Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,968)

Search Parameters:
Keywords = chemical fractionation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1609 KiB  
Article
Exploring Residual Clays for Low-Impact Ceramics: Insights from a Portuguese Ceramic Region
by Carla Candeias, Sónia Novo and Fernando Rocha
Appl. Sci. 2025, 15(15), 8761; https://doi.org/10.3390/app15158761 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A [...] Read more.
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A multidisciplinary approach was employed to characterize clays, integrating mineralogical (XRD), chemical (XRF), granulometric, and thermal analyses (TGA/DTA/TD), as well as technological tests on plasticity, extrusion moisture, shrinkage, and flexural strength. These assessments were designed to capture both the intrinsic properties of the clays and their behavior across key ceramic processing stages, such as shaping, drying, and firing. The results revealed a broad diversity in mineral composition, particularly in the proportions of kaolinite, smectite, and illite, which strongly influenced plasticity, water demand, and thermal stability. Clays with higher fine fractions and smectitic content exhibited excellent plasticity and workability, though with increased sensitivity to drying and firing conditions. Others, with coarser textures and illitic or feldspathic composition, demonstrated improved dimensional stability and lower shrinkage. Thermal analyses confirmed expected dehydroxylation and sintering behavior, with the formation of mullite and spinel-type phases contributing to densification and strength in fired bodies. This study highlights that residual clays from varied geological settings can offer distinct advantages when matched appropriately to ceramic product requirements. Some materials showed strong potential for direct application in structural ceramics, while others may serve as additives or tempering agents in formulations. These findings reinforce the value of integrated characterization for optimizing raw material use and support a more circular, resource-conscious approach to ceramic production. Full article
23 pages, 4687 KiB  
Article
Mineralogical and Geochemical Characterization of the Benavila (Portugal) Bentonites
by Javier García-Rivas, Maria Isabel Dias, Isabel Paiva, Paula G. Fernandes, Rosa Marques, Emilia García-Romero and Mercedes Suárez
Minerals 2025, 15(8), 836; https://doi.org/10.3390/min15080836 - 7 Aug 2025
Abstract
This work aims to perform a detailed mineralogical, crystal-chemical, and geochemical characterization of bentonites from the Benavila outcrop, the largest known deposit of bentonites in continental Portugal. Bulk samples and different size fractions were characterized through X-Ray Diffraction (XRD). Structural formulae of the [...] Read more.
This work aims to perform a detailed mineralogical, crystal-chemical, and geochemical characterization of bentonites from the Benavila outcrop, the largest known deposit of bentonites in continental Portugal. Bulk samples and different size fractions were characterized through X-Ray Diffraction (XRD). Structural formulae of the smectites were fitted from point analyses acquired by analytical electron microscopy (AEM) with transmission electron microscopy (TEM). Smectites are the major component with variable amounts of calcite and minor amounts of quartz, feldspar, illite, and chlorite. Occasionally, amphiboles and dolomite have also been identified. The high content of carbonates in different parts of the sampling area is related to the circulation of carbonate-rich fluids. The smectites present high-layer charge, are intermediate terms of the montmorillonite–beidellite series, and also show an intermediate cisvacant–transvacant configuration. Major and trace elements concentrations were determined by ICP-MS. The geochemical analysis of the samples indicates an enrichment in SiO2 and Al2O3 and a depletion of the more clayey materials in REE, HFSE, and Y, among others. The calculation of the PIA and CIA alteration indices, along with other parameters observed, shows the possible alteration pathways of the Benavila deposit. Research to evaluate the ability of these bentonites to be used as engineering barrier systems (EBS) and sealing materials for radioactive waste repositories is ongoing. Full article
Show Figures

Figure 1

22 pages, 6168 KiB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 - 7 Aug 2025
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 262
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 163
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 1621 KiB  
Article
The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets
by David Sango-Parco, Lizbeth Zamora-Mendoza, Yuliana Valdiviezo-Cuenca, Camilo Zamora-Ledezma, Si Amar Dahoumane, Floralba López and Frank Alexis
Bioengineering 2025, 12(8), 838; https://doi.org/10.3390/bioengineering12080838 - 1 Aug 2025
Viewed by 317
Abstract
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences [...] Read more.
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences in their chemical components, making them equivalent for compression into tablets containing ibuprofen. TGA measurements indicate that the RC is slightly better for multilayer formulations due to its favorable degradation profile. This is corroborated by an XRD analysis that reveals its higher crystalline fraction (~55%). The use of a heat press at combined high pressures and temperatures allows the layer-by-layer tablet formulation of ibuprofen, taken as a model drug. Additionally, this study compares the release profile of three types of tablets compressed with cellulose: mixed (MIX), two-layer (BL), and three-layer (TL). The MIX tablet shows a profile like that of conventional ibuprofen tablets. Although both BL and TL tablets significantly reduce their release percentage in the first hours, the TL ones have proven to be better in the long run. In fact, formulations made of extracted cellulose sandwiching ibuprofen display a zero-order release profile and prolonged release since the drug release amounts to ~70% after 120 h. This makes the TL formulations ideal for maintaining the therapeutic effect of the drug and improving patients’ wellbeing and compliance while reducing adverse effects. Full article
Show Figures

Figure 1

20 pages, 2782 KiB  
Article
Urban Forest Fragmentation Reshapes Soil Microbiome–Carbon Dynamics
by Melinda Haydee Kovacs, Nguyen Khoi Nghia and Emoke Dalma Kovacs
Diversity 2025, 17(8), 545; https://doi.org/10.3390/d17080545 - 1 Aug 2025
Viewed by 192
Abstract
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of [...] Read more.
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of 18 plots were considered in this study, with six plots for each fragment type. Intact interior forest (F), internal forest path fragment (IF), and external forest path fragment (EF) soils were sampled at 0–15, 15–30, and 30–45 cm depths and profiled through phospholipid-derived fatty acid (PLFA) chemotyping and amino sugar proxies for living microbiome and microbial-derived necromass assessment, respectively. Carbon fractionation was performed through the chemical oxidation method. Diversity indices (Shannon–Wiener, Pielou evenness, Margalef richness, and Simpson dominance) were calculated based on the determined fatty acids derived from the phospholipid fraction. The microbial biomass ranged from 85.1 to 214.6 nmol g−1 dry soil, with the surface layers of F exhibiting the highest values (p < 0.01). Shannon diversity declined systematically from F > IF > EF. The microbial necromass varied from 11.3 to 23.2 g⋅kg−1. Fragmentation intensified the stratification of carbon pools, with organic carbon decreasing by approximately 14% from F to EF. Our results show that EFs possess a declining microbiome continuum that weakens their carbon sequestration capacity in urban forests. Full article
Show Figures

Figure 1

12 pages, 1650 KiB  
Communication
Salsolinol-Containing Senna silvestris Exerts Antiviral Activity Against Hepatitis B Virus
by Alberto Quintero, Maria Maillo, Nelson Gomes, Angel Fernández, Hector R. Rangel, Fabian Michelangeli and Flor H. Pujol
Plants 2025, 14(15), 2372; https://doi.org/10.3390/plants14152372 - 1 Aug 2025
Viewed by 202
Abstract
Several natural products have been shown to display antiviral activity against the hepatitis B virus (HBV), among a number of other viruses. In a previous study, the hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest were tested [...] Read more.
Several natural products have been shown to display antiviral activity against the hepatitis B virus (HBV), among a number of other viruses. In a previous study, the hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest were tested on the hepatoma cell line HepG2.2.15, which constitutively produces HBV. One of the species that exerted inhibitory activity on HBV replication was Senna silvestris. The aim of this study was the bioassay-guided purification of the ethanol fraction of leaves of S. silvestris, which displayed the most significant inhibitory activity against HBV. After solvent extraction and two rounds of reverse-phase HPLC purification, NMR analysis identified salsolinol as the compound that may exert the desired antiviral activity. The purified compound exerted inhibition of both HBV DNA and core HBV DNA. Pure salsolinol obtained from a commercial source also displayed anti-HBV DNA inhibition, with an approximate MIC value of 12 µM. Although salsolinol is widely used in Chinese traditional medicine to treat congestive heart failure, it has also been associated with Parkinson’s disease. More studies are warranted to analyze the effect of changes in its chemical conformation, searching for potent antiviral, perhaps dual agents against HBV and HIV, with reduced toxicity. Full article
Show Figures

Figure 1

16 pages, 3753 KiB  
Article
Elevational Patterns and Seasonal Dynamics of Soil Organic Carbon Fractions and Content in Rice Paddies of Yuanyang Terrace, Southwest China
by Haitao Li, Linxi Chang, Yonglin Wu, Yang Li, Xinran Liang, Fangdong Zhan and Yongmei He
Agronomy 2025, 15(8), 1868; https://doi.org/10.3390/agronomy15081868 - 1 Aug 2025
Viewed by 200
Abstract
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons [...] Read more.
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons (spring, summer, autumn and winter) at Yuanyang Terrace in southwest China were investigated, and their relationship with environmental factors was analyzed. The contents of SOC, unprotected SOC (uPOM), physically protected SOC (pPOM) and biochemically protected SOC (bcPOM) in rice paddies at a low elevation (250 m), were significantly lower by 49–51% than those at relatively high elevations (1600 m and 1800 m). Among the SOC fractions, the highest proportion (33–50%) was uPOM, followed by pPOM and bcPOM (accounting for 17–40%), and the lowest proportion was chemically protected SOC (cPOM). In addition, there were interseasonal differences among the contents of SOC fractions, with a significantly higher content of SOC, uPOM and pPOM at an elevation of 1600 m in summer than in the other three seasons, whereas the cPOM content at an elevation of 250 m in spring was significantly higher than in the other three higher elevations. According to the redundancy analysis (RDA), total nitrogen was the key environmental factor, with an explanatory degree of 56% affecting the contents of SOC and its fractions. Thus, the SOC content increased with increasing elevation, and physical and biochemical protection were potential stabilization mechanisms responsible for their stability in the rice paddy of Yuanyang Terrace. These results provides empirical evidence for the elevational distribution patterns and seasonal dynamics of SOC fractions in rice paddies across Yuanyang Terrace. These findings highlight the importance of physical and biochemical protection mechanisms in stabilizing SOC in rice paddies, which could enhance long-term C sequestration and contribute to climate change mitigation in terraced agroecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 1365 KiB  
Article
Immobilization of Cd Through Biosorption by Bacillus altitudinis C10-4 and Remediation of Cd-Contaminated Soil
by Tianyu Gao, Chenlu Zhang, Xueqiang Hu, Tianqi Wang, Zhitang Lyu and Lei Sun
Microorganisms 2025, 13(8), 1798; https://doi.org/10.3390/microorganisms13081798 - 1 Aug 2025
Viewed by 181
Abstract
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the [...] Read more.
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the contact time, pH, Cd(II) concentration, and biomass dosage affected the adsorption of Cd(II) by strain C10-4. The adsorption process fit well to the Langmuir adsorption isotherm model and the pseudo-second-order kinetics model, based on the Cd(II) adsorption data obtained from the cells of strain C10-4. This suggests that Cd(II) is adsorbed by strain C10-4 cells via a single-layer homogeneous chemical adsorption process. According to the Langmuir model, the maximum biosorption capacity was 3.31 mg/g for fresh-strain C10-4 biomass. Cd(II) was shown to adhere to the bacterial cell wall through SEM-EDS analysis. FTIR spectroscopy further indicated that the main functional sites for the binding of Cd(II) ions on the cell surface of strain C10-4 were functional groups such as N-H, -OH, -CH-, C=O, C-O, P=O, sulfate, and phosphate. After the inoculation of strain C10-4 into Cd(II)-contaminated soils, there was a significant reduction (p < 0.01) in the exchangeable fraction of Cd and an increase (p < 0.01) in the sum of the reducible, oxidizable, and residual fractions of Cd. The results show that Bacillus altitudinis C10-4 has good potential for use in the remediation of Cd(II)-contaminated soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 365
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

25 pages, 1695 KiB  
Review
Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition
by Raquel P. F. Guiné, Sofia G. Florença, Maria João Barroca and Cristina A. Costa
Insects 2025, 16(8), 796; https://doi.org/10.3390/insects16080796 - 31 Jul 2025
Viewed by 453
Abstract
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a [...] Read more.
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a sustainable alternative to other animal protein sources, such as meat. This review intends to present the compilation of data in the scientific literature on the chemical composition and nutritional value of the bee brood of A. mellifera species and subspecies as edible foods. For this, a comprehensive search of the scientific literature was carried out using the databases ScienceDirect, Scopus, Pub-Med, BOn, and SciELO. Appropriate keywords were used for the search to reach the research works that addressed the topics of the review. The results showed that bee brood has considerable quantities of protein, fat and carbohydrates. The most abundant amino acids are leucine and lysine (these two being essential amino acids) and aspartic acid, glutamic acid, and proline (these three being non-essential amino acids). As for the fatty acids, bee broods contain approximately equal fractions of saturated and monounsaturated fatty acids, while the polyunsaturated fatty acids are negligible. The dietary minerals present in higher quantities are potassium, phosphorus, and magnesium, and the most abundant vitamins are vitamin C and niacin; choline is also present, although it is not a true vitamin. Although bee brood from A. mellifera has potential for human consumption as a nutrient-rich food, there are still many aspects that need to be further studied in the future, such as safety and hazards linked to possible regular consumption. Full article
(This article belongs to the Special Issue Insects: A Unique Bioresource for Agriculture and Humanity)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 232
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

12 pages, 1849 KiB  
Article
Dolabellane Diterpenoids from Soft Coral Clavularia viridis with Anti-Inflammatory Activities
by Chufan Gu, Hongli Jia, Kang Zhou, Bin Wang, Wenhan Lin and Wei Cheng
Mar. Drugs 2025, 23(8), 312; https://doi.org/10.3390/md23080312 - 30 Jul 2025
Viewed by 192
Abstract
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (13 [...] Read more.
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (1315). Their structures were characterized by an extensive analysis of spectroscopic data, including X-ray diffraction and ECD calculations for the assignment of absolute configurations. The structures of 2 and 46 are feathered as peroxyl-substituted derivatives, while compounds 712 possess additional oxidative cyclization, including epoxide or furan that are rare in the dolabellane family. All these compounds were evaluated for activities on cytotoxic and anti-inflammatory models. Compound 10 exhibited most potential against NO production in the BV2 cell induced by LPS with an IC50 value of 18.3 μM. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

26 pages, 2467 KiB  
Article
Antioxidant and Nutrient Profile of Tomato Processing Waste from the Mixture of Indigenous Croatian Varieties: Influence of Drying and Milling
by Tea Petković, Emerik Galić, Kristina Radić, Nikolina Golub, Jasna Jablan, Maja Bival Štefan, Tihomir Moslavac, Karla Grudenić, Ivana Rumora Samarin, Tomislav Vinković and Dubravka Vitali Čepo
Appl. Sci. 2025, 15(15), 8447; https://doi.org/10.3390/app15158447 - 30 Jul 2025
Viewed by 181
Abstract
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) [...] Read more.
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) and oil are obtained from TPW seeds. All samples showed contaminant levels within regulatory limits, confirming their safety for further applications. Various drying methods (air-drying at 70 °C and at 50 °C, lyophilization and vacuum drying) and grinding intensities were evaluated to determine their impact on TPW bioactive compounds retention and organoleptic characteristics. TPW exhibited valuable nutritional properties, particularly high protein and dietary fiber content while TPW oil was characterized with high monounsaturated fatty acid content. Results demonstrated that drying method and particle size significantly influenced the yield of bioactive compound and organoleptic properties, with either lyophilization or vacuum drying and finer milling generally enhancing the recovery of polyphenols, β-carotene, and lycopene and improving color intensity. This research provides the first characterization of the TPW obtained from Croatian indigenous tomato varieties, establishing a scientific foundation for its sustainable valorization and, in broader terms, supporting circular economy objectives and contributing to more resource-efficient food systems. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

Back to TopTop