Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
Abstract
1. Introduction
2. Materials and Methods
2.1. Yeast Culture Conditions and Sample Preparation
2.2. Treatment Conditions
- 2 cm and 20 min;
- 4 cm and 20 min;
- 4 cm and 60 min.
2.3. Determination of Cellular Effects of EMF and Heating
- Comet tail length (TL, pixels)—comet head diameter subtracted from the overall comet length;
- Comet tail DNA percentage (TDC, %)—total comet tail intensity divided by the total comet intensity, multiplied by 100;
- Comet olive tail moment (OTM, arb. u.)—summation of each tail intensity integral value, multiplied by its relative distance from the center of the head (the point at which the head integral is mirrored), and divided by the total comet intensity [22].
2.4. Statistical Analyses
3. Results
3.1. SAR and Microwave Heating
3.2. Cell Membrane Permeability
3.3. Cell Antioxidant Status
3.4. DNA Integrity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A260 | Absorbance at 260 nm |
A412 | Absorbance at 412 nm |
A734 | Absorbance at 734 nm |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
DTNB | 5,5-dithio-bis-(2-nitrobenzoic acid) (Ellman’s Reagent) |
d. w. | Distilled Water |
EMF | Electromagnetic Field/s |
FW | Fresh Weight |
GSH | Glutathione (reduced form) |
N.A. | Not Applicable |
ROS | Reactive Oxygen Species |
RPM | Revolutions Per Minute |
RT | Room Temperature |
SAR | Specific Absorption Rate |
TEAC | Trolox Equivalent Antioxidant Capacity |
Tmax | Temperature (maximal) recorded right after the end of treatment |
YPD | Yeast extract, Peptone, Dextrose |
ΔT | Temperature difference between Tmax and RT |
λ | Wavelength |
References
- Wilke, I. Biological and Pathological Effects of 2.45 GHz Radiation on Cells, Fertility, Brain, and Behavior. Umw. Med. Ges. 2018, 31, 1–32. [Google Scholar]
- Crouzier, D.; Perrin, A.; Torres, G.; Dabouis, V.; Debouzy, J.-C. Pulsed Electromagnetic Field at 9.71 GHz Increase Free Radical Production in Yeast (Saccharomyces cerevisiae). Pathol. Biol. 2009, 57, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Kumar, N.; Mumtaz, S.; Lim, J.S.; Jang, J.H.; Kim, D.; Sahu, B.D.; Bogaerts, A.; Choi, E.H. Evaluation of Non-Thermal Effect of Microwave Radiation and Its Mode of Action in Bacterial Cell Inactivation. Sci. Rep. 2021, 11, 14003. [Google Scholar] [CrossRef] [PubMed]
- Alsuhaim, H.; Vojisavljevic, V.; Pirogova, E. Effects of Non-Thermal Microwave Exposures on the Proliferation Rate of Saccharomyces Cerevisiae Yeast. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Beijing, China, 26–31 May 2012; Long, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 48–51. [Google Scholar]
- Janković, S.M.; Milošev, M.Z.; Novaković, M.L. The Effects of Microwave Radiation on Microbial Cultures. Hosp. Pharmacol. -Int. Multidiscip. J. 2014, 1, 102–108. [Google Scholar] [CrossRef]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of Microwave––A Brief Review. Bioresour. Technol. 2003, 87, 155–159. [Google Scholar] [CrossRef]
- Antonio, C.; Deam, R.T. Can “Microwave Effects” Be Explained by Enhanced Diffusion? Phys. Chem. Chem. Phys. 2007, 9, 2976–2982. [Google Scholar] [CrossRef]
- Chauhan, P.; Verma, H.N.; Sisodia, R.; Kesari, K.K. Microwave Radiation (2.45 GHz)-Induced Oxidative Stress: Whole-Body Exposure Effect on Histopathology of Wistar Rats. Electromagn. Biol. Med. 2017, 36, 20–30. [Google Scholar] [CrossRef]
- Karatopuk, D.U. Exploring the Effects of 2.45 GHz Electromagnetic Field Radiation in the Etiology of Endothelial Injury. Ph.D. Thesis, Suleyman Demirel University, Isparta, Turkey, 2023. [Google Scholar]
- Lai, H. Single-and Double-Strand DNA Breaks in Rat Brain Cells after Acute Exposure to Radiofrequency Electromagnetic Radiation. Int. J. Radiat. Biol. 1996, 69, 513–521. [Google Scholar] [CrossRef]
- Bertuccio, M.P.; Acri, G.; Ientile, R.; Caccamo, D.; Currò, M. The Exposure to 2.45 GHz Electromagnetic Radiation Induced Different Cell Responses in Neuron-like Cells and Peripheral Blood Mononuclear Cells. Biomedicines 2023, 11, 3129. [Google Scholar] [CrossRef]
- Riffo, B.; Henríquez, C.; Chávez, R.; Peña, R.; Sangorrín, M.; Gil-Duran, C.; Rodríguez, A.; Ganga, M.A. Nonionizing Electromagnetic Field: A Promising Alternative for Growing Control Yeast. J. Fungi 2021, 7, 281. [Google Scholar] [CrossRef]
- Ahortor, E.K.; Malyshev, D.; Williams, C.F.; Choi, H.; Lees, J.; Porch, A.; Baillie, L. The Biological Effect of 2.45 GHz Microwaves on the Viability and Permeability of Bacterial and Yeast Cells. J. Appl. Phys. 2020, 127, 204902. [Google Scholar] [CrossRef]
- Abed, F.N.A.M.; Gaddawi, F.Y.; Al-Shalash, H.T. Effect of Microwave Radiation on the Ability of Saccharomyces Cerevisiae to Produce Toxins. J. Hyg. Eng. Des. 2023, 42, 294–300. [Google Scholar]
- Zeng, S.-W.; Huang, Q.-L.; Zhao, S.-M. Effects of Microwave Irradiation Dose and Time on Yeast ZSM-001 Growth and Cell Membrane Permeability. Food Control 2014, 46, 360–367. [Google Scholar] [CrossRef]
- Baeza, M.; Zúñiga, S.; Peragallo, V.; Barahona, S.; Alcaino, J.; Cifuentes, V. Identification of Stress-Related Genes and a Comparative Analysis of the Amino Acid Compositions of Translated Coding Sequences Based on Draft Genome Sequences of Antarctic Yeasts. Front. Microbiol. 2021, 12, 623171. [Google Scholar] [CrossRef]
- NBIMCC. Available online: https://www.nbimcc.org/www_2020/en/m_catalog.php?id=2 (accessed on 27 March 2025).
- Cockrell, A.L.; Fitzgerald, L.A.; Cusick, K.D.; Barlow, D.E.; Tsoi, S.D.; Soto, C.M.; Baldwin, J.W.; Dale, J.R.; Morris, R.E.; Little, B.J.; et al. Differences in Physical and Biochemical Properties of Thermus Scotoductus SA-01 Cultured with Dielectric or Convection Heating. Appl. Environ. Microbiol. 2015, 81, 6285–6293. [Google Scholar] [CrossRef]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for Quantitative Determination of Glutathione and Glutathione Disulfide Levels Using Enzymatic Recycling Method. Nat. Protoc. 2006, 1, 3159–3165. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Azevedo, F.; Marques, F.; Fokt, H.; Oliveira, R.; Johansson, B. Measuring Oxidative DNA Damage and DNA Repair Using the Yeast Comet Assay. Yeast 2011, 28, 55–61. [Google Scholar] [CrossRef]
- TriTek Corp. CometScore Tutorial; TriTek Corp.: Sumerduck, VA, USA, 2013. [Google Scholar]
- Barisch, C.; Holthuis, J.C.M.; Cosentino, K. Membrane Damage and Repair: A Thin Line between Life and Death. Biol. Chem. 2023, 404, 467–490. [Google Scholar] [CrossRef]
- Rols, M.P.; Teissié, J. Electropermeabilization of Mammalian Cells. Quantitative Analysis of the Phenomenon. Biophys. J. 1990, 58, 1089–1098. [Google Scholar] [CrossRef]
- Nguyen, T.H.P.; Pham, V.T.H.; Baulin, V.; Croft, R.J.; Crawford, R.J.; Ivanova, E.P. The Effect of a High Frequency Electromagnetic Field in the Microwave Range on Red Blood Cells. Sci. Rep. 2017, 7, 10798. [Google Scholar] [CrossRef] [PubMed]
- Stanisavljev, D.; Gojgić-Cvijović, G.; Bubanja, I.N. Scrutinizing Microwave Effects on Glucose Uptake in Yeast Cells. Eur. Biophys. J. 2017, 46, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Barbora, A.; Rajput, S.; Komoshvili, K.; Levitan, J.; Yahalom, A.; Liberman-Aronov, S. Non-Ionizing Millimeter Waves Non-Thermal Radiation of Saccharomyces Cerevisiae—Insights and Interactions. Appl. Sci. 2021, 11, 6635. [Google Scholar] [CrossRef]
- Otero, M.A.; Wagner, J.R.; Vasallo, M.C.; Añón, M.C.; García, L.; Jiménez, J.C.; López, J.C. Thermal Denaturation Kinetics of Yeast Proteins in Whole Cells of Saccharomyces Cerevisiae and Kluyveromyces Fragilis. Food Sci. Technol. Int. 2002, 8, 163–167. [Google Scholar] [CrossRef]
- Munna, M.S.; Humayun, S.; Noor, R. Influence of Heat Shock and Osmotic Stresses on the Growth and Viability of Saccharomyces Cerevisiae SUBSC01. BMC Res. Notes 2015, 8, 369. [Google Scholar] [CrossRef]
- Zheng, X.; Gallot, G. Dynamics of Cell Membrane Permeabilization by Saponins Using Terahertz Attenuated Total Reflection. Biophys. J. 2020, 119, 749–755. [Google Scholar] [CrossRef]
- Blicher, A.; Wodzinska, K.; Fidorra, M.; Winterhalter, M.; Heimburg, T. The Temperature Dependence of Lipid Membrane Permeability, Its Quantized Nature, and the Influence of Anesthetics. Biophys. J. 2009, 96, 4581–4591. [Google Scholar] [CrossRef]
- Quinn, P.J. Effects of Temperature on Cell Membranes. Symp. Soc. Exp. Biol. 1988, 42, 237–258. [Google Scholar]
- Alexandre, H. 2.45—Autolysis of Yeasts. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, VT, USA, 2011; pp. 641–649. ISBN 978-0-08-088504-9. [Google Scholar]
- Horikoshi, S.; Catalá-Civera, J.M.; Schiffmann, R.F.; Fukushima, J.; Mitani, T.; Serpone, N. Microwave Heating. In Microwave Chemical and Materials Processing: A Tutorial; Horikoshi, S., Catalá-Civera, J.M., Schiffmann, R.F., Fukushima, J., Mitani, T., Serpone, N., Eds.; Springer Nature: Singapore, 2024; pp. 53–93. ISBN 978-981-97-5795-4. [Google Scholar]
- Shamis, Y.; Croft, R.; Taube, A.; Crawford, R.J.; Ivanova, E.P. Review of the Specific Effects of Microwave Radiation on Bacterial Cells. Appl. Microbiol. Biotechnol. 2012, 96, 319–325. [Google Scholar] [CrossRef]
- Dependence of Diffusion on Temperature and Pressure. In Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Mehrer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 127–149. ISBN 978-3-540-71488-0. [Google Scholar]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Davidson, J.F.; Whyte, B.; Bissinger, P.H.; Schiestl, R.H. Oxidative Stress Is Involved in Heat-Induced Cell Death in Saccharomyces Cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93, 5116–5121. [Google Scholar] [CrossRef] [PubMed]
- Slimen, I.B.; Najar, T.; Ghram, A.; Dabbebi, H.; Ben Mrad, M.; Abdrabbah, M. Reactive Oxygen Species, Heat Stress and Oxidative-Induced Mitochondrial Damage. A Review. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Shahin, S.; Singh, V.P.; Shukla, R.K.; Dhawan, A.; Gangwar, R.K.; Singh, S.P.; Chaturvedi, C.M. 2.45 GHz Microwave Irradiation-Induced Oxidative Stress Affects Implantation or Pregnancy in Mice, Mus Musculus. Appl. Biochem. Biotechnol. 2013, 169, 1727–1751. [Google Scholar] [CrossRef]
- Usikalu, M.R.; Obembe, O.O.; Akinyemi, M.L.; Zhu, J. Short-Duration Exposure to 2.45 GHz Microwave Radiation Induces DNA Damage in Sprague Dawley Rat’s Reproductive Systems. Afr. J. Biotechnol. 2013, 12, 115–122. [Google Scholar] [CrossRef]
- Regalbuto, E.; Anselmo, A.; De Sanctis, S.; Franchini, V.; Lista, F.; Benvenuto, M.; Bei, R.; Masuelli, L.; D’Inzeo, G.; Paffi, A.; et al. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int. J. Mol. Sci. 2020, 21, 7069. [Google Scholar] [CrossRef]
- Koyama, S.; Isozumi, Y.; Suzuki, Y.; Taki, M.; Miyakoshi, J. Effects of 2.45-GHz Electromagnetic Fields with a Wide Range of SARs on Micronucleus Formation in CHO-K1 Cells. Sci. World J. 2004, 4, 743762. [Google Scholar] [CrossRef]
- Aweda, M.A.; Usikalu, M.R.; Wan, J.H.; Ding, N.; Zhu, J.Y. Genotoxic Effects of Low 2.45 GHz Microwave Radiation Exposures on Sprague Dawley Rats. Int. J. Genet. Mol. Biol. 2010, 2, 189–197. [Google Scholar]
- Vrhovac, I.; Hrascan, R.; Franekic, J. Effect of 905 MHz Microwave Radiation on Colony Growth of the Yeast Saccharomyces Cerevisiae Strains FF18733, FF1481 and D7. Radiol. Oncol. 2010, 44, 131. [Google Scholar] [CrossRef]
- Franzellitti, S.; Valbonesi, P.; Ciancaglini, N.; Biondi, C.; Contin, A.; Bersani, F.; Fabbri, E. Transient DNA Damage Induced by High-Frequency Electromagnetic Fields (GSM 1.8 GHz) in the Human Trophoblast HTR-8/SVneo Cell Line Evaluated with the Alkaline Comet Assay. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2010, 683, 35–42. [Google Scholar] [CrossRef]
- Ogorek, B.; Bryant, P.E. Repair of DNA Single-Strand Breaks in X-Irradiated Yeast: II. Kinetics of Repair as Measured by the DNA-Unwinding Method. Mutat. Res. DNA Repair Rep. 1985, 146, 63–70. [Google Scholar] [CrossRef]
- Malkova, A.; Naylor, M.L.; Yamaguchi, M.; Ira, G.; Haber, J.E. RAD51-Dependent Break-Induced Replication Differs in Kinetics and Checkpoint Responses from RAD51-Mediated Gene Conversion. Mol. Cell. Biol. 2005, 25, 933–944. [Google Scholar] [CrossRef] [PubMed]
Exposure Setup | Sample Type | Distance to Antenna, cm | Duration, min | SAR, W/kg | RT, °C * | Tmax, °C * | ΔT, °C * |
---|---|---|---|---|---|---|---|
1 | EMF | 2 | 20 | 132 | 21.4 ± 0.8 a | 44.2 ± 0.7 a | 22.8 ± 1 a |
1 | Control | N.A. | 20 | N.A. | 21.5 ± 0.7 a | 24.2 ± 0.2 d | 2.7 ± 0.7 d |
2 | EMF | 4 | 20 | 126 | 24.6 ± 1.5 a | 32.5 ± 2.3 c | 7.9 ± 0.8 c |
2 | Control | N.A. | 20 | N.A. | 24.5 ± 1.6 a | 25.8 ± 0.9 d | 1.4 ± 0.8 d |
3 | EMF | 4 | 60 | 126 | 24.2 ± 0.7 a | 36.6 ± 1.2 b | 12.5 ± 0.4 b |
3 | Control | N.A. | 60 | N.A. | 24.3 ± 0.9 a | 27.2 ± 0.3 d | 2.9 ± 0.7 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, B.; Paunov, M.; Kitanova, M.; Atanasova, G.; Atanasov, N. Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast. Antioxidants 2025, 14, 820. https://doi.org/10.3390/antiox14070820
Angelova B, Paunov M, Kitanova M, Atanasova G, Atanasov N. Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast. Antioxidants. 2025; 14(7):820. https://doi.org/10.3390/antiox14070820
Chicago/Turabian StyleAngelova, Boyana, Momchil Paunov, Meglena Kitanova, Gabriela Atanasova, and Nikolay Atanasov. 2025. "Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast" Antioxidants 14, no. 7: 820. https://doi.org/10.3390/antiox14070820
APA StyleAngelova, B., Paunov, M., Kitanova, M., Atanasova, G., & Atanasov, N. (2025). Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast. Antioxidants, 14(7), 820. https://doi.org/10.3390/antiox14070820