Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (973)

Search Parameters:
Keywords = charge trapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2128 KB  
Article
Remarkably High Effective Mobility of 301 cm2/V·s in 3 nm Ultra-Thin-Body SnO2 Transistor by UV Annealing
by An-Chieh Shih, Yi-Hao Zhan and Albert Chin
Nanomaterials 2026, 16(2), 133; https://doi.org/10.3390/nano16020133 - 19 Jan 2026
Viewed by 70
Abstract
At an ultra-thin 3 nm SnO2 channel thickness, a record-high effective mobility (µeff) of 301 cm2/V·s, field-effect mobility (µFE) of 304 cm2/V·s, and a sharp subthreshold swing (SS) of 201 mV/decade are [...] Read more.
At an ultra-thin 3 nm SnO2 channel thickness, a record-high effective mobility (µeff) of 301 cm2/V·s, field-effect mobility (µFE) of 304 cm2/V·s, and a sharp subthreshold swing (SS) of 201 mV/decade are achieved at a high carrier density (Ne) of 5 × 1012 cm−2. These excellent transport properties are attributed to ultraviolet (UV) light annealing. The resulting µeff is significantly higher than that of Molybdenum Disulfide (MoS2) and Tungsten Diselenide (WSe2), and is more than twice that of single-crystalline Si channel transistors at the same quasi-two-dimensional (2D) thickness of 3 nm (equivalent to five monolayers of MoS2). UV annealing not only enhances µeff and µFE but also sharpens the SS, which is crucial for low-power operation. This improved SS is attributed to reduced scattering from charged interface traps, as supported by µeff-Ne analysis, thereby increasing the transistor’s mobility. The realization of such high-mobility devices at a quasi-2D thickness of only 3 nm is of particular importance for the further downscaling of ultra-thin-body transistors for high-speed computing and monolithic three-dimensional (M3D) integration. Furthermore, the wide bandgap of SnO2 (3.7 eV) enables operation at relatively high voltages, paving the way for pioneering ternary logic applications. Full article
Show Figures

Figure 1

13 pages, 2628 KB  
Article
Electrical Properties and Charge Transfer Mechanisms in Nanoscale Anodic TiO2 Films at Low Applied Voltages
by Vyacheslav A. Moshnikov, Ekaterina N. Muratova, Igor A. Vrublevsky, Alexandr I. Maximov, Andrey A. Ryabko, Alena Yu. Gagarina and Dmitry A. Kozodaev
Inorganics 2026, 14(1), 29; https://doi.org/10.3390/inorganics14010029 - 17 Jan 2026
Viewed by 75
Abstract
The current–voltage characteristics (IVCs) of anodic TiO2 films in a thin-film structure (Carbon paste/TiO2/Ti/Al) were investigated in the temperature range of T = 80–300 K with bias voltages from −0.5 V to +0.5 V. Anodic oxide film, with a thickness [...] Read more.
The current–voltage characteristics (IVCs) of anodic TiO2 films in a thin-film structure (Carbon paste/TiO2/Ti/Al) were investigated in the temperature range of T = 80–300 K with bias voltages from −0.5 V to +0.5 V. Anodic oxide film, with a thickness of 14 nm, was obtained by electrochemical oxidation of Ti at a voltage of 10 V. The obtained data for various temperatures showed that the IVCs in the forward (negative on the Ti electrode) and reverse (positive on the Ti electrode) bias of the thin film structure are not symmetrical. Based on the analysis, three temperature ranges (sections) were identified in which the IVCs differ in their behavior. Examination of the IVCs revealed that the conductivity mechanism in Section I (temperature range from 298 to 263 K) is determined by the Space Charge Limited Current (SCLC). Section II, in the temperature range from 243 to 203 K, is characterized by the onset of conductivity involving donor centers, in the case where the concentration of electrons on traps is significantly higher than the concentration of electrons in the conduction band. In Section III, within the temperature range from 183 to 90 K, the conduction mechanism is the Poole–Frenkel process involving donor centers. These donor centers are located below the level of traps in the forbidden band. The results obtained indicate that anodic TiO2 is an n-type semiconductor, in the bandgap of which there are both electron traps and donor centers formed by anionic (oxygen) vacancies. The different behavior of the characteristic energy with different sample biasing in the case of the Poole–Frenkel mechanism indicates a two-layer structure of anodic TiO2. Full article
Show Figures

Figure 1

12 pages, 3584 KB  
Article
“In Situ” Studies on Coke Drilled from Tuyere in a Working COREX Melter Gasifier
by Hao Liu, Wen Hu, Xinyue Liu, Zipeng Dou and Weiqiang Liu
Processes 2026, 14(2), 323; https://doi.org/10.3390/pr14020323 - 16 Jan 2026
Viewed by 187
Abstract
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing [...] Read more.
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing material to partly replace lump coal to increase the burden voidage. The charged coke undergoes successive physical and chemical attacks that progressively weaken its strength, finally reducing the coke particle size and impairing overall burden permeability. Drilling “in situ” coke samples from the tuyere zone is an effective method to study coke behaviors inside a working melter gasifier. This work obtained tuyere coke samples by direct coke sample drilling during a melter gasifier blow-out and then systematically investigated the coke deterioration behaviors in the melter gasifier. The results show that the mean particle size decreased from an initial 50.3 mm to 31.6 mm at the tuyere, evidencing the severe fragmentation of coke. Basic oxides and alkali metals in the coke ash increased, indicating alkali recycling and enrichment occurred in the melter gasifier. Microcrystalline structure analysis of coke revealed a high degree of graphitization. Furthermore, coke degradation was further accelerated by both alkalis trapped in the coke pores and slag infiltration into the pores. This study clarifies the properties of the coke in the tuyere of the COREX melter gasifier and provides a theoretical basis for its operational optimization. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 3852 KB  
Review
Ions at Helium Interfaces: A Review
by Paul Leiderer
Entropy 2026, 28(1), 109; https://doi.org/10.3390/e28010109 - 16 Jan 2026
Viewed by 95
Abstract
Ions in liquid helium exist in their simplest form in two configurations, as negatively charged “electron bubbles” (electrons in a void of about 35 Å in diameter) and as positive “snowballs” (He+ ions surrounded by a sphere of solid helium, about 14 [...] Read more.
Ions in liquid helium exist in their simplest form in two configurations, as negatively charged “electron bubbles” (electrons in a void of about 35 Å in diameter) and as positive “snowballs” (He+ ions surrounded by a sphere of solid helium, about 14 Å in diameter). Here, we give an overview of studies with these ions when they are trapped at interfaces between different helium phases, i.e., the “free” surface between liquid and vapor, but also the interfaces between liquid and solid helium at high pressure and between phase-separated 3He-4He mixtures below the tricritical point. Three cases are discussed: (i) if the energy barrier provided by the interface is of the order of the thermal energy kBT, the ions can pass from one phase to the other with characteristic trapping times at the interface, which are in qualitative agreement with the existing theories; (ii) if the energy barrier is sufficiently high, the ions are trapped at the interface for extended periods of time, forming 2D Coulomb systems with intriguing properties; and (iii) at high electric fields and high ion densities, an electrohydrodynamic instability takes place, which is a model for critical phenomena. Full article
Show Figures

Figure 1

8 pages, 1719 KB  
Article
Temperature-Dependent Degradation in SiC MOS Structures Under Laser-Assisted AC BTI
by Kanghua Yu and Jun Wang
Electronics 2026, 15(2), 337; https://doi.org/10.3390/electronics15020337 - 12 Jan 2026
Viewed by 126
Abstract
Silicon carbide (SiC) MOSFETs, as one of the representative power electronic devices, have faced reliability challenges due to threshold voltage (Vth) instability under dynamic gate stress. To explore the underlying mechanisms, this work investigates 4H-SiC MOS structures (P-MOS and N-MOS) [...] Read more.
Silicon carbide (SiC) MOSFETs, as one of the representative power electronic devices, have faced reliability challenges due to threshold voltage (Vth) instability under dynamic gate stress. To explore the underlying mechanisms, this work investigates 4H-SiC MOS structures (P-MOS and N-MOS) under AC bias temperature instability (AC BTI) stress, utilizing a laser to generate minority carriers and simulate realistic switching conditions. Through combined capacitance–voltage (C-V) and gate current–voltage (Jg-Vg) characterizations on P-MOS and N-MOS devices before and after degradation at different temperatures, we reveal a critical temperature dependence in defect interactions. At room temperature, degradation is dominated by electron trapping in shallow interface states and near-interface traps (NITs). In contrast, high-temperature stress activates charge exchange with deep-level, slow states. Notably, a positive VFB shift is consistently observed in both N-MOS and P-MOS devices under AC stress, confirming that electron trapping is the dominant cause of the commonly observed positive Vth shift in SiC MOSFETs. These findings clarify the distinct defect-mediated mechanisms governing dynamic Vth instability in SiC devices, providing fundamental insights for interface engineering and reliability assessment. Full article
Show Figures

Figure 1

15 pages, 5100 KB  
Article
First-Principles Study of the Formation and Stability of the Interstitial and Substitutional Hydrogen Impurity in Magnesium Oxide
by A. G. Marinopoulos
Condens. Matter 2026, 11(1), 2; https://doi.org/10.3390/condmat11010002 - 9 Jan 2026
Viewed by 167
Abstract
Hydrogen is frequently incorporated in alkaline-earth oxides during crystal growth or post-deposition annealing. For MgO, several studies in the past showed that interstitial monatomic hydrogen can also favourably bind with oxygen vacancies to form stable substitutional defect complexes (substitutional hydrogen or U-defect centers). [...] Read more.
Hydrogen is frequently incorporated in alkaline-earth oxides during crystal growth or post-deposition annealing. For MgO, several studies in the past showed that interstitial monatomic hydrogen can also favourably bind with oxygen vacancies to form stable substitutional defect complexes (substitutional hydrogen or U-defect centers). The present study reports first-principles density-functional calculations of the formation energies of both interstitial and substitutional forms of the hydrogen impurity in MgO. Determination of the site-resolved densities of electronic states allowed for a detailed identification of the nature of the impurity-induced levels, both in the valence-energy region and inside the band gap of the host. The stability and diffusion mechanisms of both hydrogen defects was also studied with the aid of nudged elastic-band (NEB) calculations. Interstitial hydrogen was found to be an amphoteric defect with the lower formation energy for any realistic environment conditions (temperature and oxygen partial pressure). The NEB calculations showed that it is a fast-diffusing species when it is thermodynamically stable as a positively-charged state (bare proton). In contrast, the hydrogen-vacancy complex is a shallow donor, extremely stable against dissociation and virtually immobile as an isolated defect. Its formation is found to be favoured for a range of mid-gap Fermi-level positions where positively-charged interstitial hydrogen and neutral oxygen vacancies (F centers) are both thermodynamically stable low-energy defects. The present findings are consistent with the established consensus on the electrical activity of hydrogen in MgO as well as with experimental observations reporting the remarkable thermal stability of substitutional hydrogen defects and their ability to act as electron traps. Full article
(This article belongs to the Section Condensed Matter Theory)
Show Figures

Figure 1

17 pages, 2919 KB  
Article
Enhancing Hydrogen Embrittlement Resistance of Al–Zn–Mg–Cu Alloys via Si Microalloying and Optimized Heat Treatment
by Huijun Shi, Ruian Hu, Yi Lu, Shengping Wen, Wu Wei, Xiaolan Wu, Kunyuan Gao, Hui Huang and Zuoren Nie
Metals 2026, 16(1), 76; https://doi.org/10.3390/met16010076 - 9 Jan 2026
Viewed by 159
Abstract
7xxx series aluminum alloys are critical structural materials in aerospace applications, but their susceptibility to hydrogen embrittlement (HE) poses significant challenges to service safety and durability. The effects of Si, Er, and Zr microalloying, combined with optimized heat treatments on the HE resistance [...] Read more.
7xxx series aluminum alloys are critical structural materials in aerospace applications, but their susceptibility to hydrogen embrittlement (HE) poses significant challenges to service safety and durability. The effects of Si, Er, and Zr microalloying, combined with optimized heat treatments on the HE resistance of Al–Zn–Mg–Cu alloys, were systematically investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and mechanical testing. Three alloys—1# (AlZnMgCuZr), 2# (AlZnMgCuErZr), and 3# (AlZnMgCuSiErZr)—were subjected to single-stage or two-stage homogenization, followed by solution treatments at 470 °C/2 h and 540 °C/1 h, and peak aging at 125 °C. The hydrogen charging experiment was conducted by first applying a modified acrylic resin coating to protect the gripping sections of the specimen, followed by a tensile test. Results demonstrate that alloy 3# with Si addition exhibited the lowest RAloss, followed by the 2# alloy, which effectively improved the alloys’ hydrogen embrittlement behavior. Compared with the solution in 470 °C/2 h, the 540 °C/1 h solution treatment enabled complete dissolution of Mg2Si phases, promoting homogeneous precipitation and peak hardness comparable to alloy 2#. Two-stage homogenization significantly enhanced the number density and refinement of L12-structured Al3(Er,Zr) nanoprecipitates. Silicon further accelerated the precipitation kinetics, leading to more Al3(Er,Zr) nanoprecipitates, finely dispersed T′/η′ phases, and lath-shaped GPB-II zones. The GPB-II zones effectively trapped hydrogen, thereby improving HE resistance. This work provides a viable strategy for enhancing the reliability of high-strength aluminum alloys in hydrogen-containing environments. Full article
Show Figures

Figure 1

15 pages, 1802 KB  
Article
Aggregation-Tuned Charge Transport and Threshold Voltage Modulation in Poly(3-hexylthiophene) Field-Effect Transistors
by Byoungnam Park
Materials 2026, 19(2), 279; https://doi.org/10.3390/ma19020279 - 9 Jan 2026
Viewed by 259
Abstract
In this report, a thickness-driven, aggregation–structure–transport optimum in sonicated poly(3-hexylthiophene) (P3HT) FETs was investigated. Mobility peaks at ~10–20 nm, coincident with a minimum in the photoluminescence (PL) vibronic ratio I0-0/I0-1 (strong H-aggregate interchain coupling) [...] Read more.
In this report, a thickness-driven, aggregation–structure–transport optimum in sonicated poly(3-hexylthiophene) (P3HT) FETs was investigated. Mobility peaks at ~10–20 nm, coincident with a minimum in the photoluminescence (PL) vibronic ratio I0-0/I0-1 (strong H-aggregate interchain coupling) and X-ray diffraction sharpening of the (100) lamellar peak with slightly reduced d-spacing, indicate tighter π–π stacking and larger crystalline coherence. Absorption analysis (Spano model) is consistent with this enhanced interchain order. The mobility maximum arises from an optimal balance: J-aggregate–like intrachain planarity supports along-chain transport, while H-aggregates provide interchain connectivity for efficient hopping. Below this thickness, insufficient interchain coupling limits transport; above it, over-aggregation and disorder introduce traps and weaken gate control. The sharp rise in threshold voltage beyond the critical thickness indicates more trap states or fixed charges forming within the film bulk. As a result, a larger gate bias is needed to deplete the channel (remove excess holes) and switch the device off. These results show that electrical gating can be tuned via solution processing (sonication) and film thickness—guiding the design of P3HT devices for photovoltaics and sensing. Full article
Show Figures

Figure 1

24 pages, 4568 KB  
Article
Surface Potential Decay Characteristics and Trap Regulation Mechanism of Epoxy Glass Fiber Under Low-Temperature Gradient
by Yongqiang Fan, Shuhan Peng, Jianzhong Yang, Aoqi Jia, Yun Bai, Zhihui Li, Xiaoyun Tian and Yonggang Yue
Coatings 2026, 16(1), 83; https://doi.org/10.3390/coatings16010083 - 9 Jan 2026
Viewed by 229
Abstract
Surface charge accumulation and trap distribution are the core factors affecting the surface flashover characteristics of insulating materials. Considering the low-temperature gradient environment of superconducting energy pipeline terminations, this paper systematically studies the surface charge dynamic characteristics and trap distribution law of epoxy [...] Read more.
Surface charge accumulation and trap distribution are the core factors affecting the surface flashover characteristics of insulating materials. Considering the low-temperature gradient environment of superconducting energy pipeline terminations, this paper systematically studies the surface charge dynamic characteristics and trap distribution law of epoxy glass fiber (GFRP) by using the isothermal surface potential decay (ISPD) method combined with finite element simulation. A temperature-controlled ISPD test platform of −30~20 °C (193~293 K) was built to measure the surface potential decay curves at different temperatures and calculate the trap energy level and density; a charge migration model considering temperature gradient was established to analyze the influence of trapped charges on surface potential and electric field distribution. The results show that low temperature significantly reduces the surface potential decay rate (the residual potential after 5000 s is 92.91% of the initial value at 193 K, and only 3.51% at 293 K); the traps of GFRP at 193 K are dominated by deep traps (central energy level 0.68 eV, density 1.63 × 1020 m−3·eV), while there is a bimodal distribution of shallow traps (0.92 eV) and deep traps (0.98 eV) at 293 K; under temperature gradient, the accumulation of deep trap charges in the low-temperature region leads to a surface electric field distortion rate of 12.60, which is the key microscopic mechanism for the decrease of flashover voltage. Full article
Show Figures

Figure 1

29 pages, 6081 KB  
Review
Preparation and Solar-Energy Applications of PbS Quantum Dots via In Situ Methods
by Binh Duc Nguyen, Hyun Kuk Lee and Jae-Yup Kim
Appl. Sci. 2026, 16(2), 589; https://doi.org/10.3390/app16020589 - 6 Jan 2026
Viewed by 258
Abstract
In situ preparation routes have become central to advancing lead sulfide (PbS) quantum dots (QDs) for solar-energy conversion, owing to their ability to create strongly coupled QD/oxide interfaces that are difficult to achieve with ex situ colloidal methods, along with their simplicity and [...] Read more.
In situ preparation routes have become central to advancing lead sulfide (PbS) quantum dots (QDs) for solar-energy conversion, owing to their ability to create strongly coupled QD/oxide interfaces that are difficult to achieve with ex situ colloidal methods, along with their simplicity and potential for low-cost, scalable processing. This review systematically examines the fundamental mechanisms, processing levers, and device implications of the dominant in situ approaches successive ionic layer adsorption and reaction (SILAR), voltage-assisted SILAR (V-SILAR), and chemical bath deposition (CBD). These methods enable conformal QD nucleation within mesoporous scaffolds, improved electronic coupling, and scalable low-temperature fabrication, forming the materials foundation for high-performance PbS-based architectures. We further discuss how these in situ strategies translate into enhanced solar-energy applications, including quantum-dot-sensitized solar cells (QDSSCs) and photoelectrochemical (PEC) hydrogen production, highlighting recent advances in interfacial passivation, scaffold optimization, and bias-assisted growth that collectively suppress recombination and boost photocurrent utilization. Representative device metrics reported in recent studies indicate that in-situ-grown PbS quantum dots can deliver photocurrent densities on the order of ~5 mA cm−2 at applied potentials around 1.23 V versus RHE in photoelectrochemical systems, while PbS-based quantum-dot-sensitized solar cells typically achieve power conversion efficiencies in the range of ~4–10%, depending on interface engineering and device architecture. These performances are commonly associated with conformal PbS loading within mesoporous scaffolds and quantum-dot sizes in the few-nanometer regime, underscoring the critical role of morphology and interfacial control in charge transport and recombination. Recent studies indicate that performance improvements in PbS-based solar-energy devices are primarily governed by interfacial charge-transfer kinetics and recombination suppression rather than QD loading alone, with hybrid heterostructures and inorganic passivation layers playing a key role in modifying band offsets and surface trap densities at the PbS/oxide interface. Remaining challenges are associated with defect-mediated recombination, transport limitations in densely loaded porous scaffolds, and long-term chemical stability, which must be addressed to enable scalable and durable PbS-based photovoltaic and photoelectrochemical technologies. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Prediction of DC Breakdown Strength for Polymer Nanocomposite Based on Energy Depth of Trap
by Xiaohu Qi, Jian Guan, Xuri Xu, Zhen Zhang, Chuanyun Zhu, Chenyi Guo, Qifeng Shang and Yu Gao
Energies 2026, 19(1), 44; https://doi.org/10.3390/en19010044 - 21 Dec 2025
Viewed by 285
Abstract
Understanding the role of carrier traps in the determination of dielectric breakdown of polymer nanocomposite would yield a novel method for the estimation of breakdown strength of the material. In this study, we propose a novel approach to predict the DC breakdown strength [...] Read more.
Understanding the role of carrier traps in the determination of dielectric breakdown of polymer nanocomposite would yield a novel method for the estimation of breakdown strength of the material. In this study, we propose a novel approach to predict the DC breakdown strength of polyethylene (PE) and its nanocomposite at room temperature via the bipolar charge transport (BCT) model based on trap energy estimated from isothermal surface potential decay (ISPD). Test specimens of polyethylene (PE) and its nanocomposites, with a thickness of 110 μm, were fabricated using the hot-pressing method by incorporating 20 nm SiO2 particles as fillers. The distribution of carrier traps within these specimens was subsequently determined through ISPD measurements. The intrinsic breakdown strength of the sample was derived from the determined trap energy levels, by which the breakdown strength was predicted through the BCT model. Experimental DC breakdown tests were conducted on the specimens to validate the accuracy of the predictions. The results indicated that the DC breakdown strength predicted theoretically was in good agreement with that measured from the experiment. Such a prediction method provides a possible way to employ a non-destructive test to evaluate the DC breakdown strength of polymer nanocomposite. Full article
Show Figures

Figure 1

10 pages, 1734 KB  
Article
An Artificial Synaptic Device Based on InSe/Charge Trapping Layer/h-BN Heterojunction with Controllable Charge Trapping via Oxygen Plasma Treatment
by Qinghui Wang, Jiayong Wang, Manjun Lu, Tieying Ma and Jia Li
Micromachines 2025, 16(12), 1422; https://doi.org/10.3390/mi16121422 - 18 Dec 2025
Viewed by 342
Abstract
Neuromorphic computing, an emerging computational paradigm, aims to overcome the bottlenecks of the traditional von Neumann architecture. Two-dimensional materials serve as ideal platforms for constructing artificial synaptic devices, yet existing devices based on these materials face challenges such as insufficient stability. Indium selenide [...] Read more.
Neuromorphic computing, an emerging computational paradigm, aims to overcome the bottlenecks of the traditional von Neumann architecture. Two-dimensional materials serve as ideal platforms for constructing artificial synaptic devices, yet existing devices based on these materials face challenges such as insufficient stability. Indium selenide (InSe), a two-dimensional semiconductor with unique properties, demonstrates significant potential in the field of neuromorphic devices, though its application research remains in the initial stage. This study presents an artificial synaptic device based on the InSe/Charge Trapping Layer (CTL)/h-BN heterojunction. By applying oxygen plasma treatment to h-BN to form a controllable charge-trapping layer, efficient regulation of carriers in the InSe channel is achieved. The device successfully emulates fundamental synaptic behaviors including paired-pulse facilitation and long-term potentiation/inhibition, exhibiting excellent reproducibility and stability. Through investigating the influence of electrical pulse parameters on synaptic weights, a structure–activity relationship between device performance and structural parameters is established. Experimental results show that the device features outstanding linearity and symmetry, realizing the simulation of key synaptic behaviors such as dynamic conversion between short-term and long-term plasticity. It possesses a high dynamic range ratio of 7.12 and robust multi-level conductance tuning capability, with stability verified through 64 pulse cycle tests. This research provides experimental evidence for understanding interfacial charge storage mechanisms, paves the way for developing high-performance neuromorphic computing devices, and holds broad application prospects in brain-inspired computing and artificial intelligence hardware. Full article
Show Figures

Figure 1

20 pages, 17604 KB  
Article
Controls of Fault System on Hydrocarbon Accumulation: A Case Study from the Carboniferous Reservoir of the Hongche Fault Zone in the Junggar Basin
by Cheng Huang, Yonghe Sun, Huafeng Zhou, Xiaofan Yang, Junwei Han, Jian Fu, Mengyuan Hao and Yulin Song
Processes 2025, 13(12), 4054; https://doi.org/10.3390/pr13124054 - 15 Dec 2025
Viewed by 249
Abstract
The Hongche Fault Zone in the Junggar Basin exhibits significant spatiotemporal variations in the relationship between fault systems and hydrocarbon accumulation across different structural belts. Two key factors contribute to this phenomenon: frequent tectonic activities and well-developed Paleozoic fault systems. To date, no [...] Read more.
The Hongche Fault Zone in the Junggar Basin exhibits significant spatiotemporal variations in the relationship between fault systems and hydrocarbon accumulation across different structural belts. Two key factors contribute to this phenomenon: frequent tectonic activities and well-developed Paleozoic fault systems. To date, no detailed studies have been conducted on the fault systems in the Paleozoic strata of the Hongche Fault Zone. In this study, the fault systems in the Paleozoic strata of the Hongche Fault Zone were systematically sorted out for the first time. Furthermore, the controlling effects of active faults in different geological periods on hydrocarbon charging were clarified. Firstly, basing on the 3D seismic and well-log data, the structural framework and fault activity, fault systems, source-contacting faults were characterized. Vertically, the Hongche Fault Zone experienced three major thrusting episodes followed by one weak extensional subsidence Stage, forming four principal tectonic layers: Permian (Thrusting Episode I), Triassic (Thrusting Episode II), Jurassic (Thrusting Episode III), and Cretaceous–Quaternary (Post-Thrusting Subsidence). Laterally, six fault systems are identified: Middle Permian (Stage I), Late Triassic (Stage II), Jurassic (Stage III), post-Cretaceous (Stage IV), as well as composite systems from Middle Permian–Jurassic (Stages I–III) and Late Triassic–Jurassic (Stages II–III). These reveal multi-stage, multi-directional composite structural characteristics in the study area. According to the oil–source correlation, the Carboniferous reservoir is primarily sourced by Permian Fengcheng Formation source rocks in the Shawan Sag. Hydrocarbon migration tracing shows that oil migrates along faults, progressively charging from depression zones to thrust belts and uplifted areas. In this process, fault systems exert hierarchical controls on accumulation: Stage I faults dominate trap formation, Stages II and III faults regulate hydrocarbon migration, accumulation, and adjustment, while Stage IV faults influence hydrocarbon conduction in Mesozoic–Cenozoic reservoirs. By clarifying the fault-controlled hydrocarbon accumulation mechanisms in the Hongche Fault Zone, this study provides theoretical guidance for two key aspects of the Carboniferous reservoirs in the study area: the optimization of favorable exploration zones and the development of reserves. Full article
Show Figures

Figure 1

20 pages, 470 KB  
Review
Peptidylarginine Deiminases: An Overview of Recent Advances in Citrullination Research
by Magdalena Kijak-Boćkowska, Joanna Czerwińska and Agnieszka Owczarczyk-Saczonek
Int. J. Mol. Sci. 2025, 26(24), 12060; https://doi.org/10.3390/ijms262412060 - 15 Dec 2025
Viewed by 913
Abstract
The peptidylarginine deiminase (PAD) family includes five isozymes (PAD1–4 and PAD6) with unique tissue distributions and substrate specificities. These enzymes facilitate citrullination, a post-translational modification where positively charged arginine residues are converted into neutral citrulline residues in the presence of calcium ions. This [...] Read more.
The peptidylarginine deiminase (PAD) family includes five isozymes (PAD1–4 and PAD6) with unique tissue distributions and substrate specificities. These enzymes facilitate citrullination, a post-translational modification where positively charged arginine residues are converted into neutral citrulline residues in the presence of calcium ions. This process significantly changes protein properties, affecting molecular interactions, structural stability, and biological functions. Over the past six years (2019–2025), there has been significant progress in understanding PAD activity mechanisms and their therapeutic potential. Recent discoveries include the regulated nuclear translocation of PAD2, PAD4’s specific role in forming cancer extracellular chromatin networks (CECNs), and the development of next-generation inhibitors with greatly improved pharmacological profiles. PAD4 is crucial in forming neutrophil extracellular traps (NETs). Citrullination of histones H3 and H4 by PAD4 destabilizes chromatin, helping release DNA-protein networks as an antibacterial defense. However, excessive NET formation can contribute to autoimmune diseases and thrombosis. Similarly, the bacterial peptidylarginine deiminase from Porphyromonas gingivalis (PPAD)—the only known prokaryotic citrullinating enzyme—plays a key role. Working with R-gingipains, PPAD triggers pathological citrullination of host proteins, leading to immune tolerance breakdown and linking periodontal disease with systemic autoimmune disorders such as rheumatoid arthritis, atherosclerosis, and Alzheimer’s disease. Once thought to be a rare post-translational modification, citrullination is now understood as a vital regulatory mechanism in both normal physiology and disease, involving both internal processes of homeostasis and external mechanisms of bacterial pathogenesis. Full article
(This article belongs to the Special Issue Current Progress in Neutrophil Extracellular Traps (NETs))
Show Figures

Figure 1

15 pages, 7975 KB  
Article
Effect of Electrochemical Hydrogen Degradation on the Bond Microstructure of Explosively Welded Joints
by Michał Gloc, Piotr Maj and Sylwia Przybysz-Gloc
Appl. Sci. 2025, 15(24), 13139; https://doi.org/10.3390/app152413139 - 14 Dec 2025
Viewed by 251
Abstract
This study investigates hydrogen embrittlement mechanisms at the interfaces of explosively welded joints between 304L austenitic stainless steel and carbon/low-alloy steels (St41k, 15HM), focusing on the unique properties of local melting zones (LMZs) formed during joining. Advanced microstructural characterization, including scanning electron microscopy [...] Read more.
This study investigates hydrogen embrittlement mechanisms at the interfaces of explosively welded joints between 304L austenitic stainless steel and carbon/low-alloy steels (St41k, 15HM), focusing on the unique properties of local melting zones (LMZs) formed during joining. Advanced microstructural characterization, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and microhardness testing, was combined with controlled electrochemical hydrogen charging. Results demonstrate that while base materials suffered substantial hydrogen-induced degradation—blistering in carbon steels and microcracking in stainless steel—the LMZ exhibited exceptional resistance to hydrogen damage. Compositional analyses revealed that the LMZ possessed intermediate chromium (4.8–8.8 wt.%) and nickel (1.7–3.6 wt.%) contents, reflecting mixing from both plates, and significantly higher microhardness compared to adjacent zones. The superior hydrogen resistance of the LMZ is attributed to their refined microstructure, increased density of hydrogen trapping sites, and non-equilibrium phase composition resulting from rapid solidification. These findings indicate that tailoring the process of the LMZ in clad steel joints can be an effective strategy to mitigate hydrogen embrittlement risks in critical hydrogen infrastructure. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion of Materials)
Show Figures

Figure 1

Back to TopTop