Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (627)

Search Parameters:
Keywords = cathode rays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6934 KiB  
Article
In Situ High-Resolution Optical Microscopy Survey of the Initial Reactivity of Multiphase ZnAlMgSi Coating on Steel
by Guilherme Adinolfi Colpaert Sartori, Oumayma Gabsi, Tiago Machado Amorim, Viacheslav Shkirskiy and Polina Volovitch
Metals 2025, 15(8), 821; https://doi.org/10.3390/met15080821 - 23 Jul 2025
Abstract
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 [...] Read more.
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 aqueous solutions. In both environments, galvanic coupling between different coating phases and the anodic behavior decreased in the order binary ZnAl > binary Zn/Zn2Mg > Zn2Mg > Al(Zn); dendrites were evidenced for the coating exposed alone as well as in galvanic coupling with steel. Contrary to the observations known for Zn-rich ZnAlMg coatings, pure Zn2Mg was less reactive than the pure ZnAl phase, underlining the importance of the microstructure for reactivity. Si-needles were systematically cathodic, and Al(Zn) dendrites have shown cathodic behavior in some couplings. In the configuration of coupling with steel, corrosion started at the interfaces “binary ZnAl/steel substrate” or “binary ZnAl/Si particle”. The distribution and nature of the corrosion products formed during the experiment were assessed using X-ray microanalysis in scanning electron microscopy and confocal Raman microscopy. In the sulfate environment, a homogenous and stable corrosion product layer formed from the first steps of the degradation; this was in contrast to the chloride environment, where no surface film formed on the dendrites. Full article
Show Figures

Figure 1

20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 167
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

21 pages, 6239 KiB  
Article
Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater
by Hannanatullgharah Hayeedah, Aparporn Sakulkalavek, Bhanupol Klongratog, Nuttakrit Somdock, Pisan Srirach, Pichet Limsuwan and Kittisakchai Naemchanthara
Processes 2025, 13(7), 2232; https://doi.org/10.3390/pr13072232 - 12 Jul 2025
Viewed by 263
Abstract
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), [...] Read more.
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), and it was found that the optimum milling time was 30 h. The homogeneity of the Fe and Cu elements in the Fe–Cu alloys was analyzed using the scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) mapping technique. Additionally, the crystal orientation of the Fe–Cu alloys was investigated using transmission electron microscopy (TEM). To fabricate the cathode for nitrate removal via electrolysis, an Fe–Cu alloy milled for 30 h was deposited onto a copper substrate using mechanical milling, then annealed at 800 °C. A pulsed DC electrolysis method was developed to test the nitrate removal efficiency of the Fe–Cu-coated cathode. The anode used was an Al sheet. The synthesized wastewater was prepared from KNO3. Nitrate removal experiments from the synthesized wastewater were performed for durations of 0–4 h. The results show that the nitrate removal efficiency at 4 h was 96.90% compared to 74.40% with the Cu cathode. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

20 pages, 6807 KiB  
Article
Enhancing Electrochemical Kinetics and Stability of Biodegradable Mg-Y-Zn Alloys with LPSO Phases via Strategic Micro-Alloying with Ca, Sr, Mn, and Zr
by Lisha Wang, Huiping Wang, Chenchen Zhang, Wei Sun, Yue Wang, Lijuan Wang and Xiaoyan Kang
Crystals 2025, 15(7), 639; https://doi.org/10.3390/cryst15070639 - 11 Jul 2025
Viewed by 251
Abstract
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), [...] Read more.
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS). Electrochemical properties were assessed through potentiodynamic polarization in Hank’s solution, and corrosion rates were determined by hydrogen evolution and weight loss methods. Microalloying significantly enhanced the corrosion resistance of the base Mg-Y-Zn alloy, with corrosion rates decreasing from 2.67 mm/year (unalloyed) to 1.65 mm/year (Ca), 1.36 mm/year (Sr), 1.18 mm/year (Zr), and 1.02 mm/year (Mn). Ca and Sr additions introduced Mg2Ca and Mg17Sr2, while Mn and Zr refined the existing LPSO structure without new phases. Sr refined the LPSO phase and formed a uniformly distributed Mg17Sr2 network, promoting uniform corrosion and suppressing deep localized attacks. Ca-induced Mg2Ca acted as a temporary sacrificial phase, with corrosion eventually propagating along LPSO interfaces. The Mn-containing alloy exhibited the lowest corrosion rate; this is attributed to the suppression of both anodic and cathodic reaction kinetics and the formation of a stable protective surface film. Zr improved general corrosion resistance but increased susceptibility to localized attacks due to dislocation-rich zones. These findings elucidate the corrosion mechanisms in LPSO-containing Mg alloys and offer an effective strategy to enhance the electrochemical stability of biodegradable Mg-based implants. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Probing Solid-State Interface Kinetics via Alternating Current Electrophoretic Deposition: LiFePO4 Li-Metal Batteries
by Su Jeong Lee and Byoungnam Park
Appl. Sci. 2025, 15(13), 7120; https://doi.org/10.3390/app15137120 - 24 Jun 2025
Viewed by 285
Abstract
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4) [...] Read more.
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) as the solid-state electrolyte. We demonstrate that optimal sintering improves the LATP–LFP interfacial contact, leading to higher lithium diffusivity (~10−9 cm2∙s−1) and diffusion-controlled kinetics (b ≈ 0.5), which directly translate to better rate capability. Structural and electrochemical analyses—including X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and rate capability tests—demonstrate that the cell with LATP sintered at 900 °C delivers the highest Li-ion diffusivity (~10−9 cm2∙s−1), near-ideal diffusion-controlled behavior (b-values ~0.5), and superior rate capability. In contrast, excessive sintering at 1000 °C led to reduced diffusivity (~10−10 cm2∙s−1). The liquid electrolyte system showed higher b-values (~0.58), indicating the inclusion of surface capacitive behavior. The correlation between b-values, diffusivity, and morphology underscores the critical role of interface engineering and electrolyte processing in determining the performance of solid-state batteries. This study establishes AC-EPD as a viable and scalable method for fabricating additive-free LFP cathodes and offers new insights into the structure–property relationships governing the interfacial transport in ASSBs. Full article
Show Figures

Figure 1

15 pages, 4194 KiB  
Article
Performance Enhancement of a-C:Cr Thin Films Deposited on 316L Stainless Steel as Bipolar Plates via a Thin Ti Layer by Mid-Frequency Magnetron Sputtering for PEMFC Application
by Yuxing Zhao, Song Li, Saiqiang Wang, Ming Ma, Ming Chen, Jiao Yang, Chunlei Yang and Weimin Li
Energies 2025, 18(13), 3270; https://doi.org/10.3390/en18133270 - 23 Jun 2025
Viewed by 300
Abstract
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film [...] Read more.
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film morphology and microstructure were analyzed via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). At a pressure of 1.4 MPa, the interfacial contact resistance (ICR) of SS316L bipolar plates (BPPs) coated with the films reached as low as 3.30 mΩ·cm2, while that of titanium BPPs was 2.90 mΩ·cm2. Under simulated proton exchange membrane fuel cell (PEMFC) cathode conditions (70 °C, 0.6 V vs. SCE, 0.5 M H2SO4, 5 ppm HF solution), the corrosion current density, Icorr, reached optimal values of 0.69 μA·cm−2 for SS316L and 0.62 μA·cm−2 for titanium. These results demonstrate that parameter optimization enables SS316L BPPs to functionally replace titanium counterparts, offering significant cost reductions for metal BPPs and accelerating the commercialization of PEMFC technology. Full article
Show Figures

Figure 1

12 pages, 2936 KiB  
Article
Binder-Free Metal–Organic Framework-Derived Zn(CN)2/V2O3/Carbon Cathode Fabricated via Electrophoretic Deposition for High-Performance Zn-Ion Batteries
by Hyemin Lee and Byoungnam Park
Inorganics 2025, 13(6), 194; https://doi.org/10.3390/inorganics13060194 - 11 Jun 2025
Viewed by 430
Abstract
In this study, a Zn(CN)2–V2O3–C composite cathode was synthesized via AC electrophoretic deposition (EPD) and evaluated for application in aqueous zinc-ion batteries (ZIBs). Here, we report for the first time a binder-free Zn(CN)2–V2O [...] Read more.
In this study, a Zn(CN)2–V2O3–C composite cathode was synthesized via AC electrophoretic deposition (EPD) and evaluated for application in aqueous zinc-ion batteries (ZIBs). Here, we report for the first time a binder-free Zn(CN)2–V2O3–C composite cathode, using AC-EPD to create an ultrathin architecture optimized for probing the electrode–electrolyte interface without interference from additives or bulk effects. The composite combines Zn(CN)2 for structural support, V2O3 as the redox-active material, and carbon for improved conductivity. X-ray diffraction confirmed the presence of Zn(CN)2 and V2O3 phases, while scanning electron microscopy revealed a uniform, ultrathin film morphology. Electrochemical analysis demonstrated a hybrid charge storage mechanism with a b-value of 0.64, indicating both capacitive and diffusion-controlled contributions. The electrode delivered a high specific capacity (~250 mAh/g at 500 mA/g) with stable cycling performance. These results highlight the potential of metal–organic framework-derived composites for high-performance ZIB cathodes. The composite is especially effective when prepared via AC-EPD, which yields ultrathin, uniform films with strong adhesion and low agglomeration. This enhances energy storage performance and provides a reliable platform for focusing on interfacial charge storage, excluding the effect of binders on electrochemical performance. Full article
Show Figures

Figure 1

17 pages, 1202 KiB  
Article
Influence of the Dissolution of Al- and Zn-Based Galvanic Anodes on the Composition of Calcareous Deposits
by Florent Batisse, Malo Duportal, Céline Rémazeilles, Alban Edouard, Ludovic Meuriot and Philippe Refait
J. Mar. Sci. Eng. 2025, 13(6), 1130; https://doi.org/10.3390/jmse13061130 - 5 Jun 2025
Viewed by 402
Abstract
The possible incorporation of Al and Zn issuing from galvanic anodes in the calcareous deposit forming on carbon steel surfaces subjected to cathodic protection was studied via three methodological approaches. The calcareous deposits were analyzed by X-ray diffraction for phase composition and X-ray [...] Read more.
The possible incorporation of Al and Zn issuing from galvanic anodes in the calcareous deposit forming on carbon steel surfaces subjected to cathodic protection was studied via three methodological approaches. The calcareous deposits were analyzed by X-ray diffraction for phase composition and X-ray fluorescence spectroscopy for chemical composition. First, a calcareous deposit formed on the steel pile of a seaport installation, sampled far (2 m) from the closest galvanic anode, was found to incorporate a small amount of the pollutants present in the seawater (Zn, Ti, Cu). An in situ experiment performed at another seaport focused on the calcareous deposit formed on steel surfaces close to the anode. In this case, a small amount of Zn directly issuing from the anode was incorporated in the deposit. This amount remained low as it corresponded to Zn(II) species adsorbed on the surface of aragonite crystals. Finally, laboratory experiments were performed with Zn(II) and/or Al(III) chlorides (10−3 mol L−1 each) added to seawater. With both Zn(II) and Al(III), a Zn(II)-Al(III) hydroxychloride precipitated in the bulk seawater. With only Al(III), and under a higher cathodic current density, Al(III) could be incorporated in a deposit mainly composed of brucite, but only in small amount. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5064 KiB  
Article
Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires
by Anna Nykiel, Alain Walcarius and Malgorzata Kac
Materials 2025, 18(11), 2629; https://doi.org/10.3390/ma18112629 - 4 Jun 2025
Viewed by 447
Abstract
This study focused on investigations of FeCo and FeNi nanowires prepared by template-assisted electrodeposition in polycarbonate membranes. Nanowires with a diameter of 100 nm and length of 6 µm were grown at different cathodic potentials and electrolyte compositions. Scanning electron microscopy images revealed [...] Read more.
This study focused on investigations of FeCo and FeNi nanowires prepared by template-assisted electrodeposition in polycarbonate membranes. Nanowires with a diameter of 100 nm and length of 6 µm were grown at different cathodic potentials and electrolyte compositions. Scanning electron microscopy images revealed densely packed arrays of continuous nanowires with smooth surfaces without visible porosity, regardless of the applied potential. Chemical analysis of nanowires pointed out weak sensitivity of chemical composition on the electrodeposition potential in the case of FeCo nanowires, in contrast to FeNi nanowires, where the increase of the cathodic potential resulted in higher Ni content. X-ray diffraction studies showed polycrystalline structure for all samples indicating B2 phase (Pm-3m) with isotropic growth of FeCo nanowires and FeNi3 phase with a preferential growth along [111] direction in the case of FeNi nanowires. The peak broadening suggests a fine crystalline structure for both FeCo and FeNi materials with average crystallite sizes below 20 nm. Magnetic studies indicated an easy axis of magnetization parallel to the nanowire axis for all FeCo nanowires and potential-dependent anisotropy for FeNi nanowires. The present studies thus suggested the feasibility of producing segmented nanowires based on FeNi alloys, while poor chemical sensitivity to the applied potential was observed for the FeCo system. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

11 pages, 4011 KiB  
Article
Cobalt Doping of Na2VTi(PO4)3 Enables a High-Energy NASICON-Type Cathode Material for Sodium-Ion Batteries
by Yu Zhang, Mengyao Wang, Hao Fan, Chenyang Huang, Mingfei Liu, Xiaofa Liang, Ping Hu, Xuanpeng Wang, Qin Wang, Fei Lv and Liang Zhou
Materials 2025, 18(11), 2419; https://doi.org/10.3390/ma18112419 - 22 May 2025
Viewed by 491
Abstract
Natrium superionic conductor (NASICON) compounds have emerged as a rising star in the field of sodium-ion batteries (SIBs) owing to their stable framework structure and high Na+ ionic conductivity. The NASICON-structured Na2VTi(PO4)3 manifests significant potential as Na [...] Read more.
Natrium superionic conductor (NASICON) compounds have emerged as a rising star in the field of sodium-ion batteries (SIBs) owing to their stable framework structure and high Na+ ionic conductivity. The NASICON-structured Na2VTi(PO4)3 manifests significant potential as Na+ storage material, characterized by decent rate capability and cyclability. However, the low redox potential of Ti3+/Ti4+ and undesirable energy density limit its practical applications. We developed a NASICON-structured Na3Co2/3V2/3Ti2/3(PO4)3 (NCTVP) cathode material by doping an appropriate amount of cobalt into Na2VTi(PO4)3. Cobalt doping introduces a Co3+/Co2+ redox couple at ~4.1 V and activates the V5+/V4+ redox at ~3.9 V, resulting in significantly increased medium discharge voltage and capacity. NCTVP demonstrates a high capacity of over 160 mAh g−1 at 20 mA g−1. With a medium discharge voltage of ~2.7 V, the energy density of NCTVP reaches 432.0 Wh kg−1. NCTVP also demonstrates desirable cycling stability (87.4% retention for 100 cycles at 50 mA g−1). In situ X-ray diffraction discloses a solid solution reaction mechanism for NCTVP, while the galvanostatic intermittent titration technique demonstrates fast Na+ diffusion kinetics. NCTVP also demonstrates high capacity and good cyclability in full cells. This contribution demonstrates an effective approach for the construction of NASICON materials for SIBs. Full article
Show Figures

Figure 1

21 pages, 14426 KiB  
Article
Corrosion Resistance and Surface Conductivity of 446 Stainless Steel with Electrochemical Cr-Enrichment and Nitridation for Proton Exchange Membrane Fuel Cell (PEMFC) Bipolar Plates
by Ronghai Xu, Yangyue Zhu, Ruigang Zhu and Moucheng Li
Metals 2025, 15(5), 566; https://doi.org/10.3390/met15050566 - 21 May 2025
Viewed by 449
Abstract
The development of bipolar plate materials with enhanced corrosion resistance and surface conductivity is critical for the commercial application of proton exchange membrane fuel cells (PEMFCs). The corrosion behavior and surface conductivity of electrochemically nitrided 446 stainless steel with and without the pretreatment [...] Read more.
The development of bipolar plate materials with enhanced corrosion resistance and surface conductivity is critical for the commercial application of proton exchange membrane fuel cells (PEMFCs). The corrosion behavior and surface conductivity of electrochemically nitrided 446 stainless steel with and without the pretreatment of Cr-enrichment were investigated in the simulated PEMFC anode and cathode environments (i.e., 0.5 mol L−1 H2SO4 + 2 ppm HF solution bubbled with hydrogen or air at 80 °C) using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma–mass spectrometry (ICP-MS), and electrochemical measurement techniques. Extending the nitriding time from 5 to 30 min enhances the surface conductivity but reduces the corrosion resistance. After the pretreatment and 30 min of nitridation, a thin film formed on the specimen surface, which mainly consists of Cr-nitrides and -oxides with atomic fractions of 0.42 and 0.37, respectively. The Cr-enriched and nitrided specimen shows spontaneous passivation in both the simulated cathode and anode environments and higher corrosion potentials, lower passive current densities, and larger polarization resistances in comparison with the directly nitrided specimens. Its stable current densities are about 0.26 and −0.39 μA cm−2 after 5 h of polarization tests at 0.6 VSCE in the cathode environment and at −0.1 VSCE in the anode environment, respectively. Its contact resistance is about 5.0 mΩ cm2 under 1.4 MPa, which is close to that of the specimen directly nitrided for 120 min and slightly decreases after the potentiostatic polarization tests. These results indicate that Cr-rich pretreatment improves not only the corrosion resistance and surface conductivity of nitrided specimens but also the efficiency of electrochemical nitridation. Full article
Show Figures

Figure 1

12 pages, 4676 KiB  
Article
Comprehensive Study of Electrolytic Plasma Nitriding of Austenitic Stainless Steels
by Bauyrzhan Rakhadilov, Zarina Satbayeva, Almasbek Maulit, Rauan Kozhanova, Rinat Kurmangaliyev and Anuar Rustemov
Crystals 2025, 15(5), 456; https://doi.org/10.3390/cryst15050456 - 13 May 2025
Viewed by 340
Abstract
The study investigates the spectral, structural, and phase changes occurring in austenitic steel 12Kh18N10T during cathodic electrolytic plasma nitriding (EPN) in a Na2CO3–CO(NH2)2–NH4Cl electrolyte at 550 °C for 10 min. Emission spectroscopy revealed [...] Read more.
The study investigates the spectral, structural, and phase changes occurring in austenitic steel 12Kh18N10T during cathodic electrolytic plasma nitriding (EPN) in a Na2CO3–CO(NH2)2–NH4Cl electrolyte at 550 °C for 10 min. Emission spectroscopy revealed active plasma components: N2+, N I, Hα, and O I. The electron density, calculated from the Hα line broadening, was approximately 8.5 × 1018 cm−3. X-ray phase analysis revealed the formation of CrN, Fe3N phases, and a solid solution of nitrogen in γ-Fe. SEM analysis revealed a three-layer structure of the nitrided layer: a nitride zone, a transition region, and the austenitic matrix. The EDS profile confirmed a decrease in nitrogen concentration, accompanied by a reduction in microhardness from a maximum of 480 HV at the surface, both gradually decreasing with depth. The friction coefficient decreased from ~0.8 (in the initial state) to ~0.6 after EPN. The results confirm the effectiveness of EPN in strengthening and improving the wear resistance of stainless steel. Full article
Show Figures

Figure 1

26 pages, 2803 KiB  
Article
End of Life Management Sustainability of Waste Electrical and Electronic Equipment Generated in Romania
by Anisoara Enache Talpalaru, Daniela Gavrilescu and Carmen Teodosiu
Sustainability 2025, 17(9), 4105; https://doi.org/10.3390/su17094105 - 1 May 2025
Viewed by 476
Abstract
Waste electrical and electronic equipment (WEEE) is a continuously growing concern, with issues arising from intensive resource consumption and the environmental and human impacts being caused by inadequate practices. The purpose of this study is to evaluate the impacts of end-of-life management options [...] Read more.
Waste electrical and electronic equipment (WEEE) is a continuously growing concern, with issues arising from intensive resource consumption and the environmental and human impacts being caused by inadequate practices. The purpose of this study is to evaluate the impacts of end-of-life management options generated by Information Technology (IT) and telecommunication equipment in Romania during the period of 2018–2021 from a sustainability point of view, including environmental aspects, such as greenhouse gas emissions (GHG) and energy consumption, economic aspects, considering workforce earnings and revenues collected for the public budget, and social impacts through job creation. To achieve the main objective, a two-step methodology is used, with one step to determine the relevant quantities of WEEE generated by the subcategories of IT and telecommunication equipment, using the European Union’s WEEE Calculation Tool based on two approaches, WEEE reported in Eurostat (Scenario 1) and apparent consumption (Scenario 2), and a second step to evaluate the environmental, economic, and social impacts of the WEEE management system by applying Waste Reduction Model (US EPA WARM). Regarding the six WEEE categories evaluated, in both scenarios, Flat-Panel Displays is the category with the lowest environmental impact and highest economic and social benefits, while, on the opposite side, the Cathode-Ray Tube (CRT) category displays the highest environmental impact and lowest economic and social benefits. Full article
Show Figures

Figure 1

14 pages, 8563 KiB  
Article
Simultaneous Hydrogen Production and Dye Decomposition in Alkaline Photocatalytic Process Using Calcined Xerogels of CuO-TiO2
by Susana López-Ayala, Elsa C. Menchaca Campos, Miguel A. Méndez-Rojas and Marina E. Rincón
Gels 2025, 11(5), 319; https://doi.org/10.3390/gels11050319 - 25 Apr 2025
Viewed by 709
Abstract
Research on hydrogen (H2) production has been intensively investigated due to the critical need for transitioning from fossil fuels to cleaner energy sources. This study demonstrates a dual-purpose approach where water pollutant degradation and H2 production occur simultaneously, eliminating the [...] Read more.
Research on hydrogen (H2) production has been intensively investigated due to the critical need for transitioning from fossil fuels to cleaner energy sources. This study demonstrates a dual-purpose approach where water pollutant degradation and H2 production occur simultaneously, eliminating the need for sacrificial materials and reducing costs. CuO-TiO2 calcined xerogels were employed in solutions containing NaOH and acid black dye 1 (AB1). The CuO-TiO2/AB1/NaOH system successfully degraded recalcitrant pollutants while producing H2 under optimized conditions. H2 evolution occurred at the photocatalyst holes due to AB1’s lower potential compared to water, while AB1 decomposition proceeded via O2•− radical formation. X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses showed sponge-like structures with 20 nm crystals. Polarization curves confirmed H2 generation in the cathodic region. Bode diagrams of the CuO-TiO2/AB1/NaOH system (0.3 M NaOH and 60 mg/L AB1) exhibited noble/passive behavior, consistent with the polarization curve data. Using 0.3–0.4 M NaOH and 60 mg/L AB1, 636–647 ppb H2/gcatalyst was produced in 60 min, and only 0.07 mg/L AB1 was left as indicated by absorbance measurements at 618 nm. H2 evolution decreased as dye degradation increased. The best system for dye degradation has a k constant of 0.066 min−1 and R2 of 0.99, contains 40 mg/L AB1, and runs at 40 °C, whereas the maximum dual performance required 0.5 M NaOH, yielding 5050 ppb H2/gcatalyst. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Graphical abstract

17 pages, 4691 KiB  
Article
Impact of KNO3-Based Salt Nitriding Treatment on the Microstructure and Corrosion Resistance of Steel 20MnCr5
by Matej Fonović, Dario Kvrgić, Lovro Liverić and Ivna Kavre Piltaver
Materials 2025, 18(8), 1857; https://doi.org/10.3390/ma18081857 - 18 Apr 2025
Viewed by 447
Abstract
This study investigates the impact of KNO3-based salt bath nitriding on the microstructure, hardness, and corrosion resistance of 20MnCr5 steel. The nitriding process was conducted at 600 °C for 3 h and resulted in a nitrogen diffusion zone with a thickness [...] Read more.
This study investigates the impact of KNO3-based salt bath nitriding on the microstructure, hardness, and corrosion resistance of 20MnCr5 steel. The nitriding process was conducted at 600 °C for 3 h and resulted in a nitrogen diffusion zone with a thickness that varied across the specimen, reaching a maximum of 70 μm. X-ray diffraction (XRD) analysis revealed no detectable nitrides, indicating nitrogen primarily occupied interstitial sites in the ferrite lattice and caused a lattice expansion of ~0.16%. Nanoindentation measurements showed an 80% increase in surface hardness (10.2 GPa) compared to the substrate (5.67 GPa), attributed to the solid solution strengthening mechanism. In contrast, however, an 18% decrease in Young’s modulus was observed near the surface, likely due to nitrogen-induced lattice distortions and crystal defects. Electrochemical tests in a 3.5 wt.% NaCl solution showed improved corrosion resistance, with the nitrided specimen exhibiting a 58% lower corrosion rate (1.275 mm/year) compared to untreated steel (3.04 mm/year). Despite a cathodic shift in corrosion potential, indicating localized susceptibility, the surface layer acted as a partial barrier to chloride ingress. The study demonstrates that KNO3-based salt nitriding is an environmentally friendly alternative to cyanide-based processes that offers good surface hardness and corrosion resistance, but needs to be further optimized. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Graphical abstract

Back to TopTop