Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (30,042)

Search Parameters:
Keywords = cell interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1546 KB  
Article
Tissue-Specific Multi-Omics Integration Demonstrates Molecular Signatures Connecting Obesity to Immune Vulnerability
by Ozge Onluturk Aydogan, Aytac Dursun Oksuzoglu and Beste Turanli
Metabolites 2026, 16(2), 95; https://doi.org/10.3390/metabo16020095 (registering DOI) - 27 Jan 2026
Abstract
Background: Adipose tissue surrounds organs and tissues in the body and can alter their function. It could secrete diverse biological molecules, including lipids, cytokines, hormones, and metabolites. In light of all this information, obesity can influence many tissues and organs in the body, [...] Read more.
Background: Adipose tissue surrounds organs and tissues in the body and can alter their function. It could secrete diverse biological molecules, including lipids, cytokines, hormones, and metabolites. In light of all this information, obesity can influence many tissues and organs in the body, and this situation makes obesity a central contributor to multiple disorders. It is very important to investigate the crosstalk between tissues and organs in the body to clarify the key mechanisms of obesity. Methods: In this study, we analyzed the gene expression profiles of the liver, skeletal muscle, blood, visceral, and subcutaneous adipose tissue. Differentially expressed genes (DEGs) were identified for each tissue, and functional enrichment and protein–protein interaction network analyses were performed on genes commonly identified across tissues. Priority candidate genes were identified using network-based centrality measures, and potential molecular intersection points were explored through host-pathogen interaction network analysis. This study provides an integrative framework for characterizing inter-tissue molecular patterns associated with obesity at the network level. Results: The muscle, subcutaneous adipose tissue, and blood have the highest number of DEGs. The subcutaneous adipose tissue and blood stand out due to the number of DEGs they possess, although liver and visceral adipose tissue have lower amounts. Cancer ranks first in terms of diseases associated with obesity, and this association is accompanied by leukemia, lymphoma, and gastric cancer. RPL15 and RBM39 are the top genes in both degree and betweenness metrics. The host–pathogen interaction network consists of 13 unique-host proteins, 54 unique-pathogen proteins, and 27 unique-pathogen organisms, and the Influenza A virus had the highest interaction. There were a small number of common metabolites in all tissues: 2-Oxoglutarate, Adenosine, Succinate, and D-mannose. Conclusions: In this study, we aimed to identify candidate molecules for obesity using an integrative approach, examining the gene profiles of different organs and tissues. The findings of this study suggest a possible link between obesity and immune-related biological processes. The network obtained from the host-pathogen interaction analysis, and especially the pathways associated with viral infections that stand out in the functional enrichment analysis, may overlap with molecular signatures linked to obesity. Furthermore, the co-occurrence of cytokine signaling, insulin, and glucose metabolism pathways in the enrichment results indicates that the response of cells to insulin may be affected in obese individuals, suggesting a potential interaction between immune and metabolic processes; however, further experimental validation is needed to reveal the direct functional effects of these relationships. Full article
22 pages, 3301 KB  
Article
Design, Synthesis, Biological Evaluation and Molecular Docking Studies of New N-Heterocyclic Compounds as Aromatase Inhibitors
by Fatih Tok, Begüm Nurpelin Sağlık Özkan, Yusuf Özkay and Zafer Asım Kaplancıklı
Pharmaceuticals 2026, 19(2), 224; https://doi.org/10.3390/ph19020224 - 27 Jan 2026
Abstract
Background/Objectives: Breast cancer is the most common cancer and the second leading cause of cancer death in women. The aromatase enzyme plays a role in estrogen biosynthesis and is an important biological target for breast cancer treatment. For this purpose, some new 1,3,4-thiadiazole [...] Read more.
Background/Objectives: Breast cancer is the most common cancer and the second leading cause of cancer death in women. The aromatase enzyme plays a role in estrogen biosynthesis and is an important biological target for breast cancer treatment. For this purpose, some new 1,3,4-thiadiazole (4a4j) and 1,2,4-triazole (5a5j) structures were designed and synthesized based on the structures of the existing aromatase inhibitors letrozole and anastrozole. Methods: The antiproliferative activities of the compounds were tested against MCF-7 cancer cells. The NIH3T3 healthy cells were used to evaluate the selectivity of the compounds. The inhibitory activities of all compounds were tested against the aromatase enzyme. Results: The 1,2,4-triazole derivatives 5b, 5c, 5e, 5f and 5g exhibited the highest antiproliferative activity against MCF7 cells with IC50 values ranging from 3.142 to 10.415 μM. Similar to the antiproliferative activity results, triazole derivatives 5b, 5c, 5e, 5f and 5g exhibited comparable anti-aromatase activity to letrozole (IC50 = 0.031 μM) with IC50 values ranging from 0.064 to 2.224 μM and demonstrated the highest anti-aromatase activity within the series. The interactions of compound 5c, the most potent compound based on activity results, with the aromatase enzyme have been elucidated through molecular docking and MD simulation studies. Conclusions: According to experimental studies and molecular docking findings, compound 5c shows promise for further studies with its aromatase enzyme inhibitory potential. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

25 pages, 1387 KB  
Review
Reconstructing the Islets: Advances in 3D Pancreatic Organoid Models for Functional β-Cell Replacement
by Muhammad Kamal Hossain and Hyung-Ryong Kim
Int. J. Mol. Sci. 2026, 27(3), 1280; https://doi.org/10.3390/ijms27031280 - 27 Jan 2026
Abstract
Pancreatic β-cell replacement represents a promising therapeutic avenue for insulin-dependent diabetes, yet clinical translation has been limited by donor scarcity, immune rejection, and incomplete engraftment. Three-dimensional (3D) pancreatic organoids derived from human pluripotent stem cells (hPSCs) or primary tissue offer a scalable and [...] Read more.
Pancreatic β-cell replacement represents a promising therapeutic avenue for insulin-dependent diabetes, yet clinical translation has been limited by donor scarcity, immune rejection, and incomplete engraftment. Three-dimensional (3D) pancreatic organoids derived from human pluripotent stem cells (hPSCs) or primary tissue offer a scalable and physiologically relevant platform, recapitulating native islet architecture, paracrine interactions, and glucose-responsive insulin secretion. Recent advances in differentiation protocols, vascularization strategies, and immune-protective approaches—including encapsulation and hypoimmunogenic engineering—have enhanced β-cell maturation, survival, and functional performance in vitro and in vivo. Despite these developments, challenges remain in achieving fully mature β-cells, durable graft function, and scalable, reproducible production that is suitable for clinical use. This review highlights the promise of pancreatic organoid engineering, emphasizing strategies to optimize β-cell maturation, vascular integration, and immune protection, and outlines key future directions to advance organoid-based β-cell replacement toward safe, effective, and personalized diabetes therapies. Full article
(This article belongs to the Special Issue Advances in Stem Cell Biology and Translational Medicine)
Show Figures

Figure 1

22 pages, 1632 KB  
Review
From Dish to Trial: Building Translational Models of ALS
by Ilias Salamotas, Sotiria Stavropoulou De Lorenzo, Aggeliki Stachtiari, Apostolos Taxiarchis, Magda Tsolaki, Iliana Michailidou and Elisavet Preza
Cells 2026, 15(3), 247; https://doi.org/10.3390/cells15030247 - 27 Jan 2026
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, marked by progressive degeneration of upper and lower motor neurons. Clinically, genetically, and pathologically heterogeneous, ALS poses a major challenge for disease modeling and therapeutic translation. Over the past two decades, induced [...] Read more.
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, marked by progressive degeneration of upper and lower motor neurons. Clinically, genetically, and pathologically heterogeneous, ALS poses a major challenge for disease modeling and therapeutic translation. Over the past two decades, induced pluripotent stem cells (iPSCs) have reshaped our understanding of ALS pathogenesis and emerged as a promising translational platform for therapy development. ALS modeling has further expanded with the advent of three-dimensional systems, including ALS-on-chip platforms and organoid models, which better capture cell–cell interactions and tissue-level phenotypes. Despite these advances, effective disease-modifying therapies remain elusive. Recent clinical trial setbacks highlight the need for improved trial design alongside robust, translational iPSC models that can better predict therapeutic response. Nonetheless, the outlook is promising as large iPSC patient cohorts, quantitative phenotyping combined with genetically informed patient stratification, and reverse translational research are beginning to close the gap between in vitro discovery and clinical testing. In this review, we summarize the major advances in iPSC technology and highlight key iPSC-based studies of sporadic ALS. We further discuss emerging examples of iPSC-informed therapeutic strategies and outline the challenges associated with translating iPSC-derived mechanistic insights and pharmacological findings into successful clinical therapies. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

20 pages, 7006 KB  
Article
Possible Role of Dopamine in the Enhancement of Intrahippocampal Arc Protein Expression Induced by Post-Learning Noradrenergic Stimulation of the Basolateral Amygdala
by Bogomil Peshev, Dimitrinka Atanasova, Pavel Rashev, Lidia Kortenska, Milena Mourdjeva, Despina Pupaki, Nikolaos Efstratiou, Nikolay Dimitrov and Jana Tchekalarova
Int. J. Mol. Sci. 2026, 27(3), 1273; https://doi.org/10.3390/ijms27031273 - 27 Jan 2026
Abstract
Extensive research in laboratory rodents has shown that novelty exposure enhances the consolidation of memories for preceding or following low-arousal events by elevating dopamine release in the dorsal hippocampus (dHipp). Additionally, numerous studies have demonstrated that post-encoding noradrenergic activation of the basolateral amygdala [...] Read more.
Extensive research in laboratory rodents has shown that novelty exposure enhances the consolidation of memories for preceding or following low-arousal events by elevating dopamine release in the dorsal hippocampus (dHipp). Additionally, numerous studies have demonstrated that post-encoding noradrenergic activation of the basolateral amygdala (BLA) can also enhance memory consolidation in dHipp. Since the BLA is most active during emotionally arousing or stress-related situations, it was suggested that this nuclear complex mediates the effects of emotional salience on memory consolidation. However, it is presently unknown whether the reinforcement of memory storage in dHipp induced by novel and arousing environmental conditions results from the interaction between these two modulatory systems. To test the hypothesis of a functional interaction between dopaminergic and noradrenergic systems, this study assessed their combined effects on a low-arousal object-location (OL) task. Rats received post-training intra-BLA infusions of vehicle or clenbuterol (Clen), a selective β-adrenoceptor agonist. Novelty-induced dopamine release in the dHipp was enhanced by omitting habituation prior to training, and the contribution of dopamine signaling was further evaluated using pre-infusion administration of the D1/D5 receptor antagonist SCH 23390. The distribution of two important proteins for memory processing, namely the activity-regulated cytoskeleton-associated protein (Arc) and the phosphorylated form of the transcription factor, cAMP-response element-binding protein (pCREB) in the dHipp, was explored in a subset of rats perfused 60 min after the training phase. Stimulation of the BLA significantly increased the number of Arc- and pCREB-positive cells in several dHipp areas. The preceding application of SCH 23390, however, substantially decreased these effects in the same areas, i.e., the dentate gyrus (DG), CA2, and CA1 subregions for pCREB, and the CA3b, CA3c, CA2, and CA1 subregions for Arc. This interaction is considered essential for the initial stages of memory consolidation. The obtained results indicate the presence of a region-specific interaction between BLA modulatory inputs and intrahippocampal dopaminergic transmission, the mechanisms of which remain to be elucidated. Full article
Show Figures

Figure 1

36 pages, 1666 KB  
Review
Tumor-Associated Neutrophils and Desmoplastic Reaction in the Breast Cancer Tumor Microenvironment: A Comprehensive Review
by Stavroula Papadopoulou, Vasiliki Michou, Arsenios Tsiotsias, Maria Tzitiridou-Chatzopoulou and Panagiotis Eskitzis
Cancers 2026, 18(3), 404; https://doi.org/10.3390/cancers18030404 - 27 Jan 2026
Abstract
The evolving tumor microenvironment (TME) plays a critical role in breast cancer tumorigenesis, growth, and metastatic potential. This study focuses on two key components of the TME: tumor-associated neutrophils (TANs) and the desmoplastic reaction (DR). We will analyze their multifaceted functions, emphasizing the [...] Read more.
The evolving tumor microenvironment (TME) plays a critical role in breast cancer tumorigenesis, growth, and metastatic potential. This study focuses on two key components of the TME: tumor-associated neutrophils (TANs) and the desmoplastic reaction (DR). We will analyze their multifaceted functions, emphasizing the significant mutual relationships among them, which dramatically affect disease outcomes and the effectiveness of treatments. TANs can either suppress or promote tumors, demonstrating notable functional flexibility in response to signals from their immediate environment. Concurrently, the proliferation of myofibroblasts and the extensive deposition of extracellular matrix (ECM), which characterize the DR, substantially alter the tumor’s physical properties, increasing its stiffness. This increased stiffness significantly obstructs immune system cells from accessing the tumor, ultimately limiting the effectiveness of therapies and contributing to a more clinically aggressive tumor behavior. A comprehensive understanding of the interactions among TANs, the desmoplastic stroma, and other elements of the TME is critical for developing new predictive biomarkers and establishing more effective targeted therapies. Full article
(This article belongs to the Section Tumor Microenvironment)
16 pages, 2625 KB  
Article
Super-Resolution Imaging of Nuclear Pore Responses to Mechanical Stress and Energy Depletion
by Dariana Torres-Rivera, Sobhan Haghparast, Bernd Rieger and Gregory B. Melikyan
Viruses 2026, 18(2), 167; https://doi.org/10.3390/v18020167 - 27 Jan 2026
Abstract
HIV-1 entry into host cells culminates in integration of the reverse transcribed double-stranded viral DNA into host genes. Several lines of evidence suggest that intact, or nearly intact, HIV-1 cores—large, ~60 nm-wide structures—pass through the nuclear pore complex (NPC), and that this passage [...] Read more.
HIV-1 entry into host cells culminates in integration of the reverse transcribed double-stranded viral DNA into host genes. Several lines of evidence suggest that intact, or nearly intact, HIV-1 cores—large, ~60 nm-wide structures—pass through the nuclear pore complex (NPC), and that this passage is associated with pore remodeling. Cryo-electron tomography studies support the dynamic nature of NPCs and their regulation by cytoskeleton and ATP-dependent processes. To explore NPC remodeling, we used super-resolution Stochastic Optical Reconstruction Microscopy (STORM) of U2OS cells endogenously expressing nucleoporin 96 tagged with SNAP. Single-molecule localization imaging and computational averaging resolved 8-fold symmetric nuclear pores with an average radius of ~51 nm. Depletion of cellular ATP using sodium azide or antimycin A, previously reported to reduce the size of yeast NPCs, did not significantly alter the nuclear pore radius in U2OS cells. Similarly, stressing the nuclear envelope by hypotonic or hypertonic conditions failed to induce detectable expansion or contraction of NPCs. These results indicate that the NPCs in U2OS cells do not respond to ATP depletion nor mechanical stresses on changes in pore morphology that can be resolved by STORM. Since these cells are infectable by HIV-1, we surmise that direct multivalent interactions between HIV-1 capsid and phenylalanine-glycine nucleoporins lining the pore’s interior drive the core penetration into the nucleus and the associated changes in the pore structure. Full article
(This article belongs to the Special Issue Microscopy Methods for Virus Research)
Show Figures

Graphical abstract

32 pages, 2452 KB  
Review
Clinical Presentation, Genetics, and Laboratory Testing with Integrated Genetic Analysis of Molecular Mechanisms in Prader–Willi and Angelman Syndromes: A Review
by Merlin G. Butler
Int. J. Mol. Sci. 2026, 27(3), 1270; https://doi.org/10.3390/ijms27031270 - 27 Jan 2026
Abstract
Prader–Willi (PWS) and Angelman (AS) syndromes were the first examples in humans with errors in genomic imprinting, usually from de novo 15q11-q13 deletions of different parent origin (paternal in PWS and maternal in AS). Dozens of genes and transcripts are found in the [...] Read more.
Prader–Willi (PWS) and Angelman (AS) syndromes were the first examples in humans with errors in genomic imprinting, usually from de novo 15q11-q13 deletions of different parent origin (paternal in PWS and maternal in AS). Dozens of genes and transcripts are found in the 15q11-q13 region, and may play a role in PWS, specifically paternally expressed SNURF-SNRPN and MAGEL2 genes, while AS is due to the maternally expressed UBE3A gene. These three causative genes, including their encoding proteins, were targeted. This review article summarizes and illustrates the current understanding and cause of both PWS and AS using strategies to include the literature sources of key words and searchable web-based programs with databases for integrated gene and protein interactions, biological processes, and molecular mechanisms available for the two imprinting disorders. The SNURF-SNRPN gene is key in developing complex spliceosomal snRNP assemblies required for mRNA processing, cellular events, splicing, and binding required for detailed protein production and variation, neurodevelopment, immunodeficiency, and cell migration. The MAGEL2 gene is involved with the regulation of retrograde transport and promotion of endosomal assembly, oxytocin and reproduction, as well as circadian rhythm, transcriptional activity control, and appetite. The UBE3A gene encodes a key enzyme for the ubiquitin protein degradation system, apoptosis, tumor suppression, cell adhesion, and targeting proteins for degradation, autophagy, signaling pathways, and circadian rhythm. PWS is characterized early with infantile hypotonia, a poor suck, and failure to thrive with hypogenitalism/hypogonadism. Later, growth and other hormone deficiencies, developmental delays, and behavioral problems are noted with hyperphagia and morbid obesity, if not externally controlled. AS is characterized by seizures, lack of speech, severe learning disabilities, inappropriate laughter, and ataxia. This review captures the clinical presentation, natural history, causes with genetics, mechanisms, and description of established laboratory testing for genetic confirmation of each disorder. Three separate searchable web-based programs and databases that included information from the updated literature and other sources were used to identify and examine integrated genetic findings with predicted gene and protein interactions, molecular mechanisms and functions, biological processes, pathways, and gene-disease associations for candidate or causative genes per disorder. The natural history, review of pathophysiology, clinical presentation, genetics, and genetic-phenotypic findings were described along with computational biology, molecular mechanisms, genetic testing approaches, and status for each disorder, management and treatment options, clinical trial experiences, and future strategies. Conclusions and limitations were discussed to improve understanding, clinical care, genetics, diagnostic protocols, therapeutic agents, and genetic counseling for those with these genomic imprinting disorders. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
12 pages, 6407 KB  
Communication
Insight into the Interactions Between GhXI-K and Rab GTPases in Cotton Fiber
by Xinyu Li, Bingke Hao, Junwen Li and Yinhua Jia
Plants 2026, 15(3), 390; https://doi.org/10.3390/plants15030390 - 27 Jan 2026
Abstract
Myosin XI-K plays an important role in cell expansion and polarized growth, acting as a motor protein that drives organelle trafficking and cytoplasmic streaming. To elucidate the molecular mechanisms of myosin XI-K’s role in the polarized growth of cotton fiber, we investigated the [...] Read more.
Myosin XI-K plays an important role in cell expansion and polarized growth, acting as a motor protein that drives organelle trafficking and cytoplasmic streaming. To elucidate the molecular mechanisms of myosin XI-K’s role in the polarized growth of cotton fiber, we investigated the interactions between GhXI-K and Rab GTPases in cotton (Gossypium hirsutum). Protein docking analyses based on AlphaFold3 predicted that GhXI-K interacted with eight Rab GTPases. A total of 37 interaction residues were identified in GhXI-K, of which 5 crucial contact residues were located in the globular tail domain (GTD) and 2 were located in the motor domain. Key interaction residues in the Rab GTPases were also found to be located in conserved regions: switch-I and switch-II. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays confirmed the predictions and showed that these interactions occur primarily in the GTD and the motor domain. Our findings reveal that GhXI-K interacts with Rab GTPases through both the motor and tail domains, suggesting a synergistic mechanism that facilitates polarized vesicle trafficking in cotton fiber cells. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

23 pages, 20739 KB  
Article
Cross-Species Analysis of Transcriptomic Response to Alpha-Herpesvirus Infection in Human, Bovine and Equine Cells
by Mirko Schmitz, Eva Neugebauer, Florian Full and Kristen L. Conn
Int. J. Mol. Sci. 2026, 27(3), 1261; https://doi.org/10.3390/ijms27031261 - 27 Jan 2026
Abstract
Comparative transcriptomics offers a powerful approach to elucidate host–virus interactions across related pathogens, yet systematic evaluations across species-matched cellular systems remain limited. We performed a cross-species RNA sequencing analysis of respective species’ cells infected with three alphaherpesviruses—herpes simplex virus 1 (HSV-1), bovine alphaherpesvirus [...] Read more.
Comparative transcriptomics offers a powerful approach to elucidate host–virus interactions across related pathogens, yet systematic evaluations across species-matched cellular systems remain limited. We performed a cross-species RNA sequencing analysis of respective species’ cells infected with three alphaherpesviruses—herpes simplex virus 1 (HSV-1), bovine alphaherpesvirus 1 (BHV-1), and equid alphaherpesvirus 1 (EHV-1)—to dissect conserved and virus-specific transcriptional responses. We show that certain orthologous genes and orthologous pathways are differentially regulated upon infection among the three species like pathways related to translation rRNA processing and TNF-alpha signalling. We find that the earliest sampled timepoint of infection, 2 h post infection (hpi), shows the most commonly enriched pathways among the three species compared to later timepoints. At 6 h and 9 h post infection, BHV-1- and EHV-1 infections have more in common with each other in terms of enriched pathways than with HSV-1 infections. Moreover, we provide a comprehensive analysis of temporal viral gene expression for all three herpesviruses. Together, these findings provide a comparative framework for understanding alphaherpevirus–host interactions and reveal both conserved core responses and species-specific transcriptional signatures. This work establishes a foundation for identifying broadly acting antiviral targets as well as virus-specific vulnerabilities that may inform host-directed therapies and cross-species disease management. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 3rd Edition)
Show Figures

Figure 1

13 pages, 1438 KB  
Communication
A Bovine Cell Line Resistant to Japanese Encephalitis Virus Entry but Permissive to Post-Entry Replication
by Sang-Im Yun and Young-Min Lee
Viruses 2026, 18(2), 166; https://doi.org/10.3390/v18020166 - 27 Jan 2026
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic orthoflavivirus that poses a significant global health threat. It causes severe neuroinflammatory disease in humans and reproductive failure in swine. Because of the broad host range and cell tropism of JEV, identifying animal cell lines [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic orthoflavivirus that poses a significant global health threat. It causes severe neuroinflammatory disease in humans and reproductive failure in swine. Because of the broad host range and cell tropism of JEV, identifying animal cell lines resistant to infection has been a persistent challenge. In this study, we demonstrate that Madin–Darby bovine kidney (MDBK) cells are resistant to JEV infection yet remain fully permissive to viral replication when transfected with viral genomic RNA. Using immunoblotting, immunofluorescence, and flow cytometry, we show that MDBK cells, unlike the highly susceptible baby hamster kidney (BHK-21) cells used as controls, do not support viral entry but sustain all post-entry stages of the replication cycle. Further investigation confirmed that MDBK cells possess a functional clathrin-mediated endocytic pathway, as evidenced by their susceptibility to bovine viral diarrhea virus, which relies on clathrin-dependent endocytosis for host cell entry. These findings establish MDBK cells as a nonsusceptible cell line for JEV entry despite intact endocytic function, providing a valuable platform for studying virus–host cell interactions and for identifying and validating host cell entry factors, a major challenge in JEV research. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Neuroinvasive Arboviruses)
Show Figures

Figure 1

12 pages, 1258 KB  
Article
Water Molecule(s) Inside the Selectivity Filter of Aquaporin 1: A DFT Study
by Silvia Angelova, Luis Manuel Frutos, Nikoleta Kircheva, Yulian Zagranyarski, Obis D. Castaño and Todor Dudev
Molecules 2026, 31(3), 433; https://doi.org/10.3390/molecules31030433 - 27 Jan 2026
Abstract
Aquaporin 1 (AQP1) is a transmembrane protein that acts as a highly selective channel for the rapid passage of water across cell membranes, driven by osmotic gradients. The narrowest part of the water channel pore—the selectivity filter (SF)—plays a key role in ensuring [...] Read more.
Aquaporin 1 (AQP1) is a transmembrane protein that acts as a highly selective channel for the rapid passage of water across cell membranes, driven by osmotic gradients. The narrowest part of the water channel pore—the selectivity filter (SF)—plays a key role in ensuring selective and efficient water transport. In this study, density functional theory (DFT) at the M062X/6-311+G(d,p) level was used to identify the preferred position of the water molecule(s) inside the SF and to elucidate the forces that lead to its displacement during permeation. A systematic scan along the pore axis identified a well-defined energy minimum where a single water molecule was optimally stabilized by hydrogen bonds with SF residues. A second water molecule was introduced to study how the incoming water affects the translocation of the first water molecule. The resulting energy and force profiles reveal that the approaching water molecule gradually pushes the bound water forward, ultimately occupying its favorable binding site. These results provide an atomistic description of the positioning and displacement of water molecules in SF and offer a quantitative view of the fundamental interactions that govern water transport in AQPs. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 3418 KB  
Article
Machine Learning-Based Analysis of Large-Scale Transcriptomic Data Identifies Core Genes Associated with Multi-Drug Resistance
by Yanwen Wang, Fa Si, Lei Huang, Zhengtai Li and Changyuan Yu
Int. J. Mol. Sci. 2026, 27(3), 1245; https://doi.org/10.3390/ijms27031245 - 27 Jan 2026
Abstract
Drug resistance is an important challenge in medical research and clinical practice, posing a serious threat to the effectiveness of current therapeutic strategies. Transcriptomics has played a crucial role in analyzing resistance-related genes and pathways, while the application of machine learning in high-throughput [...] Read more.
Drug resistance is an important challenge in medical research and clinical practice, posing a serious threat to the effectiveness of current therapeutic strategies. Transcriptomics has played a crucial role in analyzing resistance-related genes and pathways, while the application of machine learning in high-throughput data analysis and prediction has also opened up new avenues in this field. However, existing studies mostly focus on a single drug or specific categories, and their conclusions are limited in applicability across drug categories, while studies on drugs beyond antibacterial and antitumor categories remain limited. In this study, we systematically analyzed the transcriptomic data of resistant cell lines treated with 1738 drugs spanning 82 categories and identified core genes through an integrated analysis of three classical machine learning methods. Using the antibacterial drug salinomycin as an example, we established a resistance prediction model that demonstrated high predictive accuracy, indicating the significant value of the selected core genes in prediction. Meanwhile, some of the core genes identified through the protein–protein interaction (PPI) network overlapped with those derived from machine learning analysis, further supporting the reliability of these core genes. Pathway enrichment analysis of differential genes revealed potential resistance mechanisms. This study provides a new perspective for exploring resistance mechanisms across drug categories and highlights potential directions for resistance intervention strategies and novel drug development. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

31 pages, 10959 KB  
Article
Pro-Apoptotic and Anti-EMT Activity of Wild Ginseng Adventitious Root Extract in MDA-MB-231 TNBC Cells: Association with GSK-3β/β-Catenin Signaling
by Chang-Eui Hong, Ducdat Le, Mina Lee and Su-Yun Lyu
Pharmaceuticals 2026, 19(2), 216; https://doi.org/10.3390/ph19020216 - 26 Jan 2026
Abstract
Background/Objectives: Triple-negative breast cancer (TNBC) lacks targeted therapies and has a poor prognosis. Wild ginseng (Panax ginseng) is traditionally valued for its medicinal properties, but its scarcity limits therapeutic application. Adventitious root culture technology provides a sustainable source of wild [...] Read more.
Background/Objectives: Triple-negative breast cancer (TNBC) lacks targeted therapies and has a poor prognosis. Wild ginseng (Panax ginseng) is traditionally valued for its medicinal properties, but its scarcity limits therapeutic application. Adventitious root culture technology provides a sustainable source of wild ginseng-derived bioactive compounds. This study investigated the anticancer effects of wild ginseng adventitious root extract (WGAR) on MDA-MB-231 TNBC cells and elucidated the underlying molecular mechanisms. Methods: WGAR was prepared from cultured adventitious roots of 100-year-old wild ginseng, and its chemical composition was analyzed by LC-MS/MS. Anticancer effects were evaluated using MTT assay, acridine orange/propidium iodide (AO/PI) staining, Matrigel invasion assay, Western blot analysis, and proteome profiler array. Molecular docking was performed to predict interactions between WGAR constituents and target proteins poly (ADP-ribose) polymerase (PARP)-1 and β-catenin. Results: LC-MS/MS analysis tentatively identified 17 compounds, including ginsenosides (Rg3, Rh1, Rf) and terpenoids (ursolic acid). WGAR reduced cell viability with an IC50 of 79 μg/mL at 48 h, inducing 51.2% cell death. WGAR activated the intrinsic apoptotic pathway through sequential caspase-9 and caspase-3 activation, followed by PARP cleavage, and was associated with changes in epithelial–mesenchymal transition (EMT)-related markers (reduced N-cadherin, Slug, and β-catenin) alongside decreased inhibitory Ser9 phosphorylation of GSK-3β. Proteome array analysis revealed suppression of ECM remodeling proteins (tenascin C, u-PA) and inflammatory mediators (IL-6, CXCL8). Molecular docking predicted that selected WGAR constituents, particularly terpenoid-type compounds, may potentially interact with PARP-1 and β-catenin; however, these in silico findings are hypothesis-generating and require experimental validation. Conclusions: WGAR exerts multi-target anticancer effects on TNBC cells through apoptosis induction and EMT suppression associated with modulation of GSK-3β/β-catenin signaling, suggesting its potential as a source of therapeutic agents for TNBC. Full article
Show Figures

Graphical abstract

24 pages, 10948 KB  
Article
Genome-Wide Characterization of the wnt Gene Family Reveals a wnt5b-Mediated Regulatory Mechanism of Testicular Development in Cynoglossus semilaevis
by Zhengjie Li, Junhao Wang, Chao Li and Ying Zhu
Animals 2026, 16(3), 387; https://doi.org/10.3390/ani16030387 - 26 Jan 2026
Abstract
The wnt gene family encodes a group of highly conserved secreted glycoproteins that play essential roles in vertebrate development, including tissue patterning, cell differentiation, and gonadal regulation. However, the genomic organization, evolutionary dynamics, and functional roles of Wnt signaling components in flatfish remain [...] Read more.
The wnt gene family encodes a group of highly conserved secreted glycoproteins that play essential roles in vertebrate development, including tissue patterning, cell differentiation, and gonadal regulation. However, the genomic organization, evolutionary dynamics, and functional roles of Wnt signaling components in flatfish remain poorly understood. In this study, we performed a comprehensive genome-wide identification, evolutionary characterization, expression profiling, and functional analysis of wnt genes in Cynoglossus semilaevis, a flatfish species exhibiting ZW/ZZ sex determination and temperature-induced sex reversal. A total of 20 wnt genes were identified and classified into 13 subfamilies, displaying conserved structural organization and phylogenetic relationships consistent with other teleosts. Chromosomal mapping revealed lineage-specific WNT clusters, including a unique wnt3–wnt7b–wnt5b–wnt16 block, as well as syntenic associations with reproduction-related genes (e.g., adipor2, sema3a, nape-pld, erc2, lamb2), suggesting coordinated genomic regulation. Tissue transcriptome analysis demonstrated strong sex- and tissue-biased expression patterns, with wnt5a predominantly expressed in ovaries and wnt5b specifically upregulated in pseudo-male testes. Functional assays revealed that knockdown of wnt5a or wnt5b induced testis-specific genes (sox9b, tesk1) and suppressed ovarian markers (foxl2, cyp19a1a), indicating antagonistic regulatory roles in gonadal fate determination. Promoter analysis identified yy1a as a selective repressor of wnt5b, but not wnt5a, providing a mechanistic basis for paralog divergence. Furthermore, pull-down combined with LC–MS/MS analysis showed that WNT5b interacts with proteins enriched in ribosome biogenesis and ubiquitin-mediated proteolysis, suggesting a role in translational regulation and protein turnover during spermatogenesis. Together, these findings establish WNT5 signaling—particularly wnt5b—as a key driver of testicular development in C. semilaevis and provide new insights into the molecular mechanisms underlying sex differentiation and sex reversal in flatfish. Full article
(This article belongs to the Special Issue Sustainable Aquaculture: A Functional Genomic Perspective)
Show Figures

Figure 1

Back to TopTop