Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (906)

Search Parameters:
Keywords = cellular device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 437 KiB  
Article
Post-Quantum Key Exchange and Subscriber Identity Encryption in 5G Using ML-KEM (Kyber)
by Qaiser Khan, Sourav Purification and Sang-Yoon Chang
Information 2025, 16(7), 617; https://doi.org/10.3390/info16070617 - 19 Jul 2025
Viewed by 113
Abstract
5G addresses user privacy concerns in cellular networking by encrypting a subscriber identifier with elliptic-curve-based encryption and then transmitting it as ciphertext known as a Subscriber Concealed Identifier (SUCI). However, an adversary equipped with a quantum computer can break a discrete-logarithm-based elliptic curve [...] Read more.
5G addresses user privacy concerns in cellular networking by encrypting a subscriber identifier with elliptic-curve-based encryption and then transmitting it as ciphertext known as a Subscriber Concealed Identifier (SUCI). However, an adversary equipped with a quantum computer can break a discrete-logarithm-based elliptic curve algorithm. Consequently, the user privacy in 5G is at stake against quantum attacks. In this paper, we study the incorporation of the post-quantum ciphers in the SUCI calculation both at the user equipment and at the core network, which involves the shared-key exchange and then using the resulting key for the ID encryption. We experiment on different hardware platforms to analyze the PQC key exchange and encryption using NIST-standardized CRYSTALS-Kyber (which is now called an ML-KEM after the standardization selection by NIST). Our analyses focus on the performances and compare the Kyber-based key exchange and encryption with the current (pre-quantum) elliptic curve Diffie–Hellman (ECDH). The performance analyses are critical because mobile networking involves resource-limited and battery-operating mobile devices. We measure and analyze not only the time and CPU-processing performances but also the energy and power performances. Our analyses show that Kyber-512 is the most efficient and even has better performance (i.e., faster computations and lower energy consumption) than ECDH. Full article
(This article belongs to the Special Issue Public Key Cryptography and Privacy Protection)
Show Figures

Figure 1

18 pages, 7391 KiB  
Article
Reliable QoE Prediction in IMVCAs Using an LMM-Based Agent
by Michael Sidorov, Tamir Berger, Jonathan Sterenson, Raz Birman and Ofer Hadar
Sensors 2025, 25(14), 4450; https://doi.org/10.3390/s25144450 - 17 Jul 2025
Viewed by 192
Abstract
Face-to-face interaction is one of the most natural forms of human communication. Unsurprisingly, Video Conferencing (VC) Applications have experienced a significant rise in demand over the past decade. With the widespread availability of cellular devices equipped with high-resolution cameras, Instant Messaging Video Call [...] Read more.
Face-to-face interaction is one of the most natural forms of human communication. Unsurprisingly, Video Conferencing (VC) Applications have experienced a significant rise in demand over the past decade. With the widespread availability of cellular devices equipped with high-resolution cameras, Instant Messaging Video Call Applications (IMVCAs) now constitute a substantial portion of VC communications. Given the multitude of IMVCA options, maintaining a high Quality of Experience (QoE) is critical. While content providers can measure QoE directly through end-to-end connections, Internet Service Providers (ISPs) must infer QoE indirectly from network traffic—a non-trivial task, especially when most traffic is encrypted. In this paper, we analyze a large dataset collected from WhatsApp IMVCA, comprising over 25,000 s of VC sessions. We apply four Machine Learning (ML) algorithms and a Large Multimodal Model (LMM)-based agent, achieving mean errors of 4.61%, 5.36%, and 13.24% for three popular QoE metrics: BRISQUE, PIQE, and FPS, respectively. Full article
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 225
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

20 pages, 1202 KiB  
Article
Enhanced Collaborative Edge Intelligence for Explainable and Transferable Image Recognition in 6G-Aided IIoT
by Chen Chen, Ze Sun, Jiale Zhang, Junwei Dong, Peng Zhang and Jie Guo
Sensors 2025, 25(14), 4365; https://doi.org/10.3390/s25144365 - 12 Jul 2025
Viewed by 228
Abstract
The Industrial Internet of Things (IIoT) has revolutionized industry through interconnected devices and intelligent applications. Leveraging the advancements in sixth-generation cellular networks (6G), the 6G-aided IIoT has demonstrated a superior performance across applications requiring low latency and high reliability, with image recognition being [...] Read more.
The Industrial Internet of Things (IIoT) has revolutionized industry through interconnected devices and intelligent applications. Leveraging the advancements in sixth-generation cellular networks (6G), the 6G-aided IIoT has demonstrated a superior performance across applications requiring low latency and high reliability, with image recognition being among the most pivotal. However, the existing algorithms often neglect the explainability of image recognition processes and fail to address the collaborative potential between edge computing servers. This paper proposes a novel method, IRCE (Intelligent Recognition with Collaborative Edges), designed to enhance the explainability and transferability in 6G-aided IIoT image recognition. By incorporating an explainable layer into the feature extraction network, IRCE provides visual prototypes that elucidate decision-making processes, fostering greater transparency and trust in the system. Furthermore, the integration of the local maximum mean discrepancy (LMMD) loss facilitates seamless transfer learning across geographically distributed edge servers, enabling effective domain adaptation and collaborative intelligence. IRCE leverages edge intelligence to optimize real-time performance while reducing computational costs and enhancing scalability. Extensive simulations demonstrate the superior accuracy, explainability, and adaptability of IRCE compared to those of the traditional methods. Moreover, its ability to operate efficiently in diverse environments highlights its potential for critical industrial applications such as smart manufacturing, remote diagnostics, and intelligent transportation systems. The proposed approach represents a significant step forward in achieving scalable, explainable, and transferable AI solutions for IIoT ecosystems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

16 pages, 1933 KiB  
Article
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
by Boyana Angelova, Momchil Paunov, Meglena Kitanova, Gabriela Atanasova and Nikolay Atanasov
Antioxidants 2025, 14(7), 820; https://doi.org/10.3390/antiox14070820 - 3 Jul 2025
Viewed by 380
Abstract
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at [...] Read more.
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at the molecular, cellular and organismal level. Yeast suspensions were treated with 2.45 GHz microwave radiation in the near-field of antenna at two distances (2 and 4 cm) and two time periods (20 and 60 min)—setups resembling the use of mobile devices. The release of UV-absorbing substances from the cells was studied as an indicator of membrane permeabilization, total intracellular antioxidant activity and reduced glutathione were determined, and a comet assay for damage to the DNA was performed. A correlation between reduced antioxidants and increased membrane permeability during EMF treatment was observed at a distance of 2 cm for 20 min, suggesting the presence of oxidative stress, while a similar effect was not observed with conventional heating. Slightly increased membrane permeability was observed after irradiation for 60 min at a distance of 4 cm, but this was not related to the antioxidant status of the cells. A trend towards increased DNA damage was observed under both conditions. Full article
Show Figures

Figure 1

13 pages, 2392 KiB  
Article
A Novel Single-Layer Microfluidic Device for Dynamic Stimulation, Culture, and Imaging of Mammalian Cells
by Adil Mustafa, Antonella La Regina, Elisa Pedone, Ahmet Erten and Lucia Marucci
Biosensors 2025, 15(7), 427; https://doi.org/10.3390/bios15070427 - 3 Jul 2025
Viewed by 405
Abstract
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies [...] Read more.
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies of cells’ responses to drugs. Here, we report the design and testing of a novel microfluidic device of simple production (single Polydimethylsiloxane layer), which integrates a micromixer with vacuum-assisted cell loading for long-term mammalian cell culture and dynamic mixing of four different culture media. Finite element modeling was used to predict flow rates and device dimensions to achieve diffusion-based fluid mixing. The device showed efficient mixing and dynamic exchange of media in the cell-trapping chambers, and viability of mammalian cells cultured for long-term in the device. This work represents the first attempt to integrate single-layer microfluidic mixing devices with vacuum-assisted cell-loading systems for mammalian cell culture and dynamic stimulation. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

27 pages, 10769 KiB  
Article
Cold Plasma Treatment Alters the Morphology, Oxidative Stress Response and Specialized Metabolite Content in Yellow Iris (I. reichenbachii) Callus
by Slađana Jevremović, Milica Milutinović, Ksenija Veličković, Uroš Gašić, Nikola Škoro, Nevena Puač and Suzana Živković
Horticulturae 2025, 11(7), 781; https://doi.org/10.3390/horticulturae11070781 - 3 Jul 2025
Viewed by 386
Abstract
The application of non-thermal (cold) plasmas is considered an environmentally friendly method that could affect plant metabolism and cellular development or can be used for the commercial production of natural products that cannot be chemically synthesized. In the present study, the non-embryogenic callus [...] Read more.
The application of non-thermal (cold) plasmas is considered an environmentally friendly method that could affect plant metabolism and cellular development or can be used for the commercial production of natural products that cannot be chemically synthesized. In the present study, the non-embryogenic callus of iris (Iris reichenbachii Heuff.) was treated with a Radio Frequency (RF) plasma needle device using He as a working gas. We investigated short-term (up to seven days) and long-term (up to one year) changes on morphological, physiological and biochemical levels. An increased production of O2 and H2O2 was observed in the callus tissue after plasma treatment. The enzymes SOD and CAT represented the frontline in the antioxidant defense against reactive oxygen species (ROS) produced during the first hour of treatment, while POX was the leading antioxidant enzyme seven days after plasma treatment. Significant long-term morphological changes were observed in the calli due to the increased mitotic activity of the plant cells. In addition, three flavonoids (naringenin, apigenin and acacetin) and two isoflavonoids (irisolidone and irilone) were detected only in the plasma-treated tissue even one year after plasma treatment. The present study emphasizes the application of the plasma technique to promote meristematic activity and stimulate the production of specialized metabolites in iris calli. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Graphical abstract

21 pages, 1476 KiB  
Article
AI-Driven Handover Management and Load Balancing Optimization in Ultra-Dense 5G/6G Cellular Networks
by Chaima Chabira, Ibraheem Shayea, Gulsaya Nurzhaubayeva, Laura Aldasheva, Didar Yedilkhan and Saule Amanzholova
Technologies 2025, 13(7), 276; https://doi.org/10.3390/technologies13070276 - 1 Jul 2025
Cited by 1 | Viewed by 830
Abstract
This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring [...] Read more.
This paper presents a comprehensive review of handover management and load balancing optimization (LBO) in ultra-dense 5G and emerging 6G cellular networks. With the increasing deployment of small cells and the rapid growth of data traffic, these networks face significant challenges in ensuring seamless mobility and efficient resource allocation. Traditional handover and load balancing techniques, primarily designed for 4G systems, are no longer sufficient to address the complexity of heterogeneous network environments that incorporate millimeter-wave communication, Internet of Things (IoT) devices, and unmanned aerial vehicles (UAVs). The review focuses on how recent advances in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), are being applied to improve predictive handover decisions and enable real-time, adaptive load distribution. AI-driven solutions can significantly reduce handover failures, latency, and network congestion, while improving overall user experience and quality of service (QoS). This paper surveys state-of-the-art research on these techniques, categorizing them according to their application domains and evaluating their performance benefits and limitations. Furthermore, the paper discusses the integration of intelligent handover and load balancing methods in smart city scenarios, where ultra-dense networks must support diverse services with high reliability and low latency. Key research gaps are also identified, including the need for standardized datasets, energy-efficient AI models, and context-aware mobility strategies. Overall, this review aims to guide future research and development in designing robust, AI-assisted mobility and resource management frameworks for next-generation wireless systems. Full article
Show Figures

Figure 1

22 pages, 2815 KiB  
Article
Multi-Layer Cryptosystem Using Reversible Cellular Automata
by George Cosmin Stănică and Petre Anghelescu
Electronics 2025, 14(13), 2627; https://doi.org/10.3390/electronics14132627 - 29 Jun 2025
Viewed by 320
Abstract
The growing need for adaptable and efficient hardware-based encryption methods has led to increased interest in unconventional models such as cellular automata (CA). This study presents the hardware design and the field programmable gate array (FPGA)-based implementation of a multi-layer symmetric block encryption [...] Read more.
The growing need for adaptable and efficient hardware-based encryption methods has led to increased interest in unconventional models such as cellular automata (CA). This study presents the hardware design and the field programmable gate array (FPGA)-based implementation of a multi-layer symmetric block encryption algorithm built on the principles of reversible cellular automata (RCA). The algorithm operates on 128-bit plaintext blocks processed over iterative rounds and integrates five RCA components, each assigned with specific transformation roles to ensure high data diffusion. A 256-bit secret key that governs the rule configuration yields a vast keyspace, significantly enhancing resistance to brute-force attacks. Key elements such as rule-based evolution, neighborhood radius, and hybrid cellular automata for random state generation are also integrated into the hardware logic. All cryptographic components, including initialization, encryption logic, and control, are built exclusively using CA, ensuring design consistency and low complexity. The cryptosystem takes advantage of the localized interactions and naturally parallel CA structure, which align with the architecture of FPGA devices, making them a suitable platform for implementing such encryption schemes. The results demonstrate the feasibility of deploying multi-layer RCA encryption schemes on reconfigurable devices and provide a viable path toward efficient and secure hardware-level encryption systems. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

21 pages, 6303 KiB  
Article
Tight Spaces, Tighter Signals: Spatial Constraints as Drivers of Peripheral Myelination
by Luca Bartesaghi, Basilio Giangreco, Vanessa Chiappini, Maria Fernanda Veloz Castillo, Martina Monaco, Jean-Jaques Médard, Giovanna Gambarotta, Marco Agus and Corrado Calì
Cells 2025, 14(12), 926; https://doi.org/10.3390/cells14120926 - 18 Jun 2025
Viewed by 1306
Abstract
Peripheral myelination is driven by the intricate interplay between Schwann cells and axons, coordinated through molecular signaling and the structural organization of their shared environment. While the biochemical regulation of this process has been extensively studied, the influence of spatial architecture and mechanical [...] Read more.
Peripheral myelination is driven by the intricate interplay between Schwann cells and axons, coordinated through molecular signaling and the structural organization of their shared environment. While the biochemical regulation of this process has been extensively studied, the influence of spatial architecture and mechanical cues remains poorly understood. Here, we use in vitro co-culture models—featuring microfluidic devices and hydrogel-based scaffolds—to explore how extracellular organization, cellular density, and spatial constraints shape Schwann cell behavior. Our results show that (i) pro-myelinating effects triggered by ascorbic acid administration is distally propagated along axons in Schwann cell-DRG co-cultures, (ii) ascorbic acid modulates Neuregulin-1 expression, (iii) a critical threshold of cellular density is required to support proper Schwann cell differentiation and myelin formation, and (iv) spatial confinement promotes myelination in the absence of ascorbic acid. Together, these findings highlight how spatial and structural parameters regulate the cellular and molecular events underlying peripheral myelination, offering new physiologically relevant models of myelination and opening new avenues for peripheral nerve repair strategies. Full article
(This article belongs to the Special Issue Remyelination: From Basic Science to Therapies)
Show Figures

Graphical abstract

14 pages, 2919 KiB  
Article
GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation
by Scott Tanch, Alireza Fath, Nicholas Hanna, Tian Xia and Dryver Huston
Appl. Sci. 2025, 15(12), 6552; https://doi.org/10.3390/app15126552 - 10 Jun 2025
Cited by 1 | Viewed by 439
Abstract
In this study, we demonstrate an application for 5G networks in mobile and remote GPR scanning situations to detect buried objects by experts while the operator is performing the scans. Using a GSSI SIR-30 system in conjunction with the RealSense camera for visual [...] Read more.
In this study, we demonstrate an application for 5G networks in mobile and remote GPR scanning situations to detect buried objects by experts while the operator is performing the scans. Using a GSSI SIR-30 system in conjunction with the RealSense camera for visual mapping of the surveyed area, subsurface GPR scans were created and transmitted for remote processing. Using mobile networks, the raw B-scan files were transmitted at a sufficient rate, a maximum of 0.034 ms mean latency, to enable near real-time edge processing. The performance of 5G networks in handling the data transmission for the GPR scans and edge computing was compared to the performance of 4G networks. In addition, long-range low-power devices, namely Wi-Fi HaLow and Wi-Fi hotspots, were compared as local alternatives to cellular networks. Augmented reality headset representation of the F-scans is proposed as a method of assisting the operator in using the edge-processed scans. These promising results bode well for the potential of remote processing of GPR data in augmented reality applications. Full article
(This article belongs to the Special Issue Robotics and Intelligent Systems: Technologies and Applications)
Show Figures

Figure 1

38 pages, 5974 KiB  
Review
Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing
by Miriam Lucariello, Maria Luisa Valicenti, Samuele Giannoni, Leonardo Donati, Ilaria Armentano, Francesco Morena and Sabata Martino
Biomolecules 2025, 15(6), 848; https://doi.org/10.3390/biom15060848 - 10 Jun 2025
Viewed by 899
Abstract
Mechanical forces are increasingly recognised as fundamental regulators of cellular function, complementing classical biochemical cues to direct development, tissue homeostasis, and disease progression. Cells detect external and internal forces via mechanosensor proteins and adapt their cytoskeletal architecture, leading to changes in cell behaviour. [...] Read more.
Mechanical forces are increasingly recognised as fundamental regulators of cellular function, complementing classical biochemical cues to direct development, tissue homeostasis, and disease progression. Cells detect external and internal forces via mechanosensor proteins and adapt their cytoskeletal architecture, leading to changes in cell behaviour. Biomaterials and biodevices come to the aid of tailoring biomaterials’ properties in terms of chemical/physical properties and, by emulating dynamical forces, e.g., shear stress and cell swelling, they may enlighten mechanobiological processes. Additionally, emerging technologies expand the experimental toolkit for probing mechanobiological phenomena in complex, customisable settings. Central to these processes are mechanotransducer proteins and membrane–organelle networks that convert mechanical deformation into biochemical signals, orchestrating downstream transcriptional and post-translational modifications. This review highlights how through bridging material engineering and cellular mechanics, mechanobiology provides a unified framework to understand how physical forces shape tissues and drive pathologies. The continued integration of advanced biomaterials, dynamic biodevices, and multiscale analytical methods promises to uncover new mechanistic insights and inform the development of mechanotherapeutic strategies. Full article
(This article belongs to the Special Issue The Role of Mechanotransduction in Cellular Biology)
Show Figures

Graphical abstract

20 pages, 3177 KiB  
Article
Smart Underwater Sensor Network GPRS Architecture for Marine Environments
by Blanca Esther Carvajal-Gámez, Uriel Cedeño-Antunez and Abigail Elizabeth Pallares-Calvo
Sensors 2025, 25(11), 3439; https://doi.org/10.3390/s25113439 - 30 May 2025
Viewed by 484
Abstract
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant [...] Read more.
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant monitoring. The use of sensors for environmental monitoring, tracking marine fauna and flora, and monitoring the health of aquifers requires the integration of heterogeneous technologies as well as wireless communication technologies. Aquatic mobile sensor nodes face various limitations, such as bandwidth, propagation distance, and data transmission delay issues. Owing to their versatility, wireless sensor networks support remote monitoring and surveillance. In this work, an architecture for a general packet radio service (GPRS) wireless sensor network is presented. The network is used to monitor the geographic position over the coastal area of the Gulf of Mexico. The proposed architecture integrates cellular technology and some ad hoc network configurations in a single device such that coverage is improved without significantly affecting the energy consumption, as shown in the results. The network coverage and energy consumption are evaluated by analyzing the attenuation in a proposed channel model and the autonomy of the electronic system, respectively. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

52 pages, 8144 KiB  
Review
Multiple Strategies for the Application of Medicinal Plant-Derived Bioactive Compounds in Controlling Microbial Biofilm and Virulence Properties
by Mulugeta Mulat, Riza Jane S. Banicod, Nazia Tabassum, Aqib Javaid, Abirami Karthikeyan, Geum-Jae Jeong, Young-Mog Kim, Won-Kyo Jung and Fazlurrahman Khan
Antibiotics 2025, 14(6), 555; https://doi.org/10.3390/antibiotics14060555 - 29 May 2025
Cited by 1 | Viewed by 832
Abstract
Biofilms are complex microbial communities encased within a self-produced extracellular matrix, which plays a critical role in chronic infections and antimicrobial resistance. These enhance pathogen survival and virulence by protecting against host immune defenses and conventional antimicrobial treatments, posing substantial challenges in clinical [...] Read more.
Biofilms are complex microbial communities encased within a self-produced extracellular matrix, which plays a critical role in chronic infections and antimicrobial resistance. These enhance pathogen survival and virulence by protecting against host immune defenses and conventional antimicrobial treatments, posing substantial challenges in clinical contexts such as device-associated infections and chronic wounds. Secondary metabolites derived from medicinal plants, such as alkaloids, tannins, flavonoids, phenolic acids, and essential oils, have gained attention as promising agents against biofilm formation, microbial virulence, and antibiotic resistance. These natural compounds not only limit microbial growth and biofilm development but also disrupt communication between bacteria, known as quorum sensing, which reduces their ability to cause disease. Through progress in nanotechnology, various nanocarriers such as lipid-based systems, polymeric nanoparticles, and metal nanoparticles have been developed to improve the solubility, stability, and cellular uptake of phytochemicals. In addition, the synergistic use of plant-based metabolites with conventional antibiotics or antifungal drugs has shown promise in tackling drug-resistant microorganisms and revitalizing existing drugs. This review comprehensively discusses the efficacy of pure secondary metabolites from medicinal plants, both as individuals and in nanoformulated forms or in combination with antimicrobial agents, as alternative strategies to control biofilm-forming pathogens. The molecular mechanisms underlying their antibiofilm and antivirulence activities are discussed in detail. Lastly, the current pitfalls, limitations, and emerging directions in translating these natural compounds into clinical applications are critically evaluated. Full article
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Cost-Effective and Simple Prototyping PMMA Microfluidic Chip and Open-Source Peristaltic Pump for Small Volume Applications
by Oguzhan Panatli, Cansu Gurcan, Fikret Ari, Mehmet Altay Unal, Mehmet Yuksekkaya and Açelya Yilmazer
Micro 2025, 5(2), 25; https://doi.org/10.3390/micro5020025 - 27 May 2025
Cited by 1 | Viewed by 1261
Abstract
Microfluidic devices are tiny tools used to manipulate small volumes of liquids in various fields. However, these devices frequently require additional equipment to control fluid flow, increasing the cost and complexity of the systems and limiting their potential for widespread use in low-resource [...] Read more.
Microfluidic devices are tiny tools used to manipulate small volumes of liquids in various fields. However, these devices frequently require additional equipment to control fluid flow, increasing the cost and complexity of the systems and limiting their potential for widespread use in low-resource biomedical applications. Here, we present a cost-effective and simple fabrication method for PMMA microfluidic chips using laser cutting technology, along with a low-cost and open-source peristaltic pump constructed with common hardware. The pump, programmed with an Arduino microcontroller, offers precise flow control in microfluidic devices for small volume applications. The developed application for controlling the peristaltic pump is user-friendly and open source. The microfluidic chip and pump system was tested using Jurkat cells. The cells were cultured for 24 h in conventional cell culture and a microfluidic chip. The LDH assay indicated higher cell viability in the microfluidic chip (111.99 ± 7.79%) compared to conventional culture (100 ± 15.80%). Apoptosis assay indicated 76.1% live cells, 18.7% early apoptosis in microfluidic culture and 99.2% live cells, with 0.5% early apoptosis in conventional culture. The findings from the LDH and apoptosis analyses demonstrated an increase in both cell proliferation and cellular stress in the microfluidic system. Despite the increased stress, the majority of cells maintained membrane integrity and continued to proliferate. In conclusion, the chip fabrication method and the pump offer advantages, including design flexibility and precise flow rate control. This study promises solutions that can be tailored to specific needs for biomedical applications. Full article
(This article belongs to the Special Issue Functional Droplet-Based Microfluidic Systems)
Show Figures

Figure 1

Back to TopTop