GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Generation with Ground Penetrating Radar
2.2. Wireless Local Area Network Data Transmission
2.3. Cellular Network Data Transmission
3. Results
3.1. Visualization of Generated F-Scans via Hololense
3.2. Wireless Local Area Network Latency Comparison
3.3. Cellular Network Latency Comparison
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Dell’Acqua, A.; Sarti, A.; Tubaro, S.; Zanzi, L. Detection of linear objects in GPR data. Signal Process. 2004, 84, 785–799. [Google Scholar] [CrossRef]
- Annan, A. GPR—History, trends, and future developments. Subsurf. Sens. Technol. Appl. 2002, 3, 253–270. [Google Scholar] [CrossRef]
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A review of GPR application on transport infrastructures: Troubleshooting and best practices. Remote Sens. 2021, 13, 672. [Google Scholar] [CrossRef]
- Joshaghani, A.; Shokrabadi, M. Ground penetrating radar (GPR) applications in concrete pavements. Int. J. Pavement Eng. 2021, 23, 4504–4531. [Google Scholar] [CrossRef]
- Di Prinzio, M.; Bittelli, M.; Castellarin, A.; Pisa, P.R. Application of GPR to the monitoring of river embankments. J. Appl. Geophys. 2010, 71, 53–61. [Google Scholar] [CrossRef]
- Jiao, L.; Ye, Q.; Cao, X.; Huston, D.; Xia, T. Identifying concrete structure defects in GPR image. Measurement 2020, 160, 107839. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Romano, G.; Solimene, R. Performance analysis of time-reversal MUSIC. IEEE Trans. Signal Process. 2015, 63, 2650–2662. [Google Scholar] [CrossRef]
- Devaney, A.J. Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propag. 2005, 53, 1600–1610. [Google Scholar] [CrossRef]
- Mazurkiewicz, E.; Tadeusiewicz, R.; Tomecka-Suchoń, S. Application of neural network enhanced ground-penetrating radar to localization of burial sites. Appl. Artif. Intell. 2016, 30, 844–860. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Tran, K.; Novo, A.; Nguyen, T. Full-resolution 3D imaging for concrete structures with dual-polarization GPR. Autom. Constr. 2021, 125, 103652. [Google Scholar] [CrossRef]
- Pereira, M.; Burns, D.; Orfeo, D.; Zhang, Y.; Jiao, L.; Huston, D.; Xia, T. 3-D Multistatic Ground Penetrating Radar Imaging for Augmented Reality Visualization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5666–5675. [Google Scholar] [CrossRef]
- Childs, J.; Orfeo, D.; Burns, D.; Huston, D.; Xia, T. Enhancing Ground Penetrating Radar with Augmented Reality Systems for Underground Utility Management; SPIE: Bellingham, WA, USA, 2020; Volume 11426. [Google Scholar]
- Girard, J.; Burns, D.; Huston, D.; Xia, T. Penetrating Radar Combined with 3-D Imaging for Real-Time Augmented Reality Sensing and Classification; SPIE: Bellingham, WA, USA, 2021; Volume 11759. [Google Scholar]
- Omwenga, M.M.; Wu, D.; Liang, Y.; Yang, L.; Huston, D.; Xia, T. Cognitive GPR for Subsurface Object Detection Based on Deep Reinforcement Learning. IEEE Internet Things J. 2021, 8, 11594–11606. [Google Scholar] [CrossRef]
- Tsykunov, E.; Ilin, V.; Perminov, S.; Fedoseev, A.; Zainulina, E. Coupling of localization and depth data for mapping using Intel RealSense T265 and D435i cameras. arXiv 2020, arXiv:2004.00269. [Google Scholar]
- Bayer, J.; Faigl, J. On Autonomous Spatial Exploration with Small Hexapod Walking Robot using Tracking Camera Intel RealSense T265. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–6. [Google Scholar]
- Newman, A.; Yang, G.; Wang, B.; Arnold, D.; Saniie, J. Embedded Mobile ROS Platform for SLAM Application with RGB-D Cameras. In Proceedings of the 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 449–453. [Google Scholar]
- Islam, M.; Jin, S. An overview research on wireless communication network. Networks 2019, 5, 19–28. [Google Scholar] [CrossRef]
- Frattasi, S.; Fathi, H.; Fitzek, F.H.P.; Prasad, R.; Katz, M.D. Defining 4G technology from the users perspective. IEEE Netw. 2006, 20, 35–41. [Google Scholar] [CrossRef]
- Khan, A.H.; Qadeer, M.A.; Ansari, J.A.; Waheed, S. 4G as a Next Generation Wireless Network. In Proceedings of the 2009 International Conference on Future Computer and Communication, Kuala Lumpar, Malaysia, 3–5 April 2009; pp. 334–338. [Google Scholar]
- Li, Q.C.; Niu, H.; Papathanassiou, A.T.; Wu, G. 5G Network Capacity: Key Elements and Technologies. IEEE Veh. Technol. Mag. 2014, 9, 71–78. [Google Scholar] [CrossRef]
- Al-Falahy, N.; Alani, O.Y. Technologies for 5G Networks: Challenges and Opportunities. IT Prof. 2017, 19, 12–20. [Google Scholar] [CrossRef]
- Hao, Y. Investigation and Technological Comparison of 4G and 5G Networks. J. Comput. Commun. 2021, 9, 36–43. [Google Scholar] [CrossRef]
- Lee, I.G.; Kim, D.B.; Choi, J.; Park, H.; Lee, S.K.; Cho, J.; Yu, H. WiFi HaLow for Long-Range and Low-Power Internet of Things: System on Chip Development and Performance Evaluation. IEEE Commun. Mag. 2021, 59, 101–107. [Google Scholar] [CrossRef]
- Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. IEEE 802.11 AH: The WiFi approach for M2M communications. IEEE Wirel. Commun. 2014, 21, 144–152. [Google Scholar] [CrossRef]
- Verhoeven, R.; Kempinski, S.; Meratnia, N. Performance Evaluation of Wi-Fi HaLow, NB-IoT and LoRa for Smart City Applications. In Proceedings of the 19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, Montreal, QC, Canada, 24–28 October 2022; pp. 17–24. [Google Scholar]
- Purat, J.; Lehmann, N.J.; Karagülle, M.-U.; Voisard, A. HaLowNet-A WiFi HaLow network-based information system for the provision of multi-sided applications for medical emergency scenarios. In Proceedings of the 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI), Rochester, MN, USA, 11–14 June 2022; pp. 519–521. [Google Scholar]
- Utah, U.O. Vermont Researchers Use POWDER for Unique Testing. Available online: https://www.price.utah.edu/2022/09/19/vermont-researchers-uses-powder-for-unique-testing (accessed on 10 February 2023).
- Breen, J.; Buffmire, A.; Duerig, J.; Dutt, K.; Eide, E.; Hibler, M.; Johnson, D.; Kasera, S.K.; Lewis, E.; Maas, D. POWDER: Platform for open wireless data-driven experimental research. In Proceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization, London, UK, 25 September 2020; pp. 17–24. [Google Scholar]
- Fath, A.; Sauter, C.; Liu, Y.; Gamble, B.; Burns, D.; Trombley, E.; Sathi, S.K.R.; Xia, T.; Huston, D. HeSARIC: A Heterogeneous Cyber–Physical Robotic Swarm Framework for Structural Health Monitoring with Augmented Reality Representation. Micromachines 2025, 16, 460. [Google Scholar] [CrossRef] [PubMed]
- IEEE 802.11ah; IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Amendment. IEEE Standards Association: Piscataway, NJ, USA, 2016. Available online: https://standards.ieee.org/ieee/802.11ah/4960/ (accessed on 9 June 2025).
- IEEE 802.11ac; IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standards Association: Piscataway, NJ, USA, 2013. Available online: https://standards.ieee.org/ieee/802.11ac/4473/ (accessed on 9 June 2025).
- Taha, M. An efficient software defined network controller based routing adaptation for enhancing QoE of multimedia streaming service. Multimed. Tools Appl. 2023, 82, 33865–33888. [Google Scholar] [CrossRef]
Studies | Focus |
---|---|
Jol [1] and Dell’Acqua et al. [2] | GPR Theories |
Solla et al. [4], Joshaghani and Shokrabadi [5], and Di Prinzio et al. [6] | GPR Applications |
Pereira et al. [12], Childs et al. [13], and Girard et al. [14] | GPR-AR |
Mazurkiewicz et al. [10] | GPR Neural Network |
Tsykunov et al. [16] | RealSense Camera for Localization |
Newman et al. [18] | RealSense Camera for SLAM |
Islam and Jin [19] | Wireless Networks |
Frattasi et al. [20] and Khan et al. [21] | 4G Network |
Li et al. [22] | 5G Network |
Hao [24] | 4G and 5G Network Comparison |
Lee et al. [25], Adame et al. [26], and Purat et al. [28] | HaLow Network and applications |
Verhoeven et al. [27] | HaLow and LoRa Comparison |
Wi-Fi Network | HaLow | 2.4 GHz HTC | 5 GHz HTC | 2.4 GHz Orbic | 5 GHz Orbic |
---|---|---|---|---|---|
Mean (ms) | 0.01861 | 0.03362 | 0.03366 | 0.03133 | 0.03134 |
Median (ms) | 0.01431 | 0.02646 | 0.02694 | 0.02575 | 0.02575 |
STD (ms) | 0.02002 | 0.03529 | 0.03837 | 0.03642 | 0.03277 |
Maximum (ms) | 1.11628 | 1.67227 | 3.15857 | 3.503561 | 1.76930 |
Total Latency (ms) | 1598.11 | 2887.42 | 2891.37 | 2691.27 | 2692.15 |
Technology | 4G | 5G |
---|---|---|
Mean (ms) | 0.0221 | 0.0212 |
Median (ms) | 0.0167 | 0.0169 |
STD (ms) | 0.0215 | 0.0173 |
Maximum (ms) | 0.7586 | 0.3061 |
Total Latency (ms) | 279.923 | 268.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanch, S.; Fath, A.; Hanna, N.; Xia, T.; Huston, D. GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation. Appl. Sci. 2025, 15, 6552. https://doi.org/10.3390/app15126552
Tanch S, Fath A, Hanna N, Xia T, Huston D. GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation. Applied Sciences. 2025; 15(12):6552. https://doi.org/10.3390/app15126552
Chicago/Turabian StyleTanch, Scott, Alireza Fath, Nicholas Hanna, Tian Xia, and Dryver Huston. 2025. "GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation" Applied Sciences 15, no. 12: 6552. https://doi.org/10.3390/app15126552
APA StyleTanch, S., Fath, A., Hanna, N., Xia, T., & Huston, D. (2025). GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation. Applied Sciences, 15(12), 6552. https://doi.org/10.3390/app15126552