Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = chemical weathering indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

18 pages, 273 KiB  
Review
Incorporation of E-Waste Plastics into Asphalt: A Review of the Materials, Methods, and Impacts
by Sepehr Mohammadi, Dongzhao Jin, Zhongda Liu and Zhanping You
Encyclopedia 2025, 5(3), 112; https://doi.org/10.3390/encyclopedia5030112 - 1 Aug 2025
Viewed by 177
Abstract
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible [...] Read more.
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible materials. This review then discusses the types of e-waste plastics used for asphalt modification, their incorporation methods, and compatibility challenges. Physical and chemical treatment techniques, including the use of free radical initiators, are then explored for improving dispersion and performance. Additionally, in situations where advanced pretreatment methods are not applicable due to cost, safety, or technical constraints, the application of alternative approaches, such as the use of low-cost complementary additives, is discussed as a practical solution to enhance compatibility and performance. Finally, the influence of e-waste plastics on the conventional and rheological properties of asphalt binders, as well as the performance of asphalt mixtures, is also evaluated. Findings indicate that e-waste plastics, when combined with appropriate pretreatment methods and complementary additives, can enhance workability, cold-weather cracking resistance, high-temperature anti-rutting performance, and resistance against moisture-induced damage while also offering environmental and economic benefits. This review highlights the potential of e-waste plastics as sustainable asphalt modifiers and provides insights across the full utilization pathway, from recovery to in-field performance. Full article
(This article belongs to the Collection Sustainable Ground and Air Transportation)
37 pages, 22971 KiB  
Article
Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan
by Abdul Bari Qanit, Shahid Iqbal, Azharul Haq Kamran, Muhammad Idrees, Benjamin Sames and Michael Wagreich
Minerals 2025, 15(8), 789; https://doi.org/10.3390/min15080789 - 28 Jul 2025
Viewed by 1168
Abstract
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt [...] Read more.
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt Range of Pakistan, the Khewra Sandstone constitutes the Lower Cambrian strata and consists of red–maroon sandstones with minor siltstone and shale in the basal part. Cross-bedding, graded bedding, ripple marks, parallel laminations, load casts, ball and pillows, desiccation cracks, and bioturbation are the common sedimentary features of the formation. The sandstones are fine to medium to coarse-grained with subangular to subrounded morphology and display an overall coarsening upward trend. Petrographic analysis indicates that the sandstones are sub-arkose and sub-lithic arenites, and dolomite and calcite are common cementing materials. X-ray Diffraction (XRD) analysis indicates that the main minerals in the formation are quartz, feldspars, kaolinite, illite, mica, hematite, dolomite, and calcite. Geochemical analysis indicates that SiO2 is the major component at a range of 53.3 to 88% (averaging 70.4%), Al2O3 ranges from 3.1 to 19.2% (averaging 9.2%), CaO ranges from 0.4 to 25.3% (averaging 7.4%), K2O ranges from 1.2 to 7.4% (averaging 4.8%), MgO ranges from 0.2 to 7.4% (averaging 3.5%), and Na2O ranges from 0.1 to 0.9% (averaging 0.4%), respectively. The results of the combined proxies indicate that the sedimentation occurred in fluvial–deltaic settings under overall arid to semi-arid paleoclimatic conditions with poor to moderate chemical weathering. The Khewra Sandstone represents the red Cambrian sandstones on the NW Indian Plate margin of Gondwana and can be correlated with contemporaneous red sandstones in the USA, Europe, Africa, Iran, and Turkey (Türkiye). Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 146
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 273
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

17 pages, 2531 KiB  
Article
Evaluation of the Alkali–Silica Reaction Potential of Korean Aggregates: Experimental Insights and Mitigation Strategies for Concrete Durability
by Chul Seoung Baek and Byoung Woon You
Materials 2025, 18(14), 3373; https://doi.org/10.3390/ma18143373 - 18 Jul 2025
Viewed by 363
Abstract
The alkali–silica reaction (ASR) is an important mechanism of concrete deterioration, whereby reactive silica in aggregate interacts with cement alkalis to form expanding gel, which compromises the structural integrity of the concrete. Although the Republic of Korea has historically been classified as a [...] Read more.
The alkali–silica reaction (ASR) is an important mechanism of concrete deterioration, whereby reactive silica in aggregate interacts with cement alkalis to form expanding gel, which compromises the structural integrity of the concrete. Although the Republic of Korea has historically been classified as a low-risk region for ASR due to its geological stability, documented examples of concrete damage since the late 1990s have necessitated a rigorous reassessment of local aggregates. This study evaluated the ASR potential of 84 aggregate samples sourced from diverse Korean geological regions using standardized protocols, including ASTM C 1260 for mortar bar expansion and ASTM C 289 for chemical reactivity, supplemented by soundness, acid drainage, and weathering index analyses. The results indicate expansion within the range of 0.1–0.2%, classified as potentially deleterious, for some rock types. In addition to ASR reactivity, isolated high anomalies (e.g., high soundness, acid producing, and weathering) suggest the existence of other durability risks. Consequently, while Korean aggregates predominantly have a low ASR reactivity, the adoption of various validated ASR tests as a routine test and the integration of supplementary cementitious materials are recommended to ensure long-term concrete durability, highlighting the need for sustained monitoring and further investigation into mitigation strategies. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 327
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 2025 KiB  
Article
Coating Performance of Heat-Treated Wood: An Investigation in Populus, Quercus, and Pinus at Varying Temperatures
by Andromachi Mitani, Paschalina Terzopoulou, Konstantinos Ninikas, Dimitrios Koutsianitis and Georgios Ntalos
Forests 2025, 16(7), 1159; https://doi.org/10.3390/f16071159 - 14 Jul 2025
Viewed by 232
Abstract
Thermal modification applies to a technique for the enhancement of biological durability, stability, and appearance of wood. Much is known about its effects on the chemical and physical attributes of wood. However, there is a knowledge gap concerning the effects of heat treatment [...] Read more.
Thermal modification applies to a technique for the enhancement of biological durability, stability, and appearance of wood. Much is known about its effects on the chemical and physical attributes of wood. However, there is a knowledge gap concerning the effects of heat treatment on surface coating performance of different wood species. The focus of this research is heat treatment regulation of 160 °C, 180 °C, and 200 °C for three commercially important wood species which are Populus (poplar), Quercus (oak), and Pinus (pine). These treatments were evaluated in relation to coating performance indicators adhesion, integrity, and visual stability during and after natural and artificial weathering. It was revealed that specific responses among species differences exist. Populus behaved differently and exhibited a steady loss in mass and volume. Quercus demonstrated gradual degradation alongside enhanced lignin stability. Pinus exhibited maintenance of volume and mass until 180 °C after which accelerated degradation was observed. Coating durability and adhesion exhibited dependence on thermal condition, wood species, porosity, surface chemistry and microstructural variations that occurred. The research results can be used to streamline finishing processes for thermally modified wood while underscoring the critical nature of precise treatment parameter adjustments guided by species-specific responses to ensure long-term stability. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
Integrated Compositional Modeling and Machine Learning Analysis of REE-Bearing Coal Ash from a Weathered Dumpsite
by Rashid Nadirov, Kaster Kamunur, Lyazzat Mussapyrova, Aisulu Batkal, Olesya Tyumentseva and Ardak Karagulanova
Minerals 2025, 15(7), 734; https://doi.org/10.3390/min15070734 - 14 Jul 2025
Viewed by 279
Abstract
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power [...] Read more.
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power generation using coal from the Ekibastuz Basin. A multi-method approach—comprising bulk chemical characterization, unsupervised clustering, X-ray diffraction (XRD), scanning electron microscopy (SEM), and supervised machine learning (ML)—was applied to identify consistent indicators of REE enrichment. While conventional regression models failed to predict individual REE concentrations accurately, ML algorithms consistently highlighted vanadium (V) as the most robust predictor of ΣREE across Random Forest, XGBoost, and LASSO. This suggests that V may act as a geochemical proxy for REE-bearing phases, potentially due to co-retention in amorphous or ferruginous matrices. Despite compositional similarity among many samples, XRD and SEM revealed marked variability in phase structure and crystallinity, underscoring the limitations of bulk oxide data alone. These findings demonstrate that REE behavior in ash cannot be predicted deterministically, but ML can be used to screen for informative compositional signals. The proposed workflow may support the preliminary classification and valorization of heterogeneous ash materials in secondary resource strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 5644 KiB  
Article
Analysis of the Impact of the Drying Process and the Effects of Corn Race on the Physicochemical Characteristics, Fingerprint, and Cognitive-Sensory Characteristics of Mexican Consumers of Artisanal Tostadas
by Oliver Salas-Valdez, Emmanuel de Jesús Ramírez-Rivera, Adán Cabal-Prieto, Jesús Rodríguez-Miranda, José Manuel Juárez-Barrientos, Gregorio Hernández-Salinas, José Andrés Herrera-Corredor, Jesús Sebastián Rodríguez-Girón, Humberto Marín-Vega, Susana Isabel Castillo-Martínez, Jasiel Valdivia-Sánchez, Fernando Uribe-Cuauhtzihua and Víctor Hugo Montané-Jiménez
Processes 2025, 13(7), 2243; https://doi.org/10.3390/pr13072243 - 14 Jul 2025
Viewed by 726
Abstract
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated [...] Read more.
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated with solar and hybrid (solar-photovoltaic solar panels) dehydration methods. Proximal chemical quantification, instrumental analysis (color, texture), fingerprint by Fourier transform infrared spectroscopy (FTIR), and sensory-cognitive profile (emotions and memories) and its relationship with the level of pleasure were carried out. The data were evaluated using analysis of variance models, Cochran Q, and an external preference map (PREFMAP). The results showed that the drying method and corn race significantly (p < 0.05) affected only moisture content, lipids, carbohydrates, and water activity. Instrumental color was influenced by the corn race effect, and the dehydration type influenced the fracturability effect. FTIR fingerprinting results revealed that hybrid samples exhibited higher intensities, particularly associated with higher lime concentrations, indicating a greater exposure of glycosidic or protein structures. Race and dehydration type effects impacted the intensity of sensory attributes, emotions, and memories. PREFMAP vector model results revealed that consumers preferred tostadas from the Solar-Chiquito, Hybrid-Pepitilla, Hybrid-Cónico, and Hybrid-Chiquito races for their higher protein content, moisture, high fracturability, crunchiness, porousness, sweetness, doughy flavor, corn flavor, and burnt flavor, while images of these tostadas evoked positive emotions (tame, adventurous, free). In contrast, the Solar-Pepitilla tostada had a lower preference because it was perceived as sour and lime-flavored, and its tostada images evoked more negative emotions and memories (worried, accident, hurt, pain, wild) and fewer positive cognitive aspects (joyful, warm, rainy weather, summer, and interested). However, the tostadas of the Solar-Cónico race were the ones that were most rejected due to their high hardness and yellow to blue tones and for evoking negative emotions (nostalgic and bored). Full article
(This article belongs to the Special Issue Applications of Ultrasound and Other Technologies in Food Processing)
Show Figures

Figure 1

19 pages, 15843 KiB  
Article
Hydrochemical Characteristics and Formation Mechanisms of Groundwater in the Nanmiao Emergency Groundwater Source Area, Yichun, Western Jiangxi, China
by Shengpin Yu, Tianye Wang, Ximin Bai, Gongxin Chen, Pingqiang Wan, Shifeng Chen, Qianqian Chen, Haohui Wan and Fei Deng
Water 2025, 17(14), 2063; https://doi.org/10.3390/w17142063 - 10 Jul 2025
Viewed by 298
Abstract
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, [...] Read more.
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, isotopic tracing, and hydrochemical modeling to reveal the hydrochemical characteristics and origins of groundwater in the region. The results indicate that Na+ and Ca2+ dominate the cations, while HCO3 and Cl dominate the anions. Groundwater from descending springs is characterized by low mineralization and weak acidity, with hydrochemical types of primarily HCO3–Na·Mg and HCO3–Mg·Na·Ca. Groundwater from boreholes is weakly mineralized and neutral, with dominant hydrochemical types of HCO3–Ca·Na and HCO3–Ca·Na·Mg, suggesting a deep circulation hydrogeochemical process. Hydrogen and oxygen isotope analysis indicates that atmospheric precipitation is the primary recharge source. The chemical composition of groundwater is mainly controlled by rock weathering, silicate mineral dissolution, and cation exchange processes. During groundwater flowing, water and rock interactions, such as leaching, cation exchange, and mixing, occur. This study identifies the recharge sources and circulation mechanisms of regional groundwater, offering valuable insights for the sustainable development and protection of the emergency water source area. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

19 pages, 1214 KiB  
Article
Physical and Chemical Characteristics of Different Aerosol Fractions in the Southern Baikal Region (Russia) During the Warm Season
by Liudmila P. Golobokova, Tamara V. Khodzher, Vladimir A. Obolkin, Vladimir L. Potemkin and Natalia A. Onischuk
Atmosphere 2025, 16(7), 829; https://doi.org/10.3390/atmos16070829 - 8 Jul 2025
Viewed by 266
Abstract
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal [...] Read more.
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal impact from fuel and energy industries allowed us to observe regional and transboundary pollution transport. A large data array indicated that, during the shift of cyclones from Mongolia to the south of the Baikal region, the concentrations of Na+, Ca2+, Mg2+, K+, and Cl ions increased at the Irkutsk station, dominated by NH4+ and SO42−. The growth of the ionic concentrations at the Listvyanka station was observed in aerosol particles during the northwesterly transport. When air masses arrived from the southerly direction, the atmosphere was the cleanest. The analysis of 27 elements in aerosols revealed that Al, Fe, Mn, Cu, and Zn made the greatest contribution to air pollution at the Irkutsk station, while Fe, Al, Cu, Cr, Mn, and Ni made the greatest contribution to air pollution at the Listvyanka station. The dynamics of the investigated elements were mainly due to natural processes in the air under various synoptic situations and weather conditions in the region, although anthropogenic factors also affected the formation of aerosol composition wth certain directions of air mass transport. Full article
Show Figures

Figure 1

16 pages, 1636 KiB  
Article
Lithological Controls on Chemical Weathering and CO2 Consumption at Small Watershed Scale: Insights from Hydrochemistry and Stable Carbon Isotope
by Yuanzheng Zhang, Wenlong Huang, Zhuohan Zhuang, Jing Hua, Litong Bai, Yi Ding, Ling Zheng, Cheng Wang, Chuang Zhao and Yunde Liu
Water 2025, 17(13), 2008; https://doi.org/10.3390/w17132008 - 4 Jul 2025
Viewed by 334
Abstract
Previous investigations into lithology-driven weathering processes have largely emphasized large-scale spatial assessments, while studies targeting small watershed scales remain scarce. This study investigated two adjacent watersheds (Chengjia: CJ; Datan: DT) under comparable climatic conditions in Guangdong, China, using hydrochemistry and stable carbon isotopes. [...] Read more.
Previous investigations into lithology-driven weathering processes have largely emphasized large-scale spatial assessments, while studies targeting small watershed scales remain scarce. This study investigated two adjacent watersheds (Chengjia: CJ; Datan: DT) under comparable climatic conditions in Guangdong, China, using hydrochemistry and stable carbon isotopes. The CJ watershed exhibited low-TDS (20–66 mg/L) HCO3-Na·Ca-type waters dominated by silicate weathering, whereas the DT watershed displayed high-TDS (70–278 mg/L) HCO3-Ca-type waters, indicative of mixed carbonate–silicate weathering. Results of carbon isotope composition of dissolved inorganic carbon confirmed that H2CO3-driven weathering was the dominant mechanism in both watersheds. In the CJ watershed, 79.5% of dissolved cations in surface water originated from silicate weathering, yielding a CO2 consumption rate (CCR) of 0.28 × 106 mol/km2/yr, while carbonate weathering was negligible. Conversely, in the DT watershed, 86.4% of dissolved cations were derived from carbonate weathering, yielding a CCR of 1.94 × 106 mol/km2/yr, whereas silicate weathering contributed only 10.3% of cations with a CCR of 0.23 × 106 mol/km2/yr. The chemical weathering rate of carbonate can be up to 10 times that of silicate, resulting in a larger CCR. This study demonstrated the key impact of lithology on hydrochemical characteristics and CO2 consumption at small watershed scales. Full article
(This article belongs to the Special Issue Water–Rock Interaction)
Show Figures

Figure 1

29 pages, 12574 KiB  
Article
Weathering Records from an Early Cretaceous Syn-Rift Lake
by Yaohua Li, Qianyou Wang and Richard H. Worden
Hydrology 2025, 12(7), 179; https://doi.org/10.3390/hydrology12070179 - 3 Jul 2025
Viewed by 334
Abstract
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation [...] Read more.
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation (Lishu Rift Depression, Songliao Basin, NE Asia) to access paleo-weathering intensity and paleoclimate variability between the Middle Aptian and Early Albian (c. 118.2–112.3 Ma). Multiple geochemical proxies, including the Chemical Index of Alteration (CIA), were applied within a sequence stratigraphic framework covering four stages of lake evolution. Our results indicate that a hot and humid subtropical climate predominated in the Lishu paleo-lake, punctuated by transient cooling and drying events. Periods of lake expansion corresponded to episodes of intense chemical weathering, while two distinct intervals of aridity and cooling coincided with phases of a reduced lake level and fan delta progradation. To address the impact of potassium enrichment on CIA values, we introduced a rectangular coordinate system on A(Al2O3)-CN(CaO* + Na2O)-K(K2O) ternary diagrams, enabling more accurate weathering trends and CIA corrections (CIAcorr). Uncertainties in CIA correction were evaluated by integrating geochemical and petrographic evidence from deposits affected by hydrothermal fluids and external potassium addition. Importantly, our results show that metasomatic potassium addition cannot be reliably inferred solely from deviations in A-CN-K diagrams or the presence of authigenic illite and altered plagioclase. Calculations of “excess K2O” and CIAcorr values should only be made when supported by robust geochemical and petrographic evidence for external potassium enrichment. This work advances lacustrine paleoclimate reconstruction methodology and highlights the need for careful interpretation of weathering proxies in complex sedimentary systems. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

34 pages, 6019 KiB  
Article
Deploying a Wireless Sensor Network to Track Pesticide Pollution in Kiu Wetland Wells: A Field Study
by Titus Mutunga, Sinan Sinanovic, Funmilayo B. Offiong and Colin Harrison
Sensors 2025, 25(13), 4149; https://doi.org/10.3390/s25134149 - 3 Jul 2025
Viewed by 614
Abstract
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and [...] Read more.
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and machine-to-machine communication technologies (M2M) holds promise in overcoming this major global challenge. In this current research, an IoT-based wireless sensor network (WSN) is successfully deployed in rural Kenya at the Kiu watershed, providing in situ pesticide detections and a real-time data visualisation of shallow wells. Kiu is an off-grid community located in an area of intensive agriculture, where residents face a high exposure to pesticides due to farming activities and a reliance on shallow wells for domestic water. The evaluation of path loss models utilising channel characteristics obtained from this study indicate a marked departure from the continuous signal decay with distance. Transmitted packets from deployed sensor nodes indicate minimal mutations of payloads, underscoring systems reliability and data transmission integrity. Additionally, the proposed design significantly reduces the time taken to deliver pesticide measurement results to relevant stakeholders. For the entire monitoring period, pesticide residues were not detected in the selected wells, an outcome validated with lab procedures. These results are attributed to prevailing dry weather conditions which limited the leaching of pesticides to lower layers reaching the water table. Full article
(This article belongs to the Collection Sensing Technology in Smart Agriculture)
Show Figures

Figure 1

Back to TopTop