Show Figures

Figure 1

Back to TopTop