Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = cave entrance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 34309 KiB  
Article
Assessing the Motile Fauna of Eastern Mediterranean Marine Caves
by Markos Digenis, Michail Ragkousis, Charalampos Dimitriadis, Stelios Katsanevakis and Vasilis Gerovasileiou
Fishes 2025, 10(8), 383; https://doi.org/10.3390/fishes10080383 - 5 Aug 2025
Viewed by 32
Abstract
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean [...] Read more.
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean and Ionian Seas, using a rapid assessment visual census protocol, applied through 3 min time transects in each ecological cave zone. Multivariate analysis revealed that the motile community structure of the cave entrance was differentiated from that of the semidark and dark zones. Deeper caves were distinct from shallower ones while caves of the east Aegean differed from those around Crete Island. A total of 163 taxa were recorded, 27 of which are reported herein for the first time in marine caves of the eastern Mediterranean Sea, while three species (two native and one introduced) are recorded in Greek waters for the first time, enriching our knowledge on the permanent and occasional cave residents. Seventeen species were introduced, comprising more than half of the total fish abundance in the southeasternmost cave. Our limited knowledge of the motile fauna of Mediterranean marine caves coupled with the continued spread of introduced species highlights the urgent need for monitoring and conservation actions, especially within marine protected areas. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

18 pages, 5558 KiB  
Article
Microclimate Variability in a Highly Dynamic Karstic System
by Diego Gil, Mario Sánchez-Gómez and Joaquín Tovar-Pescador
Geosciences 2025, 15(8), 280; https://doi.org/10.3390/geosciences15080280 - 24 Jul 2025
Viewed by 169
Abstract
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope [...] Read more.
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope of a mountainous area with a Mediterranean climate and strong chimney effect, resulting in an intense airflow throughout the year. The airflows modify the entrance temperatures, creating a distinctive pattern in each opening that changes with the seasons. The objective of this work is to characterise the outflows and find simple temperature-based parameters that provide information about the karst interior. The entrances were monitored for five years (2017–2022) with temperature–humidity dataloggers at different depths. Other data collected include discrete wind measurements and outside weather data. The most significant parameters identified were the characteristic temperature (Ty), recorded at the end of the outflow season, and the rate of cooling/warming, which ranges between 0.1 and 0.9 °C/month. These parameters allowed the entrances to be grouped based on the efficiency of heat exchange between the outside air and the cave walls, which depends on the rock-boundary geometry. This research demonstrates that simple temperature studies with data recorded at selected positions will allow us to understand geometric aspects of inaccessible karst systems. Dynamic high-airflow cave systems could become a natural source of evidence for climate change and its effects on the underground world. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

20 pages, 4920 KiB  
Article
Martian Skylight Identification Based on the Deep Learning Model
by Lihong Li, Lingli Mu, Wei Zhang, Weihua Dong and Yuqing He
Remote Sens. 2025, 17(15), 2571; https://doi.org/10.3390/rs17152571 - 24 Jul 2025
Viewed by 294
Abstract
As a type of distinctive pit on Mars, skylights are entrances to subsurface lava caves. They are very important for studying volcanic activity and potential preserved water ice, and are also considered as potential sites for human extraterrestrial bases in the future. Most [...] Read more.
As a type of distinctive pit on Mars, skylights are entrances to subsurface lava caves. They are very important for studying volcanic activity and potential preserved water ice, and are also considered as potential sites for human extraterrestrial bases in the future. Most skylights are manually identified, which has low efficiency and is highly subjective. Although deep learning methods have recently been used to identify skylights, they face challenges of few effective samples and low identification accuracy. In this article, 151 positive samples and 920 negative samples based on the MRO-HiRISE image data was used to create an initial skylight dataset, which contained few positive samples. To augment the initial dataset, StyleGAN2-ADA was selected to synthesize some positive samples and generated an augmented dataset with 896 samples. On the basis of the augmented skylight dataset, we proposed YOLOv9-Skylight for skylight identification by incorporating Inner-EIoU loss and DySample to enhance localization accuracy and feature extracting ability. Compared with YOLOv9, the P, R, and the F1 of YOLOv9-Skylight were improved by about 9.1%, 2.8%, and 5.6%, respectively. Compared with other mainstream models such as YOLOv5, YOLOv10, Faster R-CNN, Mask R-CNN, and DETR, YOLOv9-Skylight achieved the highest accuracy (F1 = 92.5%), which shows a strong performance in skylight identification. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

15 pages, 8017 KiB  
Article
Bio-Engineers of Marine Animal Forests: Serpulidae (Annelida) of the Biostalactite Fields in the Submarine Cave “lu Lampiùne” (Mediterranean Sea, Italy)
by Margherita Licciano and Genuario Belmonte
J. Mar. Sci. Eng. 2025, 13(4), 639; https://doi.org/10.3390/jmse13040639 - 23 Mar 2025
Viewed by 359
Abstract
Marine caves are complex habitats characterized by intense environmental gradients from the entrance towards the innermost dark sectors. The submarine caves at the Cape of Otranto (Mediterranean, SE Italy) host skeletonized invertebrates able to build 3D structures by intermingling their hard body parts [...] Read more.
Marine caves are complex habitats characterized by intense environmental gradients from the entrance towards the innermost dark sectors. The submarine caves at the Cape of Otranto (Mediterranean, SE Italy) host skeletonized invertebrates able to build 3D structures by intermingling their hard body parts with microbial carbonates, thus acting as bio-constructors of true marine animal forests. Complex bio-constructions named “biostalactites” (BSTs) with a core of calcareous tubes of Protula sp. (Serpulidae, Annelida) have been recently found in the dark sector of the “lu Lampiùne” submarine cave, one of the most complex and largest in the area. In the present study, we examined the outer surface of a BST from “lu Lampiùne” in order to evaluate species richness, abundance and distribution of Serpulidae at proximal, intermediate, and distal positions along the BST and on the two opposite sides of the BST with different textures (coarse vs. smooth). The BST surface hosted 1252 specimens belonging to 9 Serpulidae species differently distributed along the BST and on differently textured surfaces. As expected, sciaphilic Serpulidae dominated in terms of number of species and individuals. Remarkably, the large Protula tubes of the BST core that allowed it to grow from 6000 years ago have been largely replaced by small-sized Serpulidae species. The present study contributes to increase the knowledge of the metazoans associated with biostalactite fields from “lu Lampiùne” cave and allows for a comparison with findings from other Mediterranean BSTs. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

16 pages, 6035 KiB  
Article
CO2 Emission from Caves by Temperature-Driven Air Circulation—Insights from Samograd Cave, Croatia
by Nenad Buzjak, Franci Gabrovšek, Aurel Perșoiu, Christos Pennos, Dalibor Paar and Neven Bočić
Climate 2024, 12(12), 199; https://doi.org/10.3390/cli12120199 - 26 Nov 2024
Viewed by 2026
Abstract
Opposite to atmospheric CO2 concentrations, which reach a minimum during the vegetation season (e.g., June–August in the Northern Hemisphere), soil CO2 reaches a maximum in the same period due to the root respiration. In karst areas, characterized by high rock porosity, [...] Read more.
Opposite to atmospheric CO2 concentrations, which reach a minimum during the vegetation season (e.g., June–August in the Northern Hemisphere), soil CO2 reaches a maximum in the same period due to the root respiration. In karst areas, characterized by high rock porosity, this excess CO2 seeps inside caves, locally increasing pCO2 values above 1%. To better understand the role of karst areas in the carbon cycle, it is essential to understand the mechanisms of CO2 dynamics in such regions. In this study, we present and discuss the spatial and temporal variability of air temperature and CO2 concentrations in Samograd Cave, Croatia, based on three years of monthly spot measurements. The cave consists of a single descending passage, resulting in a characteristic bimodal climate, with stable conditions during summer (i.e., stagnant air inside the cave) and a strong convective cell bringing in cold air during winter. This bimodality is reflected in both CO2 concentrations and air temperatures. In summer, the exchange of air through the cave’s main entrance is negligible, allowing the temperature and CO2 concentration to equilibrate with the surrounding rocks, resulting in high in-cave CO2 concentrations, sourced from enhanced root respiration. During cold periods, CO2 concentrations are low due to frequent intrusions of fresh external air, which effectively flush out CO2 from the cave. Both parameters show distinct spatial variability, highlighting the role of cave morphology in their dynamics. The CO2 concentrations and temperatures have increased over the observation period, in line with external changes. Our results highlight the role of caves in transferring large amounts of CO2 from soil to the atmosphere via caves, a process that could have a large impact on the global atmospheric CO2 budget, and thus, call for a more in-depth study of these mechanisms. Full article
Show Figures

Figure 1

10 pages, 5352 KiB  
Article
Investigating Radon Concentrations in the Cango Cave, South Africa
by Jacques Bezuidenhout and Rikus le Roux
Atmosphere 2024, 15(9), 1133; https://doi.org/10.3390/atmos15091133 - 18 Sep 2024
Cited by 1 | Viewed by 1373
Abstract
Radon concentrations in the tourist part of the Cango cave were measured using 25 strategically placed electret ion chambers. Airflow rates were also measured and found to be less than 1 m/s throughout the cave. An IDW interpolated radon concentration overlay was constructed [...] Read more.
Radon concentrations in the tourist part of the Cango cave were measured using 25 strategically placed electret ion chambers. Airflow rates were also measured and found to be less than 1 m/s throughout the cave. An IDW interpolated radon concentration overlay was constructed using QGIS and overlayed on maps of the cave. The maximum radon concentration of 2625 Bq/m3 was measured in the Grand Hall, located in the central part of the cave following a narrow passage. The initial part of the cave near the entrance exhibited normal cave breathing characteristics, with radon concentrations of less than 300 Bq/m3. The deepest section of the cave, however, demonstrated an unexpected decrease in radon levels, temperature, and humidity. The average radon concentration in the Cango cave, measured at 1265 Bq/m3, is relatively low compared to other caves worldwide that need mitigation measures according to the International Commission on Radiological Protection (ICRP). Full article
Show Figures

Figure 1

17 pages, 2852 KiB  
Article
Flourishing in Darkness: Protist Communities of Water Sites in Shulgan-Tash Cave (Southern Urals, Russia)
by Natalia E. Gogoleva, Marina A. Nasyrova, Alexander S. Balkin, Olga Ya. Chervyatsova, Lyudmila Yu. Kuzmina, Elena I. Shagimardanova, Yuri V. Gogolev and Andrey O. Plotnikov
Diversity 2024, 16(9), 526; https://doi.org/10.3390/d16090526 - 1 Sep 2024
Cited by 1 | Viewed by 2136
Abstract
Karst caves, formed by the erosion of soluble carbonate rocks, provide unique ecosystems characterized by stable temperatures and high humidity. These conditions support diverse microbial communities, including wall microbial fouling, aquatic biofilms, and planktonic communities. This study discloses the taxonomic diversity of protists [...] Read more.
Karst caves, formed by the erosion of soluble carbonate rocks, provide unique ecosystems characterized by stable temperatures and high humidity. These conditions support diverse microbial communities, including wall microbial fouling, aquatic biofilms, and planktonic communities. This study discloses the taxonomic diversity of protists in aquatic biotopes of Shulgan-Tash Cave, a culturally significant site and popular tourist destination, by 18S rRNA gene metabarcoding. Our findings reveal the rich protist communities in the cave’s aquatic biotopes, with the highest diversity observed in Blue Lake at the cave entrance. In contrast, Distant Lake in the depth of the cave was inhabited by specific communities of plankton, mats, and pool fingers, which exhibited lower richness and evenness, and were adapted to extreme conditions (cold, darkness, and limited nutrients). High-rank taxa including Opisthokonta, Stramenopiles, and Rhizaria dominated all biotopes, aligning with observations from other subterranean environments. Specific communities of biotopes inside the cave featured distinct dominant taxa: amoeboid stramenopile (Synchromophyceae) and flagellates (Choanoflagellatea and Sandona) in mats; flagellates (Choanoflagellatea, Bicoecaceae, Ancyromonadida) and amoeboid protists (Filasterea) in pool fingers; flagellates (Ochromonadales, Glissomonadida, Synchromophyceae), fungi-like protists (Peronosporomycetes), and fungi (Ustilaginomycotina) in plankton. The specificity of the communities was supported by LEfSe analysis, which revealed enriched or differentially abundant protist taxa in each type of biotope. The predominance of Choanoflagellatea in the communities of cave mats and pool fingers, as well as the predominance of Synchromophyceae in the cave mats, appears to be a unique feature of Shulgan-Tash Cave. The cold-tolerant yeast Malassezia recorded in other caves was present in both plankton and biofilm communities, suggesting its resilience to low temperatures. However, no potentially harmful fungi were detected, positioning this research as a baseline for future monitoring. Our results emphasize the need for ongoing surveillance and conservation efforts to protect the fragile ecosystems of Shulgan-Tash Cave from human-induced disturbances and microbial invasions. Full article
(This article belongs to the Special Issue Diversity in 2024)
Show Figures

Figure 1

16 pages, 2500 KiB  
Article
Soil and Sediments in Natural Underground Ecosystems as a Source of Culturable Micromycetes: A Case Study of the Brestovská Cave (Western Tatras, Slovakia)
by Rafał Ogórek, Justyna Borzęcka, Klaudyna Spychała, Agata Piecuch and Jakub Suchodolski
Appl. Sci. 2024, 14(8), 3517; https://doi.org/10.3390/app14083517 - 22 Apr 2024
Cited by 1 | Viewed by 1348
Abstract
Soil and sediment host microorganisms are able to survive in extremely resource-limited environments. Therefore, more and more attention is being paid to cave sediments as a reservoir of microbiota. The aim of this study is the speleomycological evaluation of the culturable soil and [...] Read more.
Soil and sediment host microorganisms are able to survive in extremely resource-limited environments. Therefore, more and more attention is being paid to cave sediments as a reservoir of microbiota. The aim of this study is the speleomycological evaluation of the culturable soil and sediment fungal communities in the Brestovská Cave. To explore the origins of fungi, speleomycological studies were conducted both inside and outside the cave under investigation. Additionally, two incubation temperatures (5 and 24 °C) were used to increase the species spectrum of isolated fungi. To achieve the most accurate species identification, we combined an assessment of morphological characteristics of the isolates with molecular sequencing (ITS, internal transcribed spacer). Twenty different species were found and the most frequent was Penicillium commune, followed by Trichosporiella cerebriformis and Pseudogymnoascus pannorum. To our knowledge, our study has enabled the first identification of fungal species such as Penicillium swiecicki, Cephalotrichum hinnuleum, Cosmpospora berkeleyana, Lecythophora hoffmannii, Ambomucor seriatoinflatus, and Mortierella minutissima in underground sites. Our data showed that the abundance and composition of the fungal community varied between the indoor and outdoor samples and thus from the entrance and less visited sites deeper in the cave. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

15 pages, 12301 KiB  
Article
First Survey of the Sponge Community of a Semi-Submerged Marine Cave along the Adriatic Apulian Coast
by Antonella Schiavo, Muriel Oddenino, Guadalupe Giménez and Caterina Longo
J. Mar. Sci. Eng. 2024, 12(4), 682; https://doi.org/10.3390/jmse12040682 - 20 Apr 2024
Cited by 1 | Viewed by 2175
Abstract
Mediterranean marine caves have been categorized as both biodiversity reservoirs and vulnerable habitats. However, only a few studies have focused on Porifera assemblages within marine caves along the Adriatic Apulian coast (southern Italy). In this study, the sponge fauna of the Rondinella cave, [...] Read more.
Mediterranean marine caves have been categorized as both biodiversity reservoirs and vulnerable habitats. However, only a few studies have focused on Porifera assemblages within marine caves along the Adriatic Apulian coast (southern Italy). In this study, the sponge fauna of the Rondinella cave, a semi-submerged marine cave along the coast of Bari (Southern Adriatic Sea), was investigated for the first time. The use of advanced image analysis in combination with targeted sampling has made it possible to determine the spatial distribution and diversity of Porifera along a transect from the entrance to the end of the cave. Data analysis clustered the stations into two groups, separated according to the distance from the entrance and corresponding to the cave entrance and the semi-dark zone. Sponges were found at all stations covering a considerable part of the substrate, with the highest cover values occurring in the semi-dark zone. A total of 54 sponge taxa were identified: 49 Demospongiae, 3 Homoscleromorpha, and 2 Calcarea. Six species are new records for the Apulian marine caves, one species represents a new record for marine caves, and two species are new findings for the southern Adriatic Sea. Full article
Show Figures

Figure 1

19 pages, 9628 KiB  
Article
Sponge Communities of Submarine Caves and Tunnels on the Fernando de Noronha Archipelago, Northeast Brazil
by Guilherme Muricy, Anaíra Lage, Joana Sandes, Michelle Klautau, Ulisses Pinheiro, Marinella Silva Laport, Bruno Francesco Rodrigues de Oliveira, Carolline Braga Pequeno and Matheus Vieira Lopes
J. Mar. Sci. Eng. 2024, 12(4), 657; https://doi.org/10.3390/jmse12040657 - 16 Apr 2024
Cited by 6 | Viewed by 2285
Abstract
Submarine caves are important biodiversity reservoirs, but there is little information about the biota of marine caves in the Southwestern Atlantic. Here, we describe three submarine cavities and their sponge communities on the Fernando de Noronha Archipelago, Northeast Brazil. The underwater cavities were [...] Read more.
Submarine caves are important biodiversity reservoirs, but there is little information about the biota of marine caves in the Southwestern Atlantic. Here, we describe three submarine cavities and their sponge communities on the Fernando de Noronha Archipelago, Northeast Brazil. The underwater cavities were explored and collections were made through scuba diving from 5 to 18 m depths. Sapata Cave has a wide semi-dark zone near the entrance, a narrow transition zone, and a dark chimney, which is closed at the top. Ilha do Meio Cave is narrower and shallower than Sapata Cave, but has a long passage that leads to two completely dark rooms. Pedras Secas Tunnel has only a semi-dark zone with high water movement. The sponge communities in the semi-dark zones of the three cavities are rich and dominated by the classes Demospongiae and Homoscleromorpha, but Calcarea are also common. The transition zones of both caves are dominated by a desma-bearing sponge, thinly encrusting spirastrellids, and small Homoscleromopha and Calcarea. The dark zone in Ilha do Meio Cave is almost azoic, with only three species. This study has increased the number of sponge species known in submarine cavities on Fernando de Noronha from 29 to 69, highlighting the great richness of the sponge communities in these cryptic environments. Full article
Show Figures

Figure 1

10 pages, 610 KiB  
Article
Microclimatic Influences on the Abundance of Three Non-Troglobiont Species
by Luca Coppari, Raoul Manenti and Enrico Lunghi
Diversity 2024, 16(3), 186; https://doi.org/10.3390/d16030186 - 19 Mar 2024
Viewed by 1720
Abstract
Subterranean environments are often characterized by a natural gradient of microclimatic conditions and trophic resources, showing a higher trophic availability and a lower microclimatic stability in the shallowest area (close to the cave entrance), while the opposite occurs in the deepest sections. The [...] Read more.
Subterranean environments are often characterized by a natural gradient of microclimatic conditions and trophic resources, showing a higher trophic availability and a lower microclimatic stability in the shallowest area (close to the cave entrance), while the opposite occurs in the deepest sections. The shallowest areas of subterranean environments (e.g., the entrance and twilight zone, Mesovoid Shallow Substratum) act as ecotones between the surface habitats and the deep areas, creating a particular habitat which can be exploited by numerous species with different degrees of adaptation to subterranean environments. Species living in these ecotones may hold a key role in sustaining the entire ecosystem, as they are likely one of the major drivers of allochthonous organic matter. Indeed, these species are usually facultative cave-dwellers, meaning that they are able to exit and forage on the surface. Once these species are back inside the cave, they provide the local community with different typologies of organic matter (e.g., feces, eggs), which represent one of the most important sources of organic carbon. Therefore, studying which ecological features may exert significant effects on the abundance of these species may be of great help in understanding the ecosystem dynamics and the functional role of each species. In this study we analyzed the data collected through a year-round monitoring program, aiming to assess the potential effects that both abiotic and biotic features may have on the abundance of three facultative cave species. We focused on seven caves located in Monte Albo (Sardinia, Italy). The cave environments were divided into 3-meter sectors, and within each cave sector, microclimatic and biological data were seasonally recorded. We focused on the following facultative cave species: the spiders Metellina merianae and Tegenaria sp. and the snail Oxychilus oppressus. Different relationships were observed between the ecological features and the abundance of the three species. The two spiders were more abundant in warmer cave sectors closer to the cave entrance, especially the M. merianae. On the other hand, the snail tended to be more abundant farther from the cave entrance and in more illuminated cave sectors, probably because sunlight promotes the abundance of some of its trophic resources (e.g., lichens, vegetation). Furthermore, O. oppressus was the only species whose abundance and cave distribution was significantly affected by seasonality. This study provides useful and novel information to understand the population dynamics of facultative cave species and their role in subterranean ecosystems. Full article
(This article belongs to the Section Biodiversity Loss & Dynamics)
Show Figures

Figure 1

18 pages, 13428 KiB  
Article
Structural and Geomechanical Analysis of Natural Caves and Rock Shelters: Comparison between Manual and Remote Sensing Discontinuity Data Gathering
by Abdelmadjid Benrabah, Salvador Senent Domínguez, Fernando Carrera-Ramírez, David Álvarez-Alonso, María de Andrés-Herrero and Luis Jorda Bordehore
Remote Sens. 2024, 16(1), 72; https://doi.org/10.3390/rs16010072 - 23 Dec 2023
Cited by 3 | Viewed by 2699
Abstract
The stability of many shallow caves and rock shelters relies heavily on understanding rock discontinuities, such as stratification, faults, and joints. Analyzing these discontinuities and determining their orientations and dispersion are crucial for assessing the overall stability of the cave or shelter. Traditionally, [...] Read more.
The stability of many shallow caves and rock shelters relies heavily on understanding rock discontinuities, such as stratification, faults, and joints. Analyzing these discontinuities and determining their orientations and dispersion are crucial for assessing the overall stability of the cave or shelter. Traditionally, this analysis has been conducted manually using a compass with a clinometer, but it has certain limitations, as only fractures located in accessible areas like the lower part of cave walls and entrances are visible and can be assessed. Over the past decade, remote sensing techniques like LiDAR and photogrammetry have gained popularity in characterizing rocky massifs. These techniques provide 3D point clouds and high-resolution images of the cave or shelter walls and ceilings. With these data, it becomes possible to perform a three-dimensional reconstruction of the cavity and obtain important parameters of the discontinuities, such as orientation, spacing, persistence, or roughness. This paper presents a comparison between the geomechanical data obtained using the traditional manual procedures (compass readings in accessible zones) and a photogrammetric technique called Structure from Motion (SfM). The study was conducted in two caves, namely, the Reguerillo Cave (Madrid) and the Cova dos Mouros (Lugo), along with two rock shelters named Abrigo de San Lázaro and Abrigo del Molino (Segovia). The results of the study demonstrate an excellent correlation between the geomechanical parameters obtained from both methods. Indeed, the combination of traditional manual techniques and photogrammetry (SfM) offers significant advantages in developing a more comprehensive and realistic discontinuity census. Full article
(This article belongs to the Special Issue Remote Sensing in Environmental Modelling)
Show Figures

Figure 1

27 pages, 6885 KiB  
Article
Assessing Endokarst Potential in the Northern Sector of Santo António Plateau (Estremadura Limestone Massif, Central Portugal)
by Luís Reis, Luca Antonio Dimuccio and Lúcio Cunha
Sustainability 2023, 15(21), 15599; https://doi.org/10.3390/su152115599 - 3 Nov 2023
Cited by 2 | Viewed by 1765
Abstract
Karst is a peculiar natural landscape arising from high rock solubility and well-developed underground solutional channel porosity. It is unique for its surface relief (exokarst) and subsurface drainage, including cave systems (endokarst). In Portugal, karst areas mainly consist of marginal or low-density territories [...] Read more.
Karst is a peculiar natural landscape arising from high rock solubility and well-developed underground solutional channel porosity. It is unique for its surface relief (exokarst) and subsurface drainage, including cave systems (endokarst). In Portugal, karst areas mainly consist of marginal or low-density territories with great fragility and vulnerability and great geo-environmental richness that merits better policies and practices regarding their geo-conservation. Endokarst potential assessments can provide decision-makers and local authorities insight into present and future territorial management and planning. In this context, the main objective of this study was to produce a cartographic model to identify areas with a greater probability of containing karstic caves—i.e., a greater endokarst potential—in the northern sector of the Santo António Plateau (Estremadura Limestone Massif, Central Portugal). Geological, topographic, hydrogeological, and land cover data were collected, processed, and integrated into a spatial database using a Geographic Information System. The locations of known cave entrances in the study area were also identified from local public institutions and speleological team records. Subsequently, four conditioning factors were extracted from the data: lithostratigraphic units, fracture density, relief energy, and land cover. Using a multi-criteria decision-making analysis, each previously chosen conditioning factor and its respective classes were weighted using an analytic hierarchy process. The locations of known cave entrances served to evaluate the cartographic model built, with results showing an agreement of 81.9%. This prototype of the endokarst potential map for the study area may be used for strategic and operational environmental planning (at least on a local scale) to assist decision-makers, competent authorities, and local speleological teams. Its application may promote a more accurate and thoughtful definition of areas to be investigated, substantially reducing the time and costs associated with field prospecting. Full article
(This article belongs to the Special Issue Geostatistics Applications in Resources and Environment)
Show Figures

Figure 1

20 pages, 4737 KiB  
Article
Spatiotemporal Variation Characteristics and Influencing Factors of Karst Cave Microclimate Environments: A Case Study in Shuanghe Cave, Guizhou Province, China
by Yong Xiong, Zhongfa Zhou, Shengjun Ding, Heng Zhang, Jing Huang, Xiaohuan Gong and Dan Su
Atmosphere 2023, 14(5), 813; https://doi.org/10.3390/atmos14050813 - 29 Apr 2023
Cited by 5 | Viewed by 2584
Abstract
To systematically analyze the spatiotemporal heterogeneity, diurnal variation characteristics, and influencing factors of karst cave microclimate environments in Mahuang Cave, a cave in the Shuanghe Cave National Geological Park in Guizhou Province, China, was investigated. Monthly monitoring of meteorological and environmental parameters, such [...] Read more.
To systematically analyze the spatiotemporal heterogeneity, diurnal variation characteristics, and influencing factors of karst cave microclimate environments in Mahuang Cave, a cave in the Shuanghe Cave National Geological Park in Guizhou Province, China, was investigated. Monthly monitoring of meteorological and environmental parameters, such as wind speed, air pressure, humidity, and temperature indicators inside the cave and atmospheric temperature and precipitation outside the cave, was conducted from 2019 to 2021, as well as encrypted monitoring in August and December 2019. The results showed that: (1) The meteorological parameters of Mahuang Cave exhibited seasonal characteristics and cyclical interannual variation. Cave wind speed, relative humidity, and temperature were high in summer and autumn and lowest in winter, whereas cave air pressure was high in winter and low in summer. The atmospheric temperature outside the cave was the main controlling factor. (2) On a short time scale, the dewpoint and temperature of Mahuang Cave did not change significantly, and an abrupt change phenomenon occurred mostly around noon. The warm season was more sensitive than the cold season, and the closer to the entrance of the cave, the stronger the response. (3) In terms of spatial distribution, the overall microclimate factors of Mahuang Cave became increasingly stable and entered a constant state with the increasing depth of the cave passage. The related effects of cave morphology and structure, the physical environment of the cave passage, air movement, and groundwater dynamics were important factors leading to an abrupt change phenomenon in cave microclimates. Local meteorological conditions and cave geometry controlled the temporal variability and spatial heterogeneity of the cave microclimate environment. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

16 pages, 7140 KiB  
Article
Species Composition and Structure of Beetle Associations in Caves of the Częstochowa Upland, Poland
by Joanna Kocot-Zalewska and Barbara Lis
Diversity 2023, 15(3), 345; https://doi.org/10.3390/d15030345 - 1 Mar 2023
Viewed by 2113
Abstract
This paper presents the study’s results on beetles (Insecta: Coleoptera) inhabiting caves in the Częstochowa Upland, southern Poland. During two years of research, 2084 specimens, representing 105 species from 19 beetle families, were collected. The obtained results indicate that many beetle species choose [...] Read more.
This paper presents the study’s results on beetles (Insecta: Coleoptera) inhabiting caves in the Częstochowa Upland, southern Poland. During two years of research, 2084 specimens, representing 105 species from 19 beetle families, were collected. The obtained results indicate that many beetle species choose to inhabit caves despite lacking specific adaptations for living in such environments. The cave entrance zone is the most attractive place for surface species to inhabit because its climatic conditions are more stable than outside the cave, some sunlight is present, and the availability of organic matter is high. In the deeper parts of the studied caves, the number of occurring species rapidly decreased. Three species were recognised as troglobionts, four as troglophiles and 32 as subtroglophiles. Speonomus normandi hydrophilus, Choleva lederiana gracilenta and Quedius mesomelinus mesomelinus were identified as the most frequent in the studied caves. Speonomus normandi hydrophilus is endemic to the Arize massif in the Central Pyrenees (France) and was experimentally introduced into the Dzwonnica cave (Poland) in 1982, while Ch. lederiana gracilenta is one of two troglobitic beetles native to Polish caves and Q. imesomelinus mesomelinus is a widespread, very common troglophile. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Diversity)
Show Figures

Figure 1

Back to TopTop