Spatiotemporal Variation Characteristics and Influencing Factors of Karst Cave Microclimate Environments: A Case Study in Shuanghe Cave, Guizhou Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
3. Results
3.1. Characteristics of Regional Atmospheric Environment Changes
3.2. Seasonal and Interannual Variation Characteristics of the Karst Cave Microclimate Environment
3.3. Spatial Variation Characteristics of the Karst Cave Microclimate Environment
3.4. Characteristics of Short-Term (Diurnal) Variation in the Karst Cave Microclimate Environment
4. Discussion
4.1. Influence among Elements of the Microclimate Environment of Krast Caves
4.2. Influence of External Climate on the Microclimatic Environment of Karst Caves
4.3. Influence of Cave Structure and Air Movement on the Karst Cave Microclimate Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing Disciplines and Scales to Understand the Critical Zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- Covington, M.D. The importance of advection for CO2 dynamics in the karst critical zone: An approach from dimensional analysis. Geol. Soc. Am. Spec. Pap. 2016, 516, 113–127. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Soulsby, C. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrol. Process. 2017, 31, 3421–3436. [Google Scholar] [CrossRef]
- Bogli, A. Karst Hydrology and Physical Speleology; Springer: Berlin, Germany, 1980; pp. 214–226. [Google Scholar]
- Freitas, C.; Littlbjohn, R.N.; Clarkson, T.S.; Kristament, I.S. Cave climate: Assessment of airflow and ventilation. J. Clim. 1982, 2, 383–397. [Google Scholar] [CrossRef]
- Badino, G. Underground meteorology–“What’s the weather underground?”. Acta Carsologica 2010, 39, 427–448. [Google Scholar] [CrossRef]
- Covington, M.D.; Perne, M. Consider a cylindrical cave: A physicist’s view of cave and karst science. Acta Carsologica 2015, 44, 363–380. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, C.; Liu, Z.; Yang, C.; Brancelj, A. The temperature variation in an epikarstic cave and its impact factors: A case from Velika Pasica Cave, Central Slovenia. Arab. J. Geosci. 2017, 10, 2. [Google Scholar] [CrossRef]
- Brookfield, A.E.; Macpherson, G.L.; Covington, M.D. Effects of changing meteoric precipitation patterns on groundwater temperature in karst environments. Ground Water 2017, 55, 227–236. [Google Scholar] [CrossRef]
- Guerrier, B.; Doumenc, F.; Roux, A.; Mergui, S.; Jeannin, P.Y. Climatology in shallow caves with negligible ventilation: Heat and mass transfer. Int. J. Therm. Sci. 2019, 146, 106066. [Google Scholar] [CrossRef]
- Mejía-Ortíz, L.; Christman, M.C.; Pipan, T.; Culver, D.C. What’s the temperature in tropical caves? PLoS ONE 2020, 15, e0237051. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Ortíz, L.; Christman, M.C.; Pipan, T.; Culver, D.C. What’s the relative humidity in tropical caves? PLoS ONE 2021, 16, e0250396. [Google Scholar] [CrossRef] [PubMed]
- Cigna, A.A. An analytical study of air circulation in caves. Int. J. Speleol. 1968, 3, 41–54. [Google Scholar] [CrossRef]
- Surić, M.; Lončarić, R.; Kulišić, M.; Srsen, L. Spatio-temporal variations of cave-air CO2 concentrations in two Croatian show caves: Natural vs. anthropogenic controls. Croat. Geol. Surv. 2021, 74, 273–286. [Google Scholar] [CrossRef]
- Kaing, M.; Lenart, J. Cave airflow mechanism of a crevice-type cave: A case study from Czechia. Int. J. Speleol. 2020, 49, 55–67. [Google Scholar] [CrossRef]
- Juhasz, J.; Kimakova, T.; Bernasovska, K. Speleotherapy of child respiratory disorders—A treatment by the use of subterranean environment. In Proceedings of the 2nd Conference School and Health 21, Brno, Czech Republic, 28–30 August 2006; pp. 28–30. [Google Scholar]
- Faimon, J.; Lang, M. Variances in airflows during different ventilation modes in a dynamic U-shaped cave. Int. J. Speleol. 2013, 42, 115–122. [Google Scholar] [CrossRef]
- Roubal, Z.; Gescheidtová, E.; Bartušek, K.; Szabó, Z.; Steinbauer, M.; Überhuberová, J.; Lajcíková, A. Evaluating the Parameters of a Systematic Long-Term Measurement of the Concentration and Mobility of Air Ions in the Environment inside Císařská Cave. Atmosphere 2021, 12, 1615. [Google Scholar] [CrossRef]
- Fernandez, C.A.; Calaforra, J.M.; Sanchez, M.F. Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain). Atmos. Environ. 2006, 40, 7378–7394. [Google Scholar] [CrossRef]
- Russell, M.J.; MacLean, V.L. Management issues in a Tasmanian tourist cave: Potential microclimatic impacts of cave modifications. J. Environ. Manag. 2008, 87, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhou, Q.; Tang, X.; Yan, W.; Chen, M. Changes in soil moisture caused solely by vegetation restoration in the karst region of southwest China. J. Hydrol. 2022, 613, 128460. [Google Scholar] [CrossRef]
- Weng, X.; Luo, W.; Wang, Y.; Zeng, G.; Wang, S. Spatiotemporal Variations of Radon Concentration in the Atmosphere of Zhijindong Cave (China). Atmosphere 2021, 12, 967. [Google Scholar] [CrossRef]
- Smithson, P.A. Inter-relationships between cave and outside air temperatures. Theor. Appl. Climatol. 1991, 44, 65–73. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments; Wiley-Blackwell: Chichester, UK, 2012; 432p. [Google Scholar] [CrossRef]
- Gomell, A.K.; Pflitsch, A. Airflow dynamics in Wind Cave and Jewel Cave: How do barometric caves breathe? Int. J. Speleol. 2022, 51, 163–179. [Google Scholar] [CrossRef]
- Hoyos, M.; Soler, V.; Cañaveras, J.C.; Sánchez, M.S.; Sanz, R.E. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol. 1998, 33, 231–242. [Google Scholar] [CrossRef]
- Peyraube, N.; Lastennet, R.; Denis, A. Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the relationship. J. Hydrol. 2012, 430–431, 13–24. [Google Scholar] [CrossRef]
- Vieten, R.; Winter, A.; Warken, S.F.; Schrӧder, R.A.; Miller, T.E.; Scholz, D. Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico. Int. J. Speleol. 2016, 45, 259–273. [Google Scholar] [CrossRef]
- Sekhon, N.; Novello, V.F.; Cruz, F.W.; Wortham, B.E.; Breecker, D.O. Diurnal to seasonal ventilation in Brazilian caves. Glob. Planet Chang. 2021, 197, 103378. [Google Scholar] [CrossRef]
- Faimon, J.; Troppová, D.; Baldík, V.; Novotný, R. Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). Int. J. Climatol. 2011, 32, 599–623. [Google Scholar] [CrossRef]
- James, J.M. 6.25 Atmospheric Processes in Caves. Treatise Geomorphol. 2013, 6, 304–318. [Google Scholar] [CrossRef]
- Christoforou, C.S.; Salmon, L.G.; Cass, G.R. Air exchange within the Buddhist cave temples at Yungang, China. Atmos. Environ. 1996, 30, 3995–4006. [Google Scholar] [CrossRef]
- Spötl, C.; Fairchild, I.J.; Tooth, A.F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochim. Cosmochim. Acta 2005, 69, 2451–2468. [Google Scholar] [CrossRef]
- Breitenbach, S.; Lechleitner, F.A.; Meyer, H.; Diengdoh, G.; Mattey, D.; Marwan, N. Cave ventilation and rainfall signals in dripwater in a monsoonal setting—A monitoring study from NE India. Chem. Geol. 2015, 402, 111–124. [Google Scholar] [CrossRef]
- Bourges, F.; Genthon, P.; Genty, D.; Lorblanchet, M.; Mauduit, E.; Hulst, D. Conservation of prehistoric caves and stability of their inner climate: Lessons from Chauvet and other French caves. Sci. Total Environ. 2014, 493, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Šebela, S.; Prelovšek, M.; Turk, J. Impact of peak period visits on the Postojna Cave (Slovenia) microclimate. Theor. Appl. Climatol. 2013, 111, 51–64. [Google Scholar] [CrossRef]
- National Research Council (NRC). Basic Research Opportunities in Earth Science; National Academy Press: Washington, DC, USA, 2001; pp. 36–88. [Google Scholar] [CrossRef]
- Sullivan, P.L.; Macpherson, G.L.; Martin, J.B.; Price, R.M. Evolution of carbonate and karst critical zones. Chem. Geol. 2019, 527, 119223. [Google Scholar] [CrossRef]
- Li, P.; He, W.; Qian, Z.; Bottazzi, J. Study on Shuanghe Cave Geopark; Guizhou Renmin Press: Guiyang, China, 2008. [Google Scholar]
- Shi, L.X.; Zhou, Z.F.; Fan, B.X.; Yan, L.H.; Ding, S.J.; Zhang, H.; Huang, J. Study on vertical migration of CO2 in a karst cave system. Epis. J. Int. Geosci. 2022, 45, 431–444. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- Liang, M.Q.; Li, J.Y.; Zhou, J.L.; Zhang, J.; Chen, C.J. Characteristics of Environmental Change and Studying on the Influencing Factors in Furong Cave, Chongqing. Res. Environ. Yangtze Basin 2019, 28, 962–970. [Google Scholar]
- Zhang, D. Stidues on the meteorological factor and climatic zone of karst in Guizhou Province. Carsol. Sin. 1985, Z1, 140–148. [Google Scholar]
- Fang, L.L.; Liu, J.S. The Climatic Characteristics and Analysis of the caves of Western Zhejiang. J. Hangzhou Univ. 1990, 1, 102–110. [Google Scholar]
- Baldini, J.; Baldini, L.M.; Mcdermott, F.; Clipson, N. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland. J. Cave Karst Stud. 2006, 68, 4–11. [Google Scholar]
- Fan, B.X.; Zhou, Z.F.; An, D.; Yan, L.H.; Zheng, W.X.; Zhu, C.C. The evolution process of atypical stalactites in Mahuang Cave, Suiyang County, Guizhou Province. Quat. Sci. 2021, 41, 1565–1573. [Google Scholar]
- Zhu, D.H.; Zhu, Q.G. Observation and research on the natural environment system in a cave—A Case Study from Xiangshui Cave in Liuzhou City, Guangxi. Carsol. Sin. 2005, 4, 318–325. [Google Scholar]
- Wang, X.Q.; Zhou, C.C.; Sun, X.Y.; Wu, C.Z. Inspection analysis of environmental change of karst cave—A case of Jiutian cave in Yiyuan county, Shandong province. Carsol. Sin. 2008, 27, 92–96. [Google Scholar]
- He, H.B.; Tang, J.; Liu, S.H.; Yang, L.; Mi, X.J.; Chen, H.Q.; Chen, H.L.; Huang, J.Y.; Zhou, H.Y. Spatial and Temporal Variation of Environments and Influencing Factors in Loufang Cave, Northeast of Sichuan Province. Trop. Geo. 2014, 34, 696–703. [Google Scholar]
- Chen, L.; Huang, J.Y.; Liu, S.H.; Chen, Q.; Yang, L.; Tong, X.N.; Huang, Y.; He, H.B.; Mi, X.J.; Zhou, H.Y. Spatial and Temporal Variation of Environments of Baojinggong Cave, Guangdong Province, China and It’s Influencing Factors. Earth Sci. 2017, 45, 164–170. [Google Scholar]
- Zhu, X.Y.; Zhang, M.L. Study on cave environmental factors based on karst cave tourism activities. Carsol. Sin. 2020, 39, 426–431. [Google Scholar]
- Luo, W.J.; Wang, S.J.; Liu, X.M. Research progresses and prospect of chimney effect about carbon cycle in the Karst cave system. Adv. Earth Sci. 2014, 29, 1333–1340. [Google Scholar]
- Ren, K.; Shen, L.C.; Yuan, D.X.; Wang, X.X.; Xu, S.Q. Carbon Cycle Characteristics in Karst Cave System of Xueyu Cave from 2012 to 2013. Earth Sci. 2016, 41, 1424–1434. [Google Scholar]
- Buecher, R.H. Microclimate study of Kartchner Caverns, Arizona. J. Cave Karst Stud. 1999, 61, 108–120. [Google Scholar]
Cave Section | Monitoring Points | Altitude (m) | Distance from Cave Entrance (m) | Cave Morphology, Sediment Morphology, and Water Flow |
---|---|---|---|---|
Near Cave Section | #1 | 720 | 10.72 | Lock-hole shaped cave entrance, wide and flat roof, cave wall always has flowing water, villager-built cistern |
#2 | 721 | 107.27 | Labyrinth-type cave hall, mammoth stalactites, crumbling blocks, perennial and more rapid stalactite drip | |
#3 | 720 | 173.47 | Labyrinthine cave passages, granular concretions, sky pots, side channels, perennial and slow stalactite drips | |
#4 | 724 | 217.5 | Labyrinthine corridors, mammillary stalactites, spiral twisted stalagmite weathering, perennial and slow stalactite dripping | |
Transi-tion zone | #5 | 725 | 250.33 | Cave-like aisles, mound-like stalagmites, stalagmites, thin sheets of diffuse water, small pools of water, significant wind sensation |
#6 | 729 | 282.54 | Narrow rift passage and rising steep scarps, curved branching stalactites, thin sheets of diffuse water, airflow wind sense is obvious | |
#7 | 724 | 335.89 | Rift narrow drop, stone waterfall, cone stalactite, side stone dam, cave beads, splash drip, diffuse water | |
#8 | 720 | 427.4 | Wide cave passages, mammillary, conical stalactites, goose tubes, spinous twisted stone columns, perennial fissure flowing water | |
#9 | 718 | 523.75 | Narrow fissures, avalanche accumulation of rock masses, mantle, hanging rocks, shell nests in groups, perennial fissure flow, | |
#10 | 710 | 681.05 | wide and high cave passage, triangular fissure, developed cave wall grooves, moist bottom clay, developed underground river, | |
#11 | 708 | 720.68 | wide and high cave roof, developed grooves, moist clay, two underground river tributaries converge into a small pool of water flowing into the shaft | |
Deep zone | #12 | 710 | 799.82 | Straight cave passages, mammoth, flag-like stalactites, nitrate turtles, boiled nitrate sites, seasonal fissure waterfalls |
#13 | 711 | 1007.9 | Straight cave passage, closed cave cavity, flow marks, side grooves, sandy clay layer mostly interspersed with cobbles and crumbling materials | |
#14 | 717 | 1106.38 | Large cave cavity, large avalanche rocks, and weathered stalagmites, inaccessible west branch cave, low southeast-facing cave passage | |
#15 | 717 | 1169.73 | Wide cave hall, stalagmites more weathered, sand layer thick, clay mud, perennial and very slow stalactite drip |
#1 (%) | #2 (%) | #3 (%) | #4 (%) | #5 (%) | #6 (%) | #7 (%) | #8 (%) | #9 (%) | #10 (%) | #11 (%) | #12 (%) | #13 (%) | #14 (%) | #15 (%) | RHoutside (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Min | 70.6 | 68.4 | 67.2 | 73.1 | 70.8 | 71.7 | 71.1 | 72 | 77.5 | 82.2 | 78.6 | 83.7 | 81.3 | 82 | 83.7 | 40.2 |
Average | 89.60 | 89.99 | 89.28 | 90.87 | 95.77 | 95.32 | 94.25 | 95.95 | 96.67 | 96.82 | 95.88 | 97.59 | 95.93 | 96.46 | 95.35 | 81.87 |
SD | 8.13 | 9.17 | 7.61 | 6.76 | 6.84 | 6.71 | 7.06 | 6.24 | 5.09 | 4.44 | 5.34 | 4.11 | 4.76 | 4.60 | 4.88 | 14.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Zhou, Z.; Ding, S.; Zhang, H.; Huang, J.; Gong, X.; Su, D. Spatiotemporal Variation Characteristics and Influencing Factors of Karst Cave Microclimate Environments: A Case Study in Shuanghe Cave, Guizhou Province, China. Atmosphere 2023, 14, 813. https://doi.org/10.3390/atmos14050813
Xiong Y, Zhou Z, Ding S, Zhang H, Huang J, Gong X, Su D. Spatiotemporal Variation Characteristics and Influencing Factors of Karst Cave Microclimate Environments: A Case Study in Shuanghe Cave, Guizhou Province, China. Atmosphere. 2023; 14(5):813. https://doi.org/10.3390/atmos14050813
Chicago/Turabian StyleXiong, Yong, Zhongfa Zhou, Shengjun Ding, Heng Zhang, Jing Huang, Xiaohuan Gong, and Dan Su. 2023. "Spatiotemporal Variation Characteristics and Influencing Factors of Karst Cave Microclimate Environments: A Case Study in Shuanghe Cave, Guizhou Province, China" Atmosphere 14, no. 5: 813. https://doi.org/10.3390/atmos14050813
APA StyleXiong, Y., Zhou, Z., Ding, S., Zhang, H., Huang, J., Gong, X., & Su, D. (2023). Spatiotemporal Variation Characteristics and Influencing Factors of Karst Cave Microclimate Environments: A Case Study in Shuanghe Cave, Guizhou Province, China. Atmosphere, 14(5), 813. https://doi.org/10.3390/atmos14050813