Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,586)

Search Parameters:
Keywords = cationic composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 993 KiB  
Article
Optical and Photoconversion Properties of Ce3+-Doped (Ca,Y)3(Mg,Sc)2Si3O12 Films Grown via LPE Method onto YAG and YAG:Ce Substrates
by Anna Shakhno, Vitalii Gorbenko, Tetiana Zorenko, Aleksandr Fedorov and Yuriy Zorenko
Materials 2025, 18(15), 3590; https://doi.org/10.3390/ma18153590 - 30 Jul 2025
Abstract
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) [...] Read more.
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) (CYMSSG:Ce) garnet, grown using the liquid phase epitaxy (LPE) method on single-crystal Y3Al5O12 (YAG) and YAG:Ce substrates. The main goal of this study is to elucidate the structure–composition–property relationships that influence the photoluminescence and photoconversion efficiency of these film–substrate composite converters, aiming to optimize their performance in high-power white light-emitting diode (WLED) applications. Systematic variation in the Y3+/Sc3+/Mg2+ cationic ratios within the garnet structure, combined with the controlled tuning of film thickness (ranging from 19 to 67 µm for CYMSSG:Ce/YAG and 10–22 µm for CYMSSG:Ce/YAG:Ce structures), enabled the precise modulation of their photoconversion properties. Prototypes of phosphor-converted WLEDs (pc-WLEDs) were developed based on these epitaxial structures to assess their performance and investigate how the content and thickness of SCFs affect the colorimetric properties of SCFs and composite converters. Clear trends were observed in the Ce3+ emission peak position, intensity, and color rendering, induced by the Y3+/Sc3+/Mg2+ cation substitution in the film converter, film thickness, and activator concentrations in the substrate and film. These results may be useful for the design of epitaxial phosphor converters with tunable emission spectra based on the epitaxially grown structures of garnet compounds. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

15 pages, 2439 KiB  
Article
Environmental Microbiome Characteristics and Disinfection Strategy Optimization in Intensive Dairy Farms: Bactericidal Efficacy of Glutaraldehyde-Based Combination Disinfectants and Regulation of Gut Microbiota
by Tianchen Wang, Tao He, Mengqi Chai, Liyan Zhang, Xiangshu Han and Song Jiang
Vet. Sci. 2025, 12(8), 707; https://doi.org/10.3390/vetsci12080707 - 28 Jul 2025
Viewed by 97
Abstract
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial [...] Read more.
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial community composition and diversity of glutaraldehyde-benzalkonium chloride (BAC) and glutaraldehyde-didecyl dimethyl ammonium bromide (DAB) at recommended concentrations (2–5%), using 80 environmental samples from intensive dairy farms in Xinjiang, China. Combining 16S rDNA sequencing with culturomics, the results showed that BAC achieved a disinfection rate of 99.33%, higher than DAB’s 97.87%, and reduced the environment–gut microbiota similarity index by 23.7% via a cationic bacteriostatic film effect. Microbiome analysis revealed that BAC selectively suppressed Fusobacteriota abundance (15.67% reduction) and promoted Bifidobacterium proliferation (7.42% increase), enhancing intestinal mucosal barrier function through butyrate metabolism. In contrast, DAB induced Actinobacteria enrichment in the environment (44.71%), inhibiting pathogen colonization via bioantagonism. BAC’s long-acting bacteriostatic properties significantly reduced disinfection costs and mastitis incidence. This study first elucidated the mechanism by which quaternary ammonium compound (QAC) disinfectants regulate host health through “environment-gut” microbial interactions, providing a critical theoretical basis for developing precision disinfection protocols integrating “cost reduction-efficiency enhancement-risk mitigation.” Full article
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(8), 686; https://doi.org/10.3390/cryst15080686 - 28 Jul 2025
Viewed by 172
Abstract
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site [...] Read more.
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site doping varied from 0 to 30 at%, yielding a composition of La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ. The resulting perovskite powders were pressurelessly sintered in air at 1400 °C for 2 h. Sintered densities were measured, and the grain structure was imaged via scanning electron microscopy to investigate the effect of doping. Samples were cut and polished, and their resistance was measured at varying temperatures in air to obtain the electrical conductivity and the mechanism that governs it. Plots of electrical conductivity as a function of composition and temperature indicate that the increased configurational entropy of the perovskite materials has a demonstrable effect. Full article
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 247
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

12 pages, 6808 KiB  
Communication
Research on Preventing High-Density Materials from Settling in Liquid Resin
by Lixin Xuan, Zhiqiang Wang, Xuan Yang, Xiao Wu, Junjiao Yang and Shijun Zheng
Materials 2025, 18(15), 3469; https://doi.org/10.3390/ma18153469 - 24 Jul 2025
Viewed by 178
Abstract
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing [...] Read more.
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing the density of the particles is essential. To achieve this goal, high-density magnetic particles were coated onto the surface of hollow silica using anion–cation composite technology. Further, the silane coupling agent N-[3-(trimethoxysilyl)propyl]ethylenediamine was bonded to the surface of magnetic particles to form an amino-covered interfacial layer with a pH value of 9.28, while acrylic acid was polymerized and coated onto the surface of hollow silica to form a carboxyl-covered interfacial layer with a pH value of 4.65. Subsequently, the two materials were compounded to obtain a low-density composite magnetic material. The morphologies and structural compositions of the magnetic composite materials were studied by FTIR, SEM, SEM-EDS, XRD, and other methods. The packing densities of the magnetic composite materials were compared using the particle packing method, thereby solving the problem of magnetic particles settling in the resin solution. Full article
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 273
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

15 pages, 4363 KiB  
Article
Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert
by Zhe Liu, Yang Zhang, Yingying Sun, Yuliang Zhang, Na Wang, Feinan Hu, Yuhu Luo and Tingting Meng
Resources 2025, 14(7), 116; https://doi.org/10.3390/resources14070116 - 21 Jul 2025
Viewed by 237
Abstract
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging [...] Read more.
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging the complementary structural and compositional properties of both materials to enhance soil stability and rehabilitate degraded environments. However, there are few studies that investigate the effect of soil surface electrochemical properties and particle interaction forces on the structural stability of compound soils with soft rock and sandy soil. This decade-long field study quantified the electrochemical properties and interparticle forces and their synergistic effects on structural stability across five soft rock-to-aeolian sandy soil blend volume ratios (0:1, 1:5, 1:2, 1:1, 1:0) within the 0–30 cm soil profile. The results showed that the soil organic matter (SOM), specific surface area (SSA), and cation exchange capacity (CEC) significantly increased with the incorporation of soft rock material. For five different proportions, with the addition of soft rock and the extension of planting years, the content of SOM increased from 5.65 g·kg−1 to 11.36 g·kg−1, the CEC varied from 4.68 cmol kg−1 to 17.91 cmol kg−1, while the σ0 importantly decreased from 1.8 to 0.47 c m−2 (p < 0.05). For the interaction force at 2.4 nm between soil particles, the absolute value of van der Waals attractive force increased from 0.10 atm to 0.38 atm, and the net force decreased from 0.09 atm to −0.30 atm after the incorporation ratios of soft rock from 0:1 to 1:1. There was a significant negative correlation between the resultant net force between the particles of compound soil and the SSA and CEC. These results indicate that the addition of soft rock material positively improves the surface electrochemical properties and internal forces between aeolian sandy soil particles, further enhancing its structural stability. This study establishes a foundational theoretical framework for advancing our mechanistic understanding of aeolian sand stabilization and ecosystem rehabilitation in the Mu Us Desert. Full article
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
The Hydrochemical Characteristics Evolution and Driving Factors of Shallow Groundwater in Luxi Plain
by Na Yu, Yingjie Han, Guang Liu, Fulei Zhuang and Qian Wang
Sustainability 2025, 17(14), 6432; https://doi.org/10.3390/su17146432 - 14 Jul 2025
Viewed by 257
Abstract
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the [...] Read more.
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the safety of groundwater quality and ensuring the high-quality development of the water supply. This study took Liaocheng City in the hinterland of the Luxi Plain as the study area. To clarify the hydrochemical characteristics evolution trend of groundwater in the area, the hydrochemical characteristics of shallow groundwater in recent years were systematically analyzed. The methods of ion ratio, correlation analysis, Gibbs and Gaillardet endmember diagrams, as well as the application of the absolute principal component scores–multiple linear regression (APCS-MLR) receptor model were used to determine the contribution rates of different ion sources to groundwater and to elucidate the driving factors behind the evolution of groundwater chemistry. Results showed significant spatiotemporal variations in the concentrations of major ions such as Na+, SO42−, and Cl in groundwater in the study area, and these variations demonstrated an overall increasing trend. Notably, the increases in total hardness (THRD), SO4, and Cl concentrations were particularly pronounced, while the variations in Na+, Mg2+, Ca2+ and other ions were relatively gradual. APCS-MLR receptor model analysis revealed that the ions such as Na+, Ca2+, Mg2+, SO42−, Cl, HCO3 and NO3 all have a significant influence on the hydrochemical composition of groundwater due to the high absolute principal component scores of them. The hydrochemical characteristics of groundwater in the study area were controlled by multiple processes, including evaporites, silicates and carbonates weathering, evaporation-concentration, cation alternating adsorption and human activities. Among the natural driving factors, rock weathering had a greater influence on the evolution of groundwater hydrochemical characteristics. Moreover, mining activities were the most important anthropogenic factor, followed by agricultural activities and living activities. Full article
Show Figures

Figure 1

26 pages, 5733 KiB  
Article
Design Optimization of Cesium Contents for Mixed Cation MA1−xCsxPbI3-Based Efficient Perovskite Solar Cell
by Syed Abdul Moiz, Ahmed N. M. Alahmadi and Mohammed Saleh Alshaikh
Nanomaterials 2025, 15(14), 1085; https://doi.org/10.3390/nano15141085 - 13 Jul 2025
Viewed by 341
Abstract
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. [...] Read more.
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. However, operational concerns under environmental stresses hinder its economic feasibility. Through the addition of cesium (Cs), this study investigates how to optimize perovskite solar cells (PSCs) based on methylammonium lead-iodide (MAPbI3) by creating mixed-cation compositions of MA1−xCsxPbI3 (x = 0, 0.25, 0.5, 0.75, 1) for devices A to E, respectively. The impact of cesium content on the following factors, such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE), was investigated using simulation software, with ITO/TiO2/MA1−xCsxPbI3/Spiro-OMeTAD/Au as a device architecture. Due to diminished defect density, the device with x = 0.5 (MA0.5Cs0.5PbI3) attains a maximum power conversion efficiency of 18.53%, with a Voc of 0.9238 V, Jsc of 24.22 mA/cm2, and a fill factor of 82.81%. The optimal doping density of TiO2 is approximately 1020 cm−3, while the optimal thicknesses of the electron transport layer (TiO2, 10–30 nm), the hole-transport layer (Spiro-OMeTAD, about 10–20 nm), and the perovskite absorber (750 nm) were identified to maximize efficiency. The inclusion of a small amount of Cs may improve photovoltaic responses; however, at elevated concentrations (x > 0.5), power conversion efficiency (PCE) diminished due to the presence of trap states. The results show that mixed-cation perovskite solar cells can be a great commercially viable option because they strike a good balance between efficiency and performance. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

19 pages, 15843 KiB  
Article
Hydrochemical Characteristics and Formation Mechanisms of Groundwater in the Nanmiao Emergency Groundwater Source Area, Yichun, Western Jiangxi, China
by Shengpin Yu, Tianye Wang, Ximin Bai, Gongxin Chen, Pingqiang Wan, Shifeng Chen, Qianqian Chen, Haohui Wan and Fei Deng
Water 2025, 17(14), 2063; https://doi.org/10.3390/w17142063 - 10 Jul 2025
Viewed by 270
Abstract
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, [...] Read more.
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, isotopic tracing, and hydrochemical modeling to reveal the hydrochemical characteristics and origins of groundwater in the region. The results indicate that Na+ and Ca2+ dominate the cations, while HCO3 and Cl dominate the anions. Groundwater from descending springs is characterized by low mineralization and weak acidity, with hydrochemical types of primarily HCO3–Na·Mg and HCO3–Mg·Na·Ca. Groundwater from boreholes is weakly mineralized and neutral, with dominant hydrochemical types of HCO3–Ca·Na and HCO3–Ca·Na·Mg, suggesting a deep circulation hydrogeochemical process. Hydrogen and oxygen isotope analysis indicates that atmospheric precipitation is the primary recharge source. The chemical composition of groundwater is mainly controlled by rock weathering, silicate mineral dissolution, and cation exchange processes. During groundwater flowing, water and rock interactions, such as leaching, cation exchange, and mixing, occur. This study identifies the recharge sources and circulation mechanisms of regional groundwater, offering valuable insights for the sustainable development and protection of the emergency water source area. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

16 pages, 1636 KiB  
Article
Lithological Controls on Chemical Weathering and CO2 Consumption at Small Watershed Scale: Insights from Hydrochemistry and Stable Carbon Isotope
by Yuanzheng Zhang, Wenlong Huang, Zhuohan Zhuang, Jing Hua, Litong Bai, Yi Ding, Ling Zheng, Cheng Wang, Chuang Zhao and Yunde Liu
Water 2025, 17(13), 2008; https://doi.org/10.3390/w17132008 - 4 Jul 2025
Viewed by 322
Abstract
Previous investigations into lithology-driven weathering processes have largely emphasized large-scale spatial assessments, while studies targeting small watershed scales remain scarce. This study investigated two adjacent watersheds (Chengjia: CJ; Datan: DT) under comparable climatic conditions in Guangdong, China, using hydrochemistry and stable carbon isotopes. [...] Read more.
Previous investigations into lithology-driven weathering processes have largely emphasized large-scale spatial assessments, while studies targeting small watershed scales remain scarce. This study investigated two adjacent watersheds (Chengjia: CJ; Datan: DT) under comparable climatic conditions in Guangdong, China, using hydrochemistry and stable carbon isotopes. The CJ watershed exhibited low-TDS (20–66 mg/L) HCO3-Na·Ca-type waters dominated by silicate weathering, whereas the DT watershed displayed high-TDS (70–278 mg/L) HCO3-Ca-type waters, indicative of mixed carbonate–silicate weathering. Results of carbon isotope composition of dissolved inorganic carbon confirmed that H2CO3-driven weathering was the dominant mechanism in both watersheds. In the CJ watershed, 79.5% of dissolved cations in surface water originated from silicate weathering, yielding a CO2 consumption rate (CCR) of 0.28 × 106 mol/km2/yr, while carbonate weathering was negligible. Conversely, in the DT watershed, 86.4% of dissolved cations were derived from carbonate weathering, yielding a CCR of 1.94 × 106 mol/km2/yr, whereas silicate weathering contributed only 10.3% of cations with a CCR of 0.23 × 106 mol/km2/yr. The chemical weathering rate of carbonate can be up to 10 times that of silicate, resulting in a larger CCR. This study demonstrated the key impact of lithology on hydrochemical characteristics and CO2 consumption at small watershed scales. Full article
(This article belongs to the Special Issue Water–Rock Interaction)
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 280
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

19 pages, 5287 KiB  
Article
Removal of Anionic and Cationic Dyes from Wastewater by Tetravalent Tin-Based Novel Coagulants
by Athanasia K. Tolkou, Argyro Giannoulaki, Paraskevi Chalkidi, Eleftheria Arvaniti, Sofia Fykari, Smaragda Kritaki and George Z. Kyzas
Processes 2025, 13(7), 2103; https://doi.org/10.3390/pr13072103 - 2 Jul 2025
Viewed by 401
Abstract
Wastewater contains dyes originating from textile industries, and above a certain concentration, they can become dangerous due to their high toxicity. Divalent and trivalent metal coagulants, usually aluminum- or iron-based, have been studied worldwide. However, tetravalent coagulants, such as tin chloride, have not [...] Read more.
Wastewater contains dyes originating from textile industries, and above a certain concentration, they can become dangerous due to their high toxicity. Divalent and trivalent metal coagulants, usually aluminum- or iron-based, have been studied worldwide. However, tetravalent coagulants, such as tin chloride, have not yet been extensively studied for application in wastewater treatment. Therefore, in this study, three types of coagulants were examined: SnCl4, Cs, and a hybrid composite (CS@Sn) in two different mass ratios, abbreviated hereafter as CS@Sn5% and CS@Sn50%. The formation of the suggested CS@Sn hybrid coagulants was confirmed by applying SEM, XRD, and FTIR techniques. The results showed that the optimum conditions for RB5 removal was the addition of 20 mg Sn/L SnCl4 (97.8%) and 50 mg Sn/L of CS@Sn50% (64.8%) at pH 3.0. In addition, SnCl4 was found to be an effective coagulant for all the examined anionic dyes, but it was not as effective for cationic dyes. Moreover, the coagulants were then tested in two mixed-dye solutions, both anionic dyes (RB5/RR120) and anionic/cationic (RB5/MV), resulting in a synergistic effect in the first one and a competitive effect in the secon. Finally, the proposed coagulants were successfully tested on real wastewater samples from an untreated textile dyeing industry. Therefore, the coagulants presented in this work for the removal of several dyes are also capable of being used for wastewater treatment. Full article
(This article belongs to the Special Issue Advances in Adsorption of Wastewater Pollutants)
Show Figures

Figure 1

22 pages, 1380 KiB  
Review
Carbon Mineralization in Basaltic Rocks: Mechanisms, Applications, and Prospects for Permanent CO2 Sequestration
by Ernest Ansah Owusu, Jiyue Wu, Elizabeth Akonobea Appiah, William Apau Marfo, Na Yuan, Xiaojing Ge, Kegang Ling and Sai Wang
Energies 2025, 18(13), 3489; https://doi.org/10.3390/en18133489 - 2 Jul 2025
Viewed by 616
Abstract
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an [...] Read more.
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an effective and durable solution for carbon dioxide sequestration. Basaltic rocks are widely used for road and building construction and insulation, soil amendment, and in carbon storage. There is a need to understand the parameters that affect this process in order to achieve efficient carbon mineralization. This review systematically analyzes peer-reviewed studies and project reports published over the past two decades to assess the mechanisms, effectiveness, and challenges of carbon mineralization in basaltic formations. Key factors such as mineral composition, pH, temperature and pressure are evaluated for their impact on mineral dissolution and carbonate precipitation kinetics. The presence of olivine and basaltic glass also accelerates cation release and carbonation rates. The review includes case studies from major field projects (e.g., CarbFix and Wallula) and laboratory experiments to illustrate how mineralization performs in different geological environments. It is essential to maximize mineralization kinetics while ensuring the formation of stable carbonate phases in order to achieve efficient and permanent carbon dioxide storage in basaltic rock. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

25 pages, 3047 KiB  
Article
Fate of Pyrrolizidine Alkaloids in Soil: Insights from Myosotis arvensis L. and Senecio vulgaris L.
by Ilva Nakurte, Gundars Skudriņš and Ieva Mežaka
Toxins 2025, 17(7), 335; https://doi.org/10.3390/toxins17070335 - 2 Jul 2025
Viewed by 393
Abstract
Pyrrolizidine alkaloids are plant-derived toxins with environmental persistence and the potential to contaminate soil, water, and adjacent crops. This study investigated the leaching behavior and environmental fate of PAs from two PA-producing weeds—Myosotis arvensis L. (Boraginaceae) and Senecio vulgaris L. (Asteraceae)—in two [...] Read more.
Pyrrolizidine alkaloids are plant-derived toxins with environmental persistence and the potential to contaminate soil, water, and adjacent crops. This study investigated the leaching behavior and environmental fate of PAs from two PA-producing weeds—Myosotis arvensis L. (Boraginaceae) and Senecio vulgaris L. (Asteraceae)—in two Latvian agricultural soils: sandy loam and loam. Hot- and cold-water plant extracts were applied to soil columns (10 cm and 20 cm), and leachates were analyzed over a 14-day period using QuEChERS purification and LC-HRMS detection. Leaching varied by plant species, extract type, and soil. M. arvensis showed significantly higher cumulative leaching (77–84% for cold, 65–71% for hot extracts), attributed to the higher solubility of N-oxides. In contrast, S. vulgaris extracts leached minimally (<0.84% from sandy loam) and were undetectable in loam. The presence of cyclic diester PAs in S. vulgaris and the higher cation exchange capacity of loam favored retention or degradation. PANO-to-PA conversion occurred in both soils, indicating redox activity. The fate of PAs was influenced by structural type (diesters showing higher persistence), extraction method (hot extraction releasing more pyrrolizidine alkaloids), and soil properties such as pH, organic matter, and cation exchange capacity, which affected sorption and mobility. These findings underscore the significance of soil composition in controlling PA mobility and associated environmental risks. Future research should focus on long-term PA persistence across diverse soil types and investigate crop uptake potential and microbial degradation pathways under field conditions. Full article
(This article belongs to the Special Issue Toxic Plant-Derived Metabolites)
Show Figures

Figure 1

Back to TopTop