Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = chattering-free control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 888 KiB  
Proceeding Paper
Robust Backstepping Sliding Mode Control for a Morphing Quadcopter UAV
by Ibrahim Abdullahi Shehu, Zaharuddeen Haruna, Muhammad Bashir Mu’azu, Muhammad Bashir Abdurrazaq, Norhaliza Abdul wahab and Abubakar Umar
Eng. Proc. 2025, 87(1), 86; https://doi.org/10.3390/engproc2025087086 - 24 Jun 2025
Viewed by 134
Abstract
Recently, morphing quadcopters have gained an unprecedented popularity due to their nature of flexibility, self-controlled arm management and diversified application. It has been established that in morphing quadcopter control, aerial morphing generally introduces time-varying parameters into the dynamic model, thereby increasing the complexity [...] Read more.
Recently, morphing quadcopters have gained an unprecedented popularity due to their nature of flexibility, self-controlled arm management and diversified application. It has been established that in morphing quadcopter control, aerial morphing generally introduces time-varying parameters into the dynamic model, thereby increasing the complexity of the control problem, in addition to the non-linearity, coupling dynamics, and external disturbances present in the model. Thus, to address those challenges, this research aimed at developing a robust backstepping sliding mode controller (BSMC) for morphing quadcopter position and orientation control. to achieve the stated aim, mathematical model of an active morphing quadcopter (a foldable drone) was presented considering five morphing formations (X, H, T, O, and Y). Following the development of the system model, the proposed control method was designed in two stages: a high-performance sliding mode controller (HSMC) for attitude control to ensure chattering-free and fast convergence of the orientation angles and a backstepping controller for position control. The robustness and effectiveness of the proposed controller were investigated and benchmarked against a backstepping control approach. The simulation results obtained show the effectiveness of the developed controller against the backstepping approach in the presence of parameter variations and external disturbances. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

25 pages, 28417 KiB  
Article
Model-Free Adaptive Fast Integral Terminal Sliding Mode Control for Permanent Magnet Synchronous Motor with Position Error Constraint
by Xingyu Qu, Shuang Zhang and Chengkun Peng
World Electr. Veh. J. 2025, 16(7), 341; https://doi.org/10.3390/wevj16070341 - 20 Jun 2025
Viewed by 344
Abstract
The permanent magnet synchronous motor (PMSM) is a critical device that converts kinetic energy into mechanical energy. However, it faces issues such as nonlinearity, time-varying uncertainties, and external disturbances, which may degrade the system control performance. To address these challenges, this paper proposes [...] Read more.
The permanent magnet synchronous motor (PMSM) is a critical device that converts kinetic energy into mechanical energy. However, it faces issues such as nonlinearity, time-varying uncertainties, and external disturbances, which may degrade the system control performance. To address these challenges, this paper proposes a prescribed performance model-free adaptive fast integral terminal sliding mode control (PP-MFA-FITSMC) method. This approach replaces conventional techniques such as parameter identification, function approximation, and model reduction, offering advantages such as quantitative constraints on the PMSM tracking error, reduced chattering, strong disturbance rejection, and ease of engineering implementation. The method establishes a compact dynamic linearized data model for the PMSM system. Then, it uses a discrete small-gain extended state observer to estimate the composite disturbances in the PMSM online, effectively compensating for their adverse effects. Meanwhile, an improved prescribed performance function and error transformation function are designed, and a fast integral terminal sliding surface is constructed along with a discrete approach law that adaptively adjusts the switching gain. This ensures finite-time convergence of the control system, forming a model-free, low-complexity, high-performance control approach. Finally, response surface methodology is applied to conduct a sensitivity analysis of the controller’s critical parameters. Finally, controller parameter sensitivity experiments and comparative experiments were conducted. In the parameter sensitivity experiments, the response surface methodology was employed to design the tests, revealing the impact of individual parameters and parameter interactions on system performance. In the comparative experiments, under various operating conditions, the proposed strategy consistently constrained the tracking error within ±0.0028 rad, demonstrating superior robustness compared to other control methods. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

15 pages, 4857 KiB  
Article
Fuzzy Disturbance Observer-Based Adaptive Nonsingular Terminal Sliding Mode Control for Multi-Joint Robotic Manipulators
by Keyou Guo, Caili Wei and Peipeng Shi
Processes 2025, 13(6), 1667; https://doi.org/10.3390/pr13061667 - 26 May 2025
Viewed by 401
Abstract
This study proposes a novel fuzzy disturbance observer (FDO)-augmented adaptive nonsingular terminal sliding mode control (NTSMC) framework for multi-joint robotic manipulators, addressing critical challenges in trajectory tracking precision and disturbance rejection. Unlike conventional disturbance observers requiring prior knowledge of disturbance bounds, the proposed [...] Read more.
This study proposes a novel fuzzy disturbance observer (FDO)-augmented adaptive nonsingular terminal sliding mode control (NTSMC) framework for multi-joint robotic manipulators, addressing critical challenges in trajectory tracking precision and disturbance rejection. Unlike conventional disturbance observers requiring prior knowledge of disturbance bounds, the proposed FDO leverages fuzzy logic principles to dynamically estimate composite disturbances—including unmodeled dynamics, parameter perturbations, and external torque variations—without restrictive assumptions about disturbance derivatives. The control architecture achieves rapid finite-time convergence by integrating the FDO with a singularity-free terminal sliding manifold and an adaptive exponential reaching law while significantly suppressing chattering effects. Rigorous Lyapunov stability analysis confirms the uniform ultimate boundedness of tracking errors and disturbance estimation residuals. Comparative simulations on a 2-DOF robotic arm demonstrate a 97.28% reduction in root mean square tracking errors compared to PD-based alternatives and a 73.73% improvement over a nonlinear disturbance observer-enhanced NTSMC. Experimental validation on a physical three-joint manipulator platform reveals that the proposed method reduces torque oscillations by 58% under step-type disturbances while maintaining sub-millimeter tracking accuracy. The framework eliminates reliance on exact system models, offering a generalized solution for industrial manipulators operating under complex dynamic uncertainties. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

27 pages, 6444 KiB  
Article
A Novel Model-Free Nonsingular Fixed-Time Sliding Mode Control Method for Robotic Arm Systems
by Thanh Nguyen Truong, Anh Tuan Vo, Hee-Jun Kang and Ic-Pyo Hong
Mathematics 2025, 13(10), 1579; https://doi.org/10.3390/math13101579 - 11 May 2025
Viewed by 423
Abstract
This paper introduces a novel model-free nonsingular fixed-time sliding mode control (MF-NFxTSMC) strategy for precise trajectory tracking in robot arm systems. Unlike conventional sliding mode control (SMC) approaches that require accurate dynamic models, the proposed method leverages the time delay estimation (TDE) approach [...] Read more.
This paper introduces a novel model-free nonsingular fixed-time sliding mode control (MF-NFxTSMC) strategy for precise trajectory tracking in robot arm systems. Unlike conventional sliding mode control (SMC) approaches that require accurate dynamic models, the proposed method leverages the time delay estimation (TDE) approach to effectively estimate system dynamics and external disturbances in real-time, enabling a fully model-free control solution. This significantly enhances its practicality in real-world scenarios where obtaining precise models is challenging or infeasible. A significant innovation of this work lies in designing a novel fixed-time control framework that achieves faster convergence than traditional fixed-time methods. Building on this, a novel MF-NFxTSMC law is developed, featuring a novel singularity-free fixed-time sliding surface (SF-FxTSS) and a novel fixed-time reaching law (FxTRL). The proposed SF-FxTSS incorporates a dynamic proportional term and an adaptive exponent, ensuring rapid convergence and robust tracking. Notably, its smooth transition between nonlinear and linear dynamics eliminates the singularities often encountered in terminal and fixed-time sliding mode surfaces. Additionally, the designed FxTRL effectively suppresses chattering while guaranteeing fixed-time convergence, leading to smoother control actions and reduced mechanical stress on the robotic hardware. The fixed-time stability of the proposed method is rigorously proven using the Lyapunov theory. Numerical simulations on the SAMSUNG FARA AT2 robotic platform demonstrate the superior performance of the proposed method in terms of tracking accuracy, convergence speed, and control smoothness compared to existing strategies, including conventional SMC, finite-time SMC, approximate fixed-time SMC, and global fixed-time nonsingular terminal SMC (NTSMC). Overall, this approach offers compelling advantages, i.e., model-free implementation, fixed-time convergence, singularity avoidance, and reduced chattering, making it a practical and scalable solution for high-performance control in uncertain robotic systems. Full article
(This article belongs to the Special Issue Summability and Convergence Methods)
Show Figures

Figure 1

23 pages, 5306 KiB  
Article
Robust Higher-Order Nonsingular Terminal Sliding Mode Control of Unknown Nonlinear Dynamic Systems
by Quanmin Zhu, Jianhua Zhang, Zhen Liu and Shuanghe Yu
Mathematics 2025, 13(10), 1559; https://doi.org/10.3390/math13101559 - 9 May 2025
Cited by 3 | Viewed by 612
Abstract
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control [...] Read more.
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control inputs and attainable outputs (either measured or estimated), which accordingly proposes a model-free (MF) nonsingular terminal sliding mode control (MFTSMC) for higher-order dynamic systems to reduce the tedious modelling work and the design complexity associated with the model-based control approaches. The total model-free controllers, derived from the Lyapunov differential inequality, obviously provide conciseness and robustness in analysis/design/tuning and implementation while keeping the essence of the TSMC. Three simulated bench test examples, in which two of them have representatively numerical challenges and the other is a two-link rigid robotic manipulator with two input and two output (TITO) operational mode as a typical multi-degree interconnected nonlinear dynamics tool, are studied to demonstrate the effectiveness of the MFTSMC and employed to show the user-transparent procedure to facilitate the potential applications. The major MFTSMC performance includes (1) finite time (2.5±0.05 s) dynamic stabilization to equilibria in dealing with total physical model uncertainty and disturbance, (2) effective dynamic tracking and small steady state error 0±0.002, (3) robustness (zero sensitivity at state output against the unknown bounded internal uncertainty and external disturbance), (4) no singularity issue in the neighborhood of TSM σ=0, (5) stable chattering with low amplitude (±0.01) at frequency 50 mHz due to high gain used against disturbance d(t)=100+30sin(2πt)). The simulation results are similar to those from well-known nominal model-based approaches. Full article
(This article belongs to the Special Issue New Advances in Nonlinear Dynamics Theory and Applications)
Show Figures

Figure 1

11 pages, 7861 KiB  
Article
Chattering-Free PID-Nested Nonsingular Terminal Sliding Mode Controller Design for Electrical Servo Drives
by Nguyen Minh Trieu, Nguyen Tan No, Truong Nguyen Vu and Nguyen Truong Thinh
Mathematics 2025, 13(7), 1197; https://doi.org/10.3390/math13071197 - 5 Apr 2025
Cited by 2 | Viewed by 532
Abstract
In this study, a PID-nested nonsingular terminal sliding controller is proposed to minimize the chattering phenomenon. By adding both integral and derivative errors of states into the nonsingular terminal sliding manifolds, a composite sliding manifold was created. Compared to nonsingular terminal sliding mode [...] Read more.
In this study, a PID-nested nonsingular terminal sliding controller is proposed to minimize the chattering phenomenon. By adding both integral and derivative errors of states into the nonsingular terminal sliding manifolds, a composite sliding manifold was created. Compared to nonsingular terminal sliding mode (NTSM) techniques, this sliding manifold can handle higher-order derivatives. The speed of the motor is controlled by a sliding control law determined through a higher-order integral, making the signal continuous, and the sliding manifold is achieved in finite time. A special full-order terminal sliding mode manifold is introduced, which allows the system to converge in finite time while being chattering-free and avoiding the singularity phenomenon of conventional and terminal sliding modes. The controller’s efficiency is demonstrated with faster convergence time and fewer errors than state-of-the-art controllers, which is demonstrated through both simulation and experiment. Full article
(This article belongs to the Topic Intelligent Control in Smart Energy Systems)
Show Figures

Figure 1

23 pages, 5580 KiB  
Article
Fixed-Time Disturbance Rejection Attitude Control for a Dual-System Hybrid UAV
by Wenyu Chen, Lulu Chen, Zhenbao Liu, Qingqing Dang, Wen Zhao, Tao Zhang and Chao Ma
Drones 2025, 9(4), 232; https://doi.org/10.3390/drones9040232 - 21 Mar 2025
Viewed by 484
Abstract
The hybrid unmanned aerial vehicle combines the vertical take-off and landing and hover abilities of rotary-wing UAVs with the high-speed cruise and long-endurance capabilities of fixed-wing UAVs, expanding the flight envelope and application areas. The designed controller must handle the highly nonlinear dynamics [...] Read more.
The hybrid unmanned aerial vehicle combines the vertical take-off and landing and hover abilities of rotary-wing UAVs with the high-speed cruise and long-endurance capabilities of fixed-wing UAVs, expanding the flight envelope and application areas. The designed controller must handle the highly nonlinear dynamics and variable actuators resulting from this combination. Furthermore, the performance of the controller is also influenced by uncertainties in model parameters and external disturbances. To address these issues, a unified robust disturbance rejection control based on fixed-time stability theory is proposed for attitude control. A fixed-time disturbance observer is utilized to estimate composite disturbances without some strict assumptions. Based on this observer, a nonsingular chattering-free fixed-time integral sliding mode control law is introduced to ensure that tracking errors converge to the origin within a fixed time. In addition, an optimized control allocator based on the weighted least squares method is designed to handle the overactuation of a dual-system hybrid UAV. Finally, numerical simulations and hardware-in-the-loop experiments under different flight modes and disturbance conditions are carried out, and compared with nonlinear dynamic inverse and the nonsingular terminal sliding mode control based on a finite-time observer, the developed controller enhances attitude angle tracking accuracy and disturbance rejection performance. Full article
Show Figures

Figure 1

25 pages, 7487 KiB  
Article
A Novel Time Delay Nonsingular Fast Terminal Sliding Mode Control for Robot Manipulators with Input Saturation
by Thanh Nguyen Truong, Anh Tuan Vo and Hee-Jun Kang
Mathematics 2025, 13(1), 119; https://doi.org/10.3390/math13010119 - 31 Dec 2024
Cited by 5 | Viewed by 1244
Abstract
Manipulator systems are increasingly deployed across various industries to perform complex, repetitive, and hazardous tasks, necessitating high-precision control for optimal performance. However, the design of effective control algorithms is challenged by nonlinearities, uncertain dynamics, disturbances, and varying real-world conditions. To address these issues, [...] Read more.
Manipulator systems are increasingly deployed across various industries to perform complex, repetitive, and hazardous tasks, necessitating high-precision control for optimal performance. However, the design of effective control algorithms is challenged by nonlinearities, uncertain dynamics, disturbances, and varying real-world conditions. To address these issues, this paper proposes an advanced orbit-tracking control approach for manipulators, leveraging advancements in Time-Delay Estimation (TDE) and Fixed-Time Sliding Mode Control techniques. The TDE approximates the robot’s unknown dynamics and uncertainties, while a novel nonsingular fast terminal sliding mode (NFTSM) surface and novel fixed-time reaching control law (FTRCL) are introduced to ensure faster convergence within a fixed time and improved accuracy without a singularity issue. Additionally, an innovative auxiliary system is designed to address input saturation effects, ensuring that system states converge to zero within a fixed time even when saturation occurs. The Lyapunov-based theory is employed to prove the fixed-time convergence of the overall system. The effectiveness of the proposed controller is validated through simulations on a 3-DOF SAMSUNG FARA AT2 robot manipulator. Comparative analyses against NTSMC, NFTSMC, and GNTSMC methods demonstrate superior performance, characterized by faster convergence, reduced chattering, higher tracking accuracy, and a model-free design. These results underscore the potential of the proposed control strategy to significantly enhance the robustness, precision, and applicability of robotic systems in industrial environments. Full article
(This article belongs to the Special Issue Advancements in Nonlinear Control Strategies)
Show Figures

Figure 1

17 pages, 9141 KiB  
Article
Model-Free Generalized Super-Twisting Fast Terminal Sliding Mode Control for Permanent Magnet Synchronous Motors
by Xingyi Ma, Yu Xu, Lei Zhang and Jing Bai
Symmetry 2025, 17(1), 18; https://doi.org/10.3390/sym17010018 - 26 Dec 2024
Cited by 2 | Viewed by 901
Abstract
Permanent Magnet Synchronous Motors (PMSMs) are nonlinear, multi-parameter systems that exhibit structural symmetry but are susceptible to parameter variations and external disturbances. These challenges can disrupt the inherent symmetrical characteristics of PMSM dynamics during real-world operations, posing difficulties for achieving efficient control. To [...] Read more.
Permanent Magnet Synchronous Motors (PMSMs) are nonlinear, multi-parameter systems that exhibit structural symmetry but are susceptible to parameter variations and external disturbances. These challenges can disrupt the inherent symmetrical characteristics of PMSM dynamics during real-world operations, posing difficulties for achieving efficient control. To address this issue, this paper proposes a Model-Free Generalized Super-Twisting Algorithm Fast Terminal Sliding Mode Control (MFFTSMC-GSTA) method. First, a novel ultra-local model incorporating PMSM uncertainties is established, and the MFFTSMC-GSTA controller is designed to address the system’s complex dynamic behavior. By integrating the generalized super-twisting algorithm with the nonsingular fast terminal sliding mode algorithm, the proposed controller ensures finite-time convergence and effectively mitigates chattering. Second, an extended sliding mode disturbance observer is developed to estimate the unknown components of the ultra-local model and provide feedforward compensation, further enhancing system robustness and dynamic performance. The experimental results show that the total harmonic distortion (THD) value of the proposed control method is 1.38%, demonstrating significant improvements in response speed and robustness for motor speed control, and verifying the algorithm’s superior performance under complex operating conditions. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Motor Control, Drives and Power Electronics)
Show Figures

Figure 1

18 pages, 4284 KiB  
Article
Control Design of Fractional Multivariable Grey Model-Based Fast Terminal Attractor for High Efficiency Pure Sine Wave Inverters in Electric Vehicles
by En-Chih Chang, Yuan-Wei Tseng and Chun-An Cheng
World Electr. Veh. J. 2024, 15(12), 556; https://doi.org/10.3390/wevj15120556 - 1 Dec 2024
Viewed by 780
Abstract
In this paper, a fast and efficient control method is proposed for a pure sine wave inverter used in an electric vehicle system, which can provide better performance under transient and steady-state conditions. The proposed control technique consists of a fast terminal attractor [...] Read more.
In this paper, a fast and efficient control method is proposed for a pure sine wave inverter used in an electric vehicle system, which can provide better performance under transient and steady-state conditions. The proposed control technique consists of a fast terminal attractor (FTA) and a fractional multivariable grey model (FMGM). The FTA with finite time convergence offers a faster convergence rate of the system state and a singularity-free solution. However, if the uncertain system boundaries are overestimated or underestimated, chatter/steady-state errors can occur during the FTA, which can lead to significant harmonic distortion at the output of the pure sine wave inverter. A computationally efficient FMGM is incorporated into the FTA to solve the chatter/steady-state error problem when an uncertain estimate of the system boundary cannot be satisfied. Simulation results show that the proposed control technique exhibits low total harmonic distortion. Experimental results of a prototype pure sine wave inverter are presented to support the results of the simulation and mathematical analysis. Since the proposed pure sine wave inverter outperforms the classical TA (terminal attractor)-controlled pure sine wave inverter in terms of convergence speed, computational efficiency, and harmonic distortion elimination, this paper will serve as a useful reference for electric vehicle systems. Full article
(This article belongs to the Special Issue Electric Vehicle Autonomous Driving Based on Image Recognition)
Show Figures

Figure 1

23 pages, 9011 KiB  
Article
Comparative Real-Time Study of Three Enhanced Control Strategies Applied to Dynamic Process Systems
by Kagan Koray Ayten, Ahmet Dumlu, Sadrettin Golcugezli, Emre Tusik and Gurkan Kalınay
Appl. Sci. 2024, 14(21), 9955; https://doi.org/10.3390/app14219955 - 31 Oct 2024
Cited by 2 | Viewed by 1388
Abstract
In this study, a comparative analysis of three different control methods for precise, real-time control of a complex dynamic double-tank liquid level process system was performed. Since the system in question has a time-delayed structure, feedforward proportional integral (FF-PI) control and cascaded nonlinear [...] Read more.
In this study, a comparative analysis of three different control methods for precise, real-time control of a complex dynamic double-tank liquid level process system was performed. Since the system in question has a time-delayed structure, feedforward proportional integral (FF-PI) control and cascaded nonlinear feedforward proportional integral delayed (CNPIR) controllers were tested on the process system. While the FF-PI controller improved the response time of the system, it showed limitations in handling external disturbances and nonlinearities. On the other hand, the CNPIR controller showed better improvements in control accuracy and lower overshoot compared to the FF-PI controller. Since the process system has a nonlinear model and is affected by external disturbances, these two controllers were inadequate in this study when compared to the fractional order adaptive proportional integral derivative sliding mode controller (FO-APIDSMC). The FO-APIDSMC controller provided fairly good performance in both tracking accuracy and disturbance rejection control for non-chattering, fast finite-time convergence, increased robustness, and uncertain dynamic processes. Experimental results reveal that the FO-APIDSMC controller achieves superior minimized tracking error and outperforms the FF-PI and CNPIR controllers by effectively handling uncertainties and external disturbances. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

19 pages, 4589 KiB  
Article
A Novel Robust Hybrid Control Strategy for a Quadrotor Trajectory Tracking Aided with Bioinspired Neural Dynamics
by Jianqi Li, Xin Li, Jianquan Lu, Binfang Cao and Jian Sun
Appl. Sci. 2024, 14(20), 9592; https://doi.org/10.3390/app14209592 - 21 Oct 2024
Cited by 1 | Viewed by 1651
Abstract
This paper introduces a novel hybrid control strategy for quadrotor UAVs inspired by neural dynamics. Our approach effectively addresses two common issues: the velocity jump problem in traditional backstepping control and the control signal chattering in conventional sliding mode control. The proposed system [...] Read more.
This paper introduces a novel hybrid control strategy for quadrotor UAVs inspired by neural dynamics. Our approach effectively addresses two common issues: the velocity jump problem in traditional backstepping control and the control signal chattering in conventional sliding mode control. The proposed system combines an outer-loop bioinspired backstepping controller with an inner-loop bioinspired sliding mode controller, ensuring smooth trajectory tracking even under external disturbances. We rigorously analyzed the system’s stability using Lyapunov stability theory. To validate our algorithm’s effectiveness, we conducted trajectory tracking experiments in both disturbance-free and step-disturbance conditions, comparing it with the traditional backstepping control, conventional sliding mode control, and saturated sliding mode control. The results demonstrate that our algorithm not only tracks trajectories more effectively but also significantly outperforms these methods in suppressing velocity jumps and signal chattering. Full article
(This article belongs to the Special Issue Data-Driven Control System: Methods and Applications)
Show Figures

Figure 1

37 pages, 38902 KiB  
Article
Differentiator- and Observer-Based Feedback Linearized Advanced Nonlinear Control Strategies for an Unmanned Aerial Vehicle System
by Saqib Irfan, Liangyu Zhao, Safeer Ullah, Usman Javaid and Jamshed Iqbal
Drones 2024, 8(10), 527; https://doi.org/10.3390/drones8100527 - 26 Sep 2024
Cited by 12 | Viewed by 1427
Abstract
This paper presents novel chattering-free robust control strategies for addressing disturbances and uncertainties in a two-degree-of-freedom (2-DOF) unmanned aerial vehicle (UAV) dynamic model, with a focus on the highly nonlinear and strongly coupled nature of the system. The novelty lies in the development [...] Read more.
This paper presents novel chattering-free robust control strategies for addressing disturbances and uncertainties in a two-degree-of-freedom (2-DOF) unmanned aerial vehicle (UAV) dynamic model, with a focus on the highly nonlinear and strongly coupled nature of the system. The novelty lies in the development of sliding mode control (SMC), integral sliding mode control (ISMC), and terminal sliding mode control (TSMC) laws specifically tailored for the twin-rotor MIMO system (TRMS). These strategies are validated through both simulation and real-time experiments. A key contribution is the introduction of a uniform robust exact differentiator (URED) to recover rotor speed and missing derivatives, combined with a nonlinear state feedback observer to improve system observability. A feedback linearization approach, using lie derivatives and diffeomorphism principles, is employed to decouple the system into horizontal and vertical subsystems. Comparative analysis of the transient performance of the proposed controllers, with respect to metrics such as settling time, overshoot, rise time, and steady-state errors, is provided. The ISMC method, in particular, effectively mitigates the chattering issue prevalent in traditional SMC, improving both system performance and actuator longevity. Experimental results on the TRMS demonstrate the superior tracking performance and robustness of the proposed control laws in the presence of nonlinearities, uncertainties, and external disturbances. This research contributes a comprehensive control design framework with proven real-time implementation, offering significant advancements over existing methodologies. Full article
Show Figures

Figure 1

22 pages, 4046 KiB  
Article
Model-Free Adaptive Sliding Mode Control Scheme Based on DESO and Its Automation Application
by Xiaohua Wei, Zhen Sui, Hanzhou Peng, Feng Xu, Jianliang Xu and Yulong Wang
Processes 2024, 12(9), 1950; https://doi.org/10.3390/pr12091950 - 11 Sep 2024
Cited by 1 | Viewed by 1184
Abstract
This paper addresses a class of uncertain nonlinear systems with disturbances that are challenging to model by proposing a novel model-free adaptive sliding mode control (MFASMC) scheme based on a discrete-time extended state observer (DESO). Initially, leveraging the pseudo partial derivative (PPD) concept [...] Read more.
This paper addresses a class of uncertain nonlinear systems with disturbances that are challenging to model by proposing a novel model-free adaptive sliding mode control (MFASMC) scheme based on a discrete-time extended state observer (DESO). Initially, leveraging the pseudo partial derivative (PPD) concept in the model-free adaptive control (MFAC) framework, the discrete-time nonlinear model is converted into a full-form dynamic linearization (FFDL) model. Secondly, using the FFDL data model, a discrete sliding mode controller is designed. A discrete integral sliding mode surface is chosen to mitigate chattering during the reaching phase, and a hyperbolic tangent function with minimal slope variation is selected for smoother switching control. Furthermore, a DESO is designed to estimate uncertainties in the discrete system, enabling real-time compensation for the controller. Finally, a genetic optimization algorithm is employed for parameter tuning to minimize the time cost associated with selecting control parameters. The design process of this scheme relies solely on the data of the controlled system, without depending on a mathematical model. The proposed DESO-MFASMC scheme is tested through simulations using a typical numerical equation and the existing EFG-BC/320 electric heavy-duty forklift from the Quzhou Special Equipment Inspection Center. Simulation results show that the proposed method is significantly superior to the traditional MFAC and PID control methods in tracking accuracy and robustness when dealing with nonlinear disturbance of the system. The DESO-MFASMC scheme proposed in this paper not only shows its advantages in theory but also verifies its effectiveness and practicability in engineering through practical application. Full article
(This article belongs to the Special Issue Condition Monitoring and the Safety of Industrial Processes)
Show Figures

Figure 1

22 pages, 4748 KiB  
Article
A Deep Reinforcement Learning Approach to DC-DC Power Electronic Converter Control with Practical Considerations
by Nafiseh Mazaheri, Daniel Santamargarita, Emilio Bueno, Daniel Pizarro and Santiago Cobreces
Energies 2024, 17(14), 3578; https://doi.org/10.3390/en17143578 - 21 Jul 2024
Cited by 4 | Viewed by 3523
Abstract
In recent years, there has been a growing interest in using model-free deep reinforcement learning (DRL)-based controllers as an alternative approach to improve the dynamic behavior, efficiency, and other aspects of DC–DC power electronic converters, which are traditionally controlled based on small signal [...] Read more.
In recent years, there has been a growing interest in using model-free deep reinforcement learning (DRL)-based controllers as an alternative approach to improve the dynamic behavior, efficiency, and other aspects of DC–DC power electronic converters, which are traditionally controlled based on small signal models. These conventional controllers often fail to self-adapt to various uncertainties and disturbances. This paper presents a design methodology using proximal policy optimization (PPO), a widely recognized and efficient DRL algorithm, to make near-optimal decisions for real buck converters operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) while handling resistive and inductive loads. Challenges associated with delays in real-time systems are identified. Key innovations include a chattering-reduction reward function, engineering of input features, and optimization of neural network architecture, which improve voltage regulation, ensure smoother operation, and optimize the computational cost of the neural network. The experimental and simulation results demonstrate the robustness and efficiency of the controller in real scenarios. The findings are believed to make significant contributions to the application of DRL controllers in real-time scenarios, providing guidelines and a starting point for designing controllers using the same method in this or other power electronic converter topologies. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop