Fixed-Time Disturbance Rejection Attitude Control for a Dual-System Hybrid UAV
Abstract
:1. Introduction
- 1.
- For the dual-system hybrid UAV attitude controller design, a unified control strategy based on FxTISMC and FxTDO is proposed for full flight modes, which achieves the ability of tracking error to converge to the origin in fixed time instead of a bounded error region.
- 2.
- For the control allocation problem of constrained redundant actuators for a dual-system hybrid UAV, an optimized control allocator based on weighted least squares algorithm is designed. This allocation method has low computational complexity and has been successfully implemented in a low-cost UAV autopilot.
2. Nolinear Model of Dual-System Hybrid UAV
2.1. Kinematics and Dynamics
- 1.
- Rotary-wing (RW) mode: The horizontal propulsion rotor is switched off and the position and attitude movement is controlled by differential control of the four vertical rotors, like a quadrotor.
- 2.
- Fixed-wing (FW) mode: The vertical four rotors are turned off and the vehicle behaves like an FW UAV, also known as cruise mode. Position and attitude are controlled through aerodynamic actuators and the horizontal rotor.
- 3.
- Transition mode: This mode is divided into forward transition mode and backward transition mode, which facilitate the conversion between the RW mode and the FW mode. Aerodynamic actuators and rotors are involved in the control process.
2.2. Propulsion Forces and Moments
2.3. Aerodynamic Forces and Moments
3. Main Results
3.1. FxTISM Function
3.2. FxTDO
3.3. FxTDO-FxTISMC Control Law
3.4. Control Allocation
4. Simulation Results and Discussions
4.1. Attitude Tracking Simulation for RW and FW Modes
4.2. Simulation Results in Full Mode
4.3. HITL Experiment Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ducard, G.J.; Allenspach, M. Review of designs and flight control techniques of hybrid and convertible VTOL UAVs. Aerosp. Sci. Technol. 2021, 118, 107035. [Google Scholar] [CrossRef]
- Saeed, A.S.; Younes, A.B.; Cai, C.; Cai, G. A survey of hybrid Unmanned Aerial Vehicles. Prog. Aerosp. Sci. 2018, 98, 91–105. [Google Scholar]
- Shen, S.; Xu, J.; Chen, P.; Xia, Q. Adaptive Neural Network Extended State Observer-Based Finite-Time Convergent Sliding Mode Control for a Quad Tiltrotor UAV. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 6360–6373. [Google Scholar]
- Gu, H.; Lyu, X.; Li, Z.; Shen, S.; Zhang, F. Development and experimental verification of a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle(UAV). In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL USA, 13–16 June 2017; pp. 160–169. [Google Scholar]
- Ansari, A.; Zhang, N.; Bernstein, D.S. Retrospective cost adaptive PID Control of quadcopter/fixed-wing mode transition in a VTOL aircraft. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA, 8 January 2018. Number 210039. [Google Scholar]
- Jang, J.T.; Han, S. Analysis for VTOL Flight Software of PX4. In Proceedings of the 2018 18th International Conference on Control, Automation and Systems, PyeongChang, Republic of Korea, 17–20 October 2018; pp. 872–875. [Google Scholar]
- Silva, A.L.; Santos, D.A. Fast Nonsingular Terminal Sliding Mode Flight Control for Multirotor Aerial Vehicles. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4288–4299. [Google Scholar]
- Wang, J.; Zhu, B.; Zheng, Z. Robust Adaptive Control for a Quadrotor UAV with Uncertain Aerodynamic Parameters. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8313–8326. [Google Scholar]
- Manzoor, T.; Xia, Y.; Zhai, D.H.; Ma, D. Trajectory tracking control of a VTOL unmanned aerial vehicle using offset-free tracking MPC. Chin. J. Aeronaut. 2020, 33, 2024–2042. [Google Scholar]
- Allenspach, M.; Ducard, G.J. Model predictive control of a convertible tiltrotor unmanned aerial vehicle. In Proceedings of the 28th Mediterranean Conference on Control and Automation, Saint-Raphael, France, 15–18 September 2020; pp. 715–720. [Google Scholar]
- Allenspach, M.; Ducard, G.J.J. Nonlinear model predictive control and guidance for a propeller-tilting hybrid unmanned air vehicle. Automatica 2021, 132, 109790. [Google Scholar]
- Bauersfeld, L.; Spannagl, L.; Ducard, G.; Onder, C. MPC Flight Control for a Tilt-Rotor VTOL Aircraft. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2395–2409. [Google Scholar] [CrossRef]
- Castañeda, H.; Salas-Peña, O.S.; de León-Morales, J. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Trans. 2017, 66, 226–232. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Dang, Q.; Zhao, W.; Wang, G. Robust trajectory tracking control for a quadrotor using recursive sliding mode control and nonlinear extended state observer. Aerosp. Sci. Technol. 2022, 128, 107749. [Google Scholar]
- Rios, H.; Falcon, R.; Gonzalez, O.A.; Dzul, A. Continuous Sliding-Mode Control Strategies for Quadrotor Robust Tracking: Real-Time Application. IEEE Trans. Ind. Electron. 2019, 66, 1264–1272. [Google Scholar] [CrossRef]
- Wang, F.; Gao, H.; Wang, K.; Zhou, C.; Zong, Q.; Hua, C. Disturbance Observer-Based Finite-Time Control Design for a Quadrotor UAV with External Disturbance. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 834–847. [Google Scholar] [CrossRef]
- Mechali, O.; Xu, L.; Huang, Y.; Shi, M.; Xie, X. Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment. Control Eng. Pract. 2021, 111, 104806. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, C.; Wu, R.; Cui, N. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle. Aerosp. Sci. Technol. 2018, 82–83, 70–79. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.; Yan, Y. Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances. Ocean. Eng. 2019, 186, 106109. [Google Scholar] [CrossRef]
- Tian, B.; Zuo, Z.; Yan, X.; Wang, H. A fixed-time output feedback control scheme for double integrator systems. Automatica 2017, 80, 17–24. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Guo, B.Z. A nonlinear extended state observer based on fractional power functions. Automatica 2017, 81, 286–296. [Google Scholar] [CrossRef]
- Li, B.; Zhang, H.; Xiao, B.; Wang, C.; Yang, Y. Fixed-time integral sliding mode control of a high-order nonlinear system. Nonlinear Dyn. 2022, 107, 909–920. [Google Scholar] [CrossRef]
- Cui, L.; Zhou, Q.; Huang, D.; Yang, H. Fixed-time disturbance observer-based fixed-time path following control for small fixed-wing UAVs under wind disturbances. Int. J. Adapt. Control Signal Process. 2024, 38, 23–38. [Google Scholar] [CrossRef]
- Liu, K.; Yang, P.; Wang, R.; Jiao, L.; Li, T.; Zhang, J. Observer-Based Adaptive Fuzzy Finite-Time Attitude Control for Quadrotor UAVs. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8637–8654. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay. Nonlinear Dyn. 2022, 107, 2363–2390. [Google Scholar] [CrossRef]
- Xuan-Mung, N.; Golestani, M. Energy-Efficient Disturbance Observer-Based Attitude Tracking Control With Fixed-Time Convergence for Spacecraft. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3659–3668. [Google Scholar]
- Huang, Y.; Jia, Y. Adaptive Fixed-Time Six-DOF Tracking Control for Noncooperative Spacecraft Fly-Around Mission. IEEE Trans. Control Syst. Technol. 2019, 27, 1796–1804. [Google Scholar]
- Zhang, J.; Yu, S.; Wu, D.; Yan, Y. Nonsingular fixed-time terminal sliding mode trajectory tracking control for marine surface vessels with anti-disturbances. Ocean Eng. 2020, 217, 108158. [Google Scholar]
- Li, B.; Gong, W.; Yang, Y.; Xiao, B.; Ran, D. Appointed Fixed Time Observer-Based Sliding Mode Control for a Quadrotor UAV under External Disturbances. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 290–303. [Google Scholar]
- Huang, Y.; Jia, Y. Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target. Int. J. Robust Nonlinear Control 2018, 28, 2598–2618. [Google Scholar] [CrossRef]
- Zuo, Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 2015, 54, 305–309. [Google Scholar] [CrossRef]
- Amrr, S.M.; Ridwan, W.; Al Dhaifallah, M.; Rezk, H. Fixed-Time Integral Sliding Mode Control with Fixed-Time Nonlinear Disturbance Observer for MPPT of Wind Turbines. Arab. J. Sci. Eng. 2025, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S. Fixed-Time Integral Terminal Sliding-Mode Control With Super-Twisting Nonlinear Extended-State Observer for Servo System With Disturbances. IEEE J. Emerg. Sel. Top. Ind. Electron. 2025, 6, 435–446. [Google Scholar]
- Sun, Y.; Van, M.; McIlvanna, S.; McLoone, S.; Ceglarek, D. Fixed-time integral sliding mode control for admittance control of a robot manipulator. Int. J. Robust Nonlinear Control 2024, 34, 3548–3564. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Yao, Q.; Alotaibi, N.D. Fixed-time nonsingular adaptive attitude control of spacecraft subject to actuator faults. Chaos Solitons Fractals 2024, 179, 114395. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, J.; Cheng, J.; Wu, Z.G.; Yan, H. A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators with Global Fast Convergence. IEEE/CAA J. Autom. Sin. 2024, 11, 661–672. [Google Scholar] [CrossRef]
- Deng, Y.; Gao, H. Transition Flight Control and Test of a New Kind Tilt Prop Box-Wing VTOL UAV. In Proceedings of the 9th International Conference on Mechanical and Aerospace Engineering, Budapest, Hungary, 10–13 July 2018; pp. 90–94. [Google Scholar]
- Yuksek, B.; Inalhan, G. Transition Flight Control System Design for Fixed-Wing VTOL UAV: A Reinforcement Learning Approach. In Proceedings of the AIAA Science and Technology Forum and Exposition, San Diego, CA, USA, 3–7 January 2022; pp. 1–16. [Google Scholar]
- KAI, J.M. Full-Envelope Flight Control for Compound Vertical Takeoff and Landing Aircraft. J. Guid. Control. Dyn. 2024, 47, 1569–1585. [Google Scholar]
- Flores, G. Longitudinal modeling and control for the convertible unmanned aerial vehicle: Theory and experiments. ISA Trans. 2022, 122, 312–335. [Google Scholar] [PubMed]
- Zhang, J.; Bhardwaj, P.; Raab, S.A.; Saboo, S.; Holzapfel, F. Control allocation framework for a tilt-rotor vertical take-off and landing transition aircraft configuration. In Proceedings of the 2018 Applied Aerodynamics Conference, Atlanta, GA, USA, 25–29 June 2018; pp. 1–19. [Google Scholar]
- Pfeifle, O.; Fichter, W. Minimum Power Control Allocation for Incremental Control of Over-Actuated Transition Aircraft. J. Guid. Control Dyn. 2023, 46, 286–300. [Google Scholar]
- Johansen, T.A.; Fossen, T.I. Control allocation—A survey. Automatica 2013, 49, 1087–1103. [Google Scholar]
- Quan, Q. Dynamic Model and Parameter Measurement. In Introduction to Multicopter Design and Control; Springer: Singapore, 2017; pp. 121–143. [Google Scholar]
- Beard, R.W.; McLain, T.W. Small Unmanned Aircraft: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Yu, Z.; Zhang, Y.; Jiang, B.; Su, C.Y.; Fu, J.; Jin, Y.; Chai, T. Nussbaum-based finite-time fractional-order backstepping fault-tolerant flight control of fixed-wing UAV against input saturation with hardware-in-the-loop validation. Mech. Syst. Signal Process. 2021, 153, 107406. [Google Scholar]
- Stevens, B.L.; Lewis, F.L.; Johnson, E.N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Basin, M.; Shtessel, Y.; Aldukali, F. Continuous finite- and fixed-time high-order regulators. J. Frankl. Inst. 2016, 353, 5001–5012. [Google Scholar]
- Kim, J.H.; Su, W.; Song, Y.J. On stability of a polynomial. J. Appl. Math. Inform. 2018, 36, 231–236. [Google Scholar]
- Khalil, H. Nonlinear Systems, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Ma, D.; Xia, Y.; Member, S.; Shen, G.; Jiang, H.; Hao, C. Practical Fixed-Time Disturbance Rejection Control for Quadrotor Attitude Tracking. IEEE Trans. Ind. Electron. 2021, 68, 7274–7283. [Google Scholar]
- Ye, D.; Zou, A.M.; Sun, S.; Xiao, Y. A Predefined-Time Extended-State Observer-Based Approach for Velocity-Free Attitude Control of Spacecraft. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8051–8061. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Y.; Zhang, H. Disturbance observer based fixed-time control of stochastic systems. ISA Trans. 2024, 148, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yu, X.; Zhang, Y.; Peng, X. Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties. IEEE/ASME Trans. Mechatronics 2017, 22, 2723–2735. [Google Scholar] [CrossRef]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Härkegård, O. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation. In Proceedings of the the IEEE Conference on Decision and Control, Las Vegas, NA, USA, 10–13 December 2002; Volume 2, pp. 1295–1300. [Google Scholar]
- Smeur, E.J.J.; Höppener, D.C.; De Wagter, C. Prioritized Control Allocation for Quadrotors Subject to Saturation. In Proceedings of the International Micro Air Vehicle Conference and Flight Competition, Toulouse, France, 18–21 September 2017; pp. 37–43. [Google Scholar]
- Harris, J.J.; Stanford, J.R. F-35 flight control law design, development and verification. In Proceedings of the Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018; pp. 1–18. [Google Scholar]
- Chen, L.; Liu, Z.; Dang, Q.; Zhao, W.; Chen, W. Robust fixed-time flight controller for a dual-system convertible UAV in the cruise mode. Def. Technol. 2024, 39, 53–66. [Google Scholar] [CrossRef]
- Pixhawk. Available online: https://docs.px4.io/main/zh/flight_controller/cuav_v5_plus.html (accessed on 31 December 2024).
- PX4-Autopilot. Available online: https://github.com/PX4/PX4-Autopilot (accessed on 31 December 2024).
- CopterSim. Available online: https://github.com/RflySim/CopterSim (accessed on 31 December 2024).
- Unreal Engine. Available online: https://www.unrealengine.com/en-US/ (accessed on 31 December 2024).
- QGroundControl. Available online: http://qgroundcontrol.com/ (accessed on 31 December 2024).
Parameter | Value | Parameter | Value |
---|---|---|---|
0.001 | 5 | ||
0.1 | 5 | ||
0.95 | 20 | ||
10 | 0.1 | ||
5 | 0.95 |
State | Performance Index | NDI | FTDO- NTSMC | FxTDO- FxTISMC |
---|---|---|---|---|
Overshoot | 3.99% | 4.14% | 1.03% | |
Settling time | 0.4680 | 0.5440 | 0.4600 | |
Overshoot | 3.53% | 5.72% | 0.61% | |
Settling time | 0.4640 | 0.6400 | 0.4160 | |
Overshoot | 4.35% | 1.92% | 0.40% | |
Settling time | 0.4560 | 0.4160 | 0.4200 |
State | Performance Index | NDI | FTDO- NTSMC | FxTDO- FxTISMC |
---|---|---|---|---|
Overshoot | 5.77% | 6.13% | 4.18% | |
Settling time | 0.7040 | 1.4800 | 0.1680 | |
Overshoot | 4.64% | 4.77% | 4.10% | |
Settling time | 0.4160 | 0.8080 | 0.1320 | |
RMSE | 0.2485 | 0.0163 | 0.0084 | |
ISE | 0.6174 | 0.0027 | 0.0007 |
State | Performance Index | NDI | FTDO- NTSMC | FxTDO- FxTISMC |
---|---|---|---|---|
RMSE | 0.7232 | 0.4710 | 0.4503 | |
ISE | 5.2296 | 2.2187 | 2.0273 | |
RMSE | 0.9162 | 0.5080 | 0.4456 | |
ISE | 8.3944 | 2.5801 | 1.9858 | |
RMSE | 0.5310 | 0.4526 | 0.4500 | |
ISE | 2.8201 | 2.0487 | 2.0251 |
State | Performance Index | NDI | FTDO- NTSMC | FxTDO- FxTISMC |
---|---|---|---|---|
RMSE | 0.7192 | 0.3385 | 0.2636 | |
ISE | 5.1720 | 1.1460 | 0.6949 | |
RMSE | 0.9097 | 0.6236 | 0.2656 | |
ISE | 8.2763 | 3.8887 | 0.7055 | |
RMSE | 0.2647 | 0.4065 | 0.0632 | |
ISE | 0.7009 | 1.6521 | 0.0399 |
State | Performance Index | NDI | FTDO- NTSMC | FxTDO- FxTISMC |
---|---|---|---|---|
RMSE | 0.1702 | 0.0222 | 0.0065 | |
ISE | 7.8806 | 0.1345 | 0.0116 | |
RMSE | 0.1183 | 0.1040 | 0.1007 | |
ISE | 3.8057 | 2.9415 | 2.7569 | |
RMSE | 0.2551 | 0.0011 | 0.0007 | |
ISE | 17.7029 | 0.0003 | 0.0001 |
State | Performance Index | NDI | FTDO- NTSMC | FxTDO- FxTISMC |
---|---|---|---|---|
RMSE | 0.7873 | 1.5398 | 0.2981 | |
ISE | 167.3412 | 640.1369 | 23.9954 | |
RMSE | 0.7652 | 1.5442 | 0.3304 | |
ISE | 158.1108 | 643.8275 | 29.4829 | |
RMSE | 0.5511 | 0.3151 | 0.1083 | |
ISE | 82.0099 | 26.8139 | 3.1687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Chen, L.; Liu, Z.; Dang, Q.; Zhao, W.; Zhang, T.; Ma, C. Fixed-Time Disturbance Rejection Attitude Control for a Dual-System Hybrid UAV. Drones 2025, 9, 232. https://doi.org/10.3390/drones9040232
Chen W, Chen L, Liu Z, Dang Q, Zhao W, Zhang T, Ma C. Fixed-Time Disturbance Rejection Attitude Control for a Dual-System Hybrid UAV. Drones. 2025; 9(4):232. https://doi.org/10.3390/drones9040232
Chicago/Turabian StyleChen, Wenyu, Lulu Chen, Zhenbao Liu, Qingqing Dang, Wen Zhao, Tao Zhang, and Chao Ma. 2025. "Fixed-Time Disturbance Rejection Attitude Control for a Dual-System Hybrid UAV" Drones 9, no. 4: 232. https://doi.org/10.3390/drones9040232
APA StyleChen, W., Chen, L., Liu, Z., Dang, Q., Zhao, W., Zhang, T., & Ma, C. (2025). Fixed-Time Disturbance Rejection Attitude Control for a Dual-System Hybrid UAV. Drones, 9(4), 232. https://doi.org/10.3390/drones9040232