Investigating Radon Concentrations in the Cango Cave, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Cave Layout and Structure
2.3. Radon Calculation
2.4. Radon Map
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nel, R.; Germs, G.J.B.; Praekelt, H.E.; Odendaal, A.I. Re-examination and reinterpretation of the stratigraphy of the Matjies River Formation, Cango Caves Group, Neoproterozoic to early Palaeozoic Saldania Belt, South Africa. S. Afr. J. Geol. 2018, 121, 451–462. [Google Scholar] [CrossRef]
- Craven, S.A. Carbon dioxide variations in Cango Cave, South Africa. Cave Karst Sci. 1996, 23, 89–92. [Google Scholar]
- Pavia, M.; Bianco, A.; Pileggi, C.; Angelillo, F. Meta-analysis of residential exposure to radon gas and lung cancer. Bull. World Health Organ. 2003, 81, 732–738. [Google Scholar] [PubMed]
- Oufni, L.; Misdaq, M.A. Radon emanation in a limestone cave using CR-39 and LR-115 solid state nuclear track detectors. J. Radioanal. Nucl. Chem. 2001, 250, 309–313. [Google Scholar] [CrossRef]
- Rad Elec Inc. E-PERM System User’s Manual; Version 4.0.1; Rad Elec Inc.: Frederick, MD, USA, 2024. [Google Scholar]
- Shahbazi-Gahrouei, D.; Setayandeh, S.; Gholami, M. A review on natural background radiation. Adv. Biomed. Res. 2013, 2, 65. [Google Scholar] [CrossRef]
- Nemangwele, P. Radon in the Cango Caves. Master’s Thesis, University of the Western Cape, Cape, South Africa, 2005. [Google Scholar]
- Bezuidenhout, J. Estimating geothermal and background radiation hotspots from primordial radionuclide concentrations in geology of South Africa. J. Environ. Radioact. 2023, 259, 107118. [Google Scholar] [CrossRef]
- Kotrappa, P.; Dempsey, J.C.; Ramsey, R.W.; Stieff, L.R. A practical E-PERM (electret passive environmental radon monitor) system for indoor 222Rn measurement. Health Phys. 1990, 58, 461–467. [Google Scholar] [CrossRef]
- Adelikhah, M.; Shahrokhi, A.; Imani, M.; Chalupnik, S.; Kovács, T. Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran. Int. J. Environ. Res. Public Health 2021, 18, 141. [Google Scholar] [CrossRef]
- Deike, G.H. Geology of Breathing Cave; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14390-3. [Google Scholar]
- le Roux, R.; Bezuidenhout, J.; Nemangwele, P. Radon concentrations in the Sudwala cave. Arab. J. Geosci. 2023, 16, 250. [Google Scholar] [CrossRef]
- Cigna, A. Results of the Preliminary Monitoring Network of Cango Caves (Outdshoorn, South Africa). In Proceedings of the 26th Brazilian Congress of Speleology, Brasília, Brazil, 15–22 July 2001. [Google Scholar]
- Waring, C.L.; Hankin, S.I.; Solomon, S.B.; Long, S.; Yule, A.; Blackley, R.; Werczynski, S.; Baker, A.C. Cave radon exposure, dose, dynamics and mitigation. J. Cave Karst Stud. 2021, 83, 1–19. [Google Scholar] [CrossRef]
- ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [CrossRef] [PubMed]
- Wang, Y.; Luo, W.; Zeng, G.; Wang, Y.; Yang, H.; Wang, M.; Zhang, L.; Cai, X.; Chen, J.; Cheng, A.; et al. High 222Rn concentrations and dynamics in Shawan Cave, southwest China. J. Environ. Radioact. 2019, 199–200, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Burian, I.; Stelcl, O. Radon and its daughters in the touristic caves of the Moravian Karst. Acta Carsologica. 1990, 3, 27–32. [Google Scholar]
- Hyland, R.; Gunn, J. International comparison of cave radon concentrations identifying the potential alpha radiation risks to British cave users. Health Phys. 1994, 67, 176–179. [Google Scholar] [CrossRef]
- Gunn, J.; Fletcher, S.; Prime, D. Research on radon in British limestone caves and Mines, 1970–1990. Cave Sci. Trans. Br. Cave Res. Assoc. 1991, 18, 63–65. [Google Scholar]
- Gillmore, G.K.; Sperrin, M.; Phillips, P.; Denman, A. Radon Hazards, Geology, and exposure of cave users: A case study and some theoretical perspectives. Ecotoxicol. Environ. Saf. 2000, 46, 279–288. [Google Scholar] [CrossRef]
- Papastefanou, C.; Manolopoulou, M.; Savvides, E.; Charalambous, S. Natural radiation dose in Petralona Cave. Health Phys. 1986, 50, 281–286. [Google Scholar]
- Somogyi, G.; Hunyadi, I.; Hakl, J. Historical review of one decade of radon measurements in Hungarian caves performed by solid state nuclear track detection technique. In Proceedings of the 10th International Congress of Speleology, 1989. Erscheinung Publishers: Braunschweig, Germany, pp. 3–13.
- Lenart, L.; Somogyi, G.; Hakl, J.; Hunyadi, I. Radon mapping in caves of eastern Bukk region. In Proceedings of the 10th International Congress of Speleology, 1990. Czechoslovakia, Institute of Geographers, Czechoslovak Academy of Science: Prague, Czech Republic, 1990. [Google Scholar]
- Duffy, J.T.; Madden, J.J.; Mackin, G.M.; McGarry, A.T. A reconnaissance survey of radon in show Cave in Ireland. Environ. Rad. 1996, 49, 235–240. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon concentration changes in the air of two caves in Poland. J. Environ. Radioact. 1999, 45, 81–94. [Google Scholar] [CrossRef]
- Gunn, J. Radon Concentrations in three Russian cave areas. Cave Sci. Trans. Br. Cave Res. Assoc. 1991, 18, 85–89. [Google Scholar]
- Kobal, I.; Ancik, M.; Skofljanec, M. Variations of 222Rn air concentration in Postojna Cave. Radiat. Prot. Dosim. 1988, 25, 207–211. [Google Scholar]
- Gregorič, A.; Vaupotič, J.; Šebela, S. The role of cave ventilation in governing cave air temperature and radon levels (Postojna Cave, Slovenia). Int. J. Climatol. 2014, 34, 1488–1500. [Google Scholar] [CrossRef]
- Lario, J.; Sanchez, M.S.; Canaveras, J.C.; Cuezva, S.; Soler, V. Radon continuous monitoring in Altamira Cave (North Spain) to assess user’s annual effective dose. J. Environ. Radioact. 2005, 80, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Sainz, C.; Rábago, D.; Celaya, S.; Fernández, E.; Quindós, J.; Quindós, L.; Fernández, A.; Fuente, I.; Arteche, J.L.; Quindós, L.S. Continuous monitoring of radon gas as a tool to understand air dynamics in the cave of Altamira (Cantabria, Spain). Sci. Total Environ. 2018, 624, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Pla, C.; Galiana-Merino, J.J.; Cuezva, S.; Fernandez-Cortes, A.; Cañaveras, J.C.; Benavente, D. Assessment of CO2 dynamics in subsurface atmospheres using the wavelet approach: From cavity-atmosphere exchange to anthropogenic impacts in Rull cave (Vall d′Ebo, Spain). Environ. Earth Sci. 2016, 75, 446. [Google Scholar] [CrossRef]
- Surbeck, H. Radon-222 transport from soil to karst caves by percolation water. In Proceedings of the 22nd Congress of the IAH, 1990. International Association of Hydrogeologists: Hannover, Germany, 1990; pp. 349–355. [Google Scholar]
- Yarborough, K.A. Investigation of radiation produced by radon and thoron in natural caves administered by National Park Service. In First Conference on Scientific Research in the National Parks: National Park Service Transactions and Proceedings Series; US Department of the Interior: Washington, DC, USA, 1979; Volume 5, pp. 703–713. [Google Scholar]
- Eheman, C.; Carson, B.; Rifenburg, J.; Hoffman, D. Occupational exposure to radon daughters in Mammoth Cave National Park. Health Phys. 1991, 60, 831–835. [Google Scholar]
- Ahlstrand, G.M. Alpha radiation levels in two caves related to external air temperature and atmospheric pressure. Bull. Natl. Speleol. Soc. 1980, 42, 39–41. [Google Scholar]
- Bashor, B. Big Bone Cave State Natural Area, Van Buren County, Tennessee; U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2004.
- Cheng, Y.S.; Chen, T.R.; Wasiolek, P.T.; Van Engen, A. Radon and Radon Progeny in the Carlsbad Caverns. Aerosol Sci. Technol. 2007, 26, 74–92. [Google Scholar] [CrossRef]
- Kowalczk, A.J.; Froelich, P.N. Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe? Earth Planet. Sci. Lett. 2010, 289, 209–219. [Google Scholar] [CrossRef]
Location | Radon Concentrations (Bq/m3) |
---|---|
Old Exit Passage | 446 ± 36 |
Entrance | 257 ± 31 |
Entrance Hall | 214 ± 30 |
Fern Garden | 494 ± 38 |
Van Zyl’s Hall (Entrance) | 494 ± 38 |
Van Zyl’s Hall (Side tunnel) | 549 ± 40 |
Van Zyl’s Hall (Organ) | 631 ± 44 |
Van Zyl’s Hall (Exit) | 470 ± 39 |
Throne Room | 680 ± 46 |
The Vestry | 756 ± 48 |
Bridal Chamber | 1438 ± 79 |
Bridal Bypass | 589 ± 43 |
Rainbow Room | 759 ± 49 |
Fairy Palace | 2464 ± 128 |
Grand Hall | 2625 ± 135 |
Sand Chamber | 2472 ± 128 |
Lot’s Chamber | 2455 ± 127 |
Smyth’s Ladder | 2201 ± 114 |
Lumbago Entrance | 1748 ± 92 |
Lumbago Tunnel | 1683 ± 90 |
Crystal Palace | 1472 ± 80 |
King Solomon’s mines | 1326 ± 72 |
Prince Albert Chamber | 1132 ± 66 |
Post Office | 951 ± 58 |
Devil’s Workshop | 1638 ± 88 |
Cave | Mean Radon Concentrations (Bq/m3) | Reference |
---|---|---|
Jenolan Cave, Australia | 4578 | [14] |
Shawan Cave, China | 47,419 | [16] |
Moravian Karst caves, Czech Republic | 1235 | [17] |
Various caves, Great Britain | 2907 | [18] |
Various caves, Great Britain | 35,890 | [19] |
Various caves, Great Britain | 9306 | [20] |
Petralona Cave, Greece | 25,179 | [21] |
Various caves, Hungary | 3300 | [22] |
Various caves, Hungary | 2468 | [23] |
Various caves, Ireland | 4127 | [24] |
Various caves, Poland | 1166 | [25] |
Various caves, Russia | 2390 | [26] |
Postojna Cave, Slovenia | 1412 | [27] |
Postojna Cave, Slovenia | 25,020 | [28] |
Altamira Cave, Spain | 3564 | [29] |
Altamira Cave, Spain | 3286 | [30] |
Rull Cave, Spain | 1762 | [31] |
Various caves, Switzerland | 25,000 | [32] |
Various caves, United States | 1927 | [33] |
Mammoth Cave, United States | 2589 | [34] |
Various caves, United States | 1475 | [35] |
Big Bone Cave, United States | 11,678 | [36] |
Carlsbad, Cavern USA | 1821 | [37] |
Hollow Ridge, USA | 4733 | [38] |
Global average (All caves) | 6160 | [14] |
Cango Cave, South Africa | 1265 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezuidenhout, J.; le Roux, R. Investigating Radon Concentrations in the Cango Cave, South Africa. Atmosphere 2024, 15, 1133. https://doi.org/10.3390/atmos15091133
Bezuidenhout J, le Roux R. Investigating Radon Concentrations in the Cango Cave, South Africa. Atmosphere. 2024; 15(9):1133. https://doi.org/10.3390/atmos15091133
Chicago/Turabian StyleBezuidenhout, Jacques, and Rikus le Roux. 2024. "Investigating Radon Concentrations in the Cango Cave, South Africa" Atmosphere 15, no. 9: 1133. https://doi.org/10.3390/atmos15091133
APA StyleBezuidenhout, J., & le Roux, R. (2024). Investigating Radon Concentrations in the Cango Cave, South Africa. Atmosphere, 15(9), 1133. https://doi.org/10.3390/atmos15091133