Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrochemical Studies
3.2. Morphology and Chemical Composition of Nanowires
3.3. Phase Composition
3.4. Magnetic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno, J.A.; Bran, C.; Vazquez, M.; Kosel, J. Cylindrical magnetic nanowires applications. IEEE Trans. Magn. 2021, 57, 800317. [Google Scholar] [CrossRef]
- Bograchev, D.A.; Kabanova, T.B.; Davydov, A.D. Electrodeposition of metals into nano/micropores of templates: A type of electrochemistry under confinement (review). J. Solid State Electr. 2025, 29, 1309–1340. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.; Yang, S.-H. Memory on the Racetrack. Nat. Nanotechnol. 2015, 10, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Andreas, C.; Kákay, A.; García-Sánchez, F.; Hertel, R. Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes. Appl. Phys. Lett. 2012, 100, 252401. [Google Scholar] [CrossRef]
- Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.; Hertel, R.; Fischer, P.; Cowburn, R.P. Three-Dimensional Nanomagnetism. Nat. Commun. 2017, 8, 15756. [Google Scholar] [CrossRef]
- Um, J.; Zamani Kouhpanji, M.R.; Liu, S.; Nemati Porshokouh, Z.; Sung, S.-Y.; Kosel, J.; Stadler, B. Fabrication of long-range ordered aluminum oxide and Fe/Au multilayered nanowires for 3-D magnetic memory. IEEE Trans. Magn. 2020, 56, 6701006. [Google Scholar] [CrossRef]
- Chiba, D.; Yamada, G.; Koyama, T.; Ueda, K.; Tanigawa, H.; Fukami, S.; Suzuki, T.; Ohshima, N.; Ishiwata, N.; Nakatani, Y.; et al. Control of multiple magnetic domain walls by current in a Co/Ni nano-mire. Appl. Phys. Express 2010, 3, 073004. [Google Scholar] [CrossRef]
- Schöbitz, M.; Novotný, O.; Trapp, B.; Bochmann, S.; Cagnon, L.; Thirion, C.; Massebœuf, A.; Mossang, E.; Fruchart, O.; Bachmann, J. A material view on extrinsic magnetic domain wall pinning in cylindrical CoNi nanowires. J. Phys. Chem. C 2023, 127, 2387–2397. [Google Scholar] [CrossRef]
- Dobosz, I. Influence of the anodization conditions and chemical treatment on the formation of alumina membranes with defined pore diameters. J. Porous Mater. 2021, 28, 1011–1022. [Google Scholar] [CrossRef]
- Fedorchuk, A.; Walcarius, A.; Laskowska, M.; Vilà, N.; Kowalczyk, P.; Cpałka, K.; Laskowski, L. Synthesis of vertically aligned porous silica thin films functionalized by silver ions. Int. J. Mol. Sci. 2021, 22, 7505. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Khan, M.; Ali, G.; Ahmad, M. Electrodeposition of copper nanowires in porous polycarbonate. Nucleus 2009, 46, 21–26. [Google Scholar] [CrossRef]
- Nasirpouri, F. Electrodeposition of Nanostructured Materials; Springer Series in Surface Sciences; Springer International Publishing: Cham, Switzerland, 2017; Volume 62, pp. 187–259. [Google Scholar]
- Schlörb, H.; Haehnel, V.; Singh Khatri, M.; Srivastav, A.; Kumar, A.; Schultz, L.; Fähler, S. Magnetic nanowires by electrodeposition within templates. Phys. Status Solidi B Basic Res. 2010, 247, 2364–2379. [Google Scholar] [CrossRef]
- Pastukh, O.; Kac, M.; Pastukh, S.; Kuźma, D.; Zelent, M.; Krawczyk, M.; Laskowski, L. Magnetic behavior of the arrays of Iron cylindrical nanostructures: Atomistic spin model simulations. Crystals 2023, 13, 537. [Google Scholar] [CrossRef]
- Agramunt-Puig, S.; Del-Valle, N.; Pellicer, E.; Zhang, J.; Nogués, J.; Navau, C.; Sanchez, A.; Sort, J. Modeling the collective magnetic behavior of highly-packed arrays of multi-segmented nanowires. New J. Phys. 2016, 18, 13026. [Google Scholar] [CrossRef]
- Zamani Kouhpanji, M.R.; Stadler, B.J.H. Projection method as a probe for multiplexing/demultiplexing of magnetically enriched biological tissues. RSC Adv. 2020, 10, 13286–13292. [Google Scholar] [CrossRef]
- Bochmann, S.; Fernandez-Pacheco, A.; Mačković, M.; Neff, A.; Siefermann, K.R.; Spiecker, E.; Cowburn, R.P.; Bachmann, J. Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of ‘bits’. RSC Adv. 2017, 7, 37627–37635. [Google Scholar] [CrossRef]
- Ivanov, Y.P.; Chuvilin, A.; Lopatin, S.; Kosel, J. Modulated magnetic nanowires for controlling domain wall motion: Toward 3D magnetic memories. ACS Nano 2016, 10, 5326–5332. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, B.; Wang, B.; Fan, Y.; Lou, B.; Guo, Y. Fabrication of FeCo and CoFe2O4 nanowire arrays and magnetic properties. Phys. E Low Dimens. Syst. Nanostruct. 2021, 130, 114695. [Google Scholar] [CrossRef]
- Ahmad, N.; Shafiq, M.Z.; Khan, S.; Shah, W.H.; Murtaza, I.; Majid, A.; Javed, K. Dominance of shape anisotropy among magnetostatic interaction and magnetocrystalline anisotropy in electrodeposited (FeCo)1−xCux (X = 0.1–0.5) ternary alloy nanowires. J. Supercond. Novel Magn. 2020, 33, 1495–1505. [Google Scholar] [CrossRef]
- Yang, Y. Preparation of Fe-Co-Ni Ternary Alloys with Electrodeposition. Int. J. Electrochem. Sci. 2015, 10, 5164–5175. [Google Scholar] [CrossRef]
- Dragos, O.; Chiriac, H.; Lupu, N.; Grigoras, M.; Tabakovic, I. Anomalous Codeposition of fcc NiFe Nanowires with 5–55% Fe and Their Morphology, Crystal Structure and Magnetic Properties. J. Electrochem. Soc. 2016, 163, D83–D94. [Google Scholar] [CrossRef]
- Ohnuma, I.; Enokia, H.; Ikeda, O.; Kainuma, R.; Ohtani, H.; Sundman, B.; Ishida, K. Phase equilibria in the Fe–Co binary system. Acta Mater. 2002, 50, 379–393. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kanatani, S.; Kazaana, M.; Takahashi, K.; Kumagai, K.; Hirao, M.; Ishio, S. Conversion of FeCo from soft to hard magnetic material by lattice engineering and nanopatterning. Sci. Rep. 2017, 7, 13215. [Google Scholar] [CrossRef]
- Hasegawa, T.; Niibori, T.; Takemasa, Y.; Oikawa, M. Stabilisation of tetragonal FeCo structure with high magnetic anisotropy by the addition of V and N elements. Sci. Rep. 2019, 9, 5248. [Google Scholar] [CrossRef]
- Bran, C.; Espejo, A.P.; Palmero, E.M.; Escrig, J.; Vázquez, M. Angular dependence of coercivity with temperature in Co-based nanowires. J. Magn. Magn. Mater. 2015, 396, 327–332. [Google Scholar] [CrossRef]
- Bran, C.; Palmero, E.M.; Li, Z.-A.; del Real, R.P.; Spasova, M.; Farle, M.; Vázquez, M. Correlation between structure and magnetic properties in CoxFe100-x nanowires: The roles of composition and wire diameter. J. Phys. D Appl. Phys. 2015, 48, 145304. [Google Scholar] [CrossRef]
- Alonso, J.; Khurshid, H.; Sankar, V.; Nemati, Z.; Phan, M.H.; Garayo, E.; García, J.A.; Srikanth, H. FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia. J. Appl. Phys. 2015, 117, 109–113. [Google Scholar] [CrossRef]
- Almasi Kashi, M.; Montazer, A.H. Template-based electrodeposited nonmagnetic and magnetic metal nanowire arrays as building blocks of Future nanoscale applications. J. Phys. D Appl. Phys. 2022, 55, 233002. [Google Scholar] [CrossRef]
- Guzman-Mínguez, J.C.; Ruiz-Gómez, S.; Vicente-Arche, L.M.; Granados-Miralles, C.; Fernández-González, C.; Mompeán, F.; García-Hernández, M.; Erohkin, S.; Berkov, D.; Mishra, D.; et al. FeCo nanowire−strontium ferrite powder composites for permanent magnets with high-energy products. ACS Appl. Nano Mater. 2020, 3, 9842–9851. [Google Scholar] [CrossRef]
- Salem, M.S.; Sergelius, P.; Zierold, R.; Montero Moreno, J.M.; Görlitz, D.; Nielsch, K. Magnetic characterization of Nickel-rich NiFe nanowires grown by pulsed electrodeposition. J. Mater. Chem. 2012, 22, 8549–8557. [Google Scholar] [CrossRef]
- Fazli, S.; Bahrololoom, M.E. Electrodeposition of nanostructured permalloy and permalloy-magnetite composite coatings and investigation of their magnetic properties. Metall. Mater. Trans. A Phys. 2016, 47, 4316–4324. [Google Scholar] [CrossRef]
- Vernyhora, I.V.; Tatarenko, V.A.; Bokoch, S.M. Thermodynamics of f.c.c.-Ni–Fe alloys in a static applied magnetic field. ISRN Thermodyn. 2012, 2012, 917836. [Google Scholar] [CrossRef]
- Salem, M.S.; Nielsch, K. Crossover between axial and radial magnetic anisotropy in self-organized permalloy nanowires. Mater. Sci. Eng. B 2017, 223, 120–124. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wu, T.; Li, Z.; Zhang, Z.; Sun, H. Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J. Magn. Magn. Mater. 2013, 331, 162–167. [Google Scholar] [CrossRef]
- Doludenko, I.M.; Zagorskii, D.L.; Frolov, K.V.; Perunov, I.V.; Chuev, M.A.; Kanevskii, V.M.; Erokhina, N.S.; Bedin, S.A. Nanowires made of FeNi and FeCo alloys: Synthesis, structure, and Mössbauer measurements. Phys. Solid State 2020, 62, 1639–1646. [Google Scholar] [CrossRef]
- Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 2015, 378, 73–83. [Google Scholar] [CrossRef]
- Proenca, M.P.; Rial, J.; Araujo, J.P.; Sousa, C.T. Magnetic Reversal Modes in Cylindrical Nanostructures: From Disks to Wires. Sci. Rep. 2021, 11, 10100. [Google Scholar] [CrossRef]
- Ghemes, A.; Dragos-Pinzaru, O.; Chiriac, H.; Lupu, N.; Grigoras, M.; Shore, D.; Stadler, B.; Tabakovic, I. Controlled electrodeposition and magnetic properties of Co 35 Fe 65 nanowires with high saturation magnetization. J. Electrochem. Soc. 2017, 164, D13–D22. [Google Scholar] [CrossRef]
- Zighem, F.; Maurer, T.; Ott, F.; Chaboussant, G. Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study. J. Appl. Phys. 2011, 109, 013910. [Google Scholar] [CrossRef]
- Samanifar, S.; Almasi Kashi, M.; Ramazani, A. Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order Reversal curve (FORC) diagrams. Phys. C Supercond. Appl. 2018, 548, 72–74. [Google Scholar] [CrossRef]
- Cortés, A.; Lavín, R.; Denardin, J.C.; Marotti, R.E.; Dalchiele, E.A.; Valdivia, P.; Gómez, H. Template assisted electrochemical growth of Cobalt nanowires: Influence of deposition conditions on structural, optical and magnetic properties. J. Nanosci. Nanotechnol. 2011, 11, 3899–3910. [Google Scholar] [CrossRef]
- Li, F.; Wang, T.; Ren, L.; Sun, J. Structure and magnetic properties of Co nanowires in self-assembled arrays. J. Phys. Condens. Matter 2004, 16, 8053–8060. [Google Scholar] [CrossRef]
- Kac, M.; Zarzycki, A.; Kac, S.; Kopec, M.; Perzanowski, M.; Dutkiewicz, E.M.; Suchanek, K.; Maximenko, A.; Marszalek, M. Effect of the template-assisted electrodeposition parameters on the structure and magnetic properties of Co nanowire arrays. Mater. Sci. Eng. B 2016, 211, 75–84. [Google Scholar] [CrossRef]
- Paulus, P.M.; Luis, F.; Kröll, M.; Schmid, G.; de Jongh, L.J. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 2001, 224, 180–196. [Google Scholar] [CrossRef]
- Getzlaff, M. Fundamental of Magnetism, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- O’Handley, R.C. Modern Magnetic Materials—Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Arefpour, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A.H. Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity. Nanotechnology 2016, 27, 275605. [Google Scholar] [CrossRef]
- Kac, M.; Mis, A.; Dubiel, B.; Kowalski, K.; Zarzycki, A.; Dobosz, I. Template-assisted Iron nanowire formation at different electrolyte temperatures. Materials 2021, 14, 4080. [Google Scholar] [CrossRef]
- Toimil Molares, M.E.; Buschmann, V.; Dobrev, D.; Neumann, R.; Scholz, R.; Schuchert, I.U.; Vetter, J. Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater. 2001, 13, 62–65. [Google Scholar] [CrossRef]
- Dobosz, I.; Kac, M.; Kutyła, D.; Włoch, G. The influence of the template-assisted electrodeposition oarameters on the structure and magnetic properties of Co-Ru alloy nanowire arrays. J. Alloys Compd. 2025, 1017, 179179. [Google Scholar] [CrossRef]
- Staňo, M.; Jamet, S.; Toussaint, J.C.; Bochmann, S.; Bachmann, J.; Massebœuf, A.; Gatel, C.; Fruchart, O. Probing domain walls in cylindrical magnetic nanowires with electron holography. J. Phys. Conf. Ser. 2017, 903, 012055. [Google Scholar] [CrossRef]
- Barman, K.; Edwards, M.A.; Hickey, D.P.; Sandford, C.; Qiu, Y.; Rui Gao, R.; Minteer, S.D.; White, H.S. Electrochemical reduction of [Ni(Mebpy)3]2+: Elucidation of the redox mechanism by cyclic voltammetry and steady-state voltammetry in low ionic strength solutions. ChemElectroChem 2020, 7, 1473–1479. [Google Scholar] [CrossRef]
- Vaskevich, A.; Sinapi, F.; Mekhalif, Z.; Delhalle, J.; Rubinstein, I. Underpotential deposition of Nickel on {111}-textured gold electrodes in dimethyl sulfoxide. J. Electrochem. Soc. 2005, 152, C744–C750. [Google Scholar] [CrossRef]
- Grujicic, D.; Pesic, B. Electrochemical and AFM study of Cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions. Electrochim. Acta 2004, 49, 4719–4732. [Google Scholar] [CrossRef]
- Nasirpouri, F.; Peighambari-Sattari, S.-M.; Bran, C.; Palmero, E.M.; Berganza Eguiarte, E.; Vazquez, M.; Patsopoulos, A.; Kechrakos, D. Geometrically designed domain wall trap in tri-segmented Nickel magnetic nanowires for spintronics devices. Sci. Rep. 2019, 9, 9010. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Podlaha, E.J. Template-assisted electrodeposition of porous Fe-Ni-Co nanowires with vigorous hydrogen evolution. Nano Lett. 2019, 19, 3569–35674. [Google Scholar] [CrossRef]
- Hanafi, I.; Daud, A.R.; Radiman, S. Potentiostatic electrodeposition of Co-Ni-Fe alloy particles thin film in a sulfate medium. Port. Electrochim. Acta 2017, 35, 1–12. [Google Scholar] [CrossRef]
- Sharma, G.; Grimes, C.A. Synthesis, characterization, and magnetic properties of FeCoNi ternary alloy nanowire arrays. J. Mater. Res. 2004, 19, 3695–3703. [Google Scholar] [CrossRef]
- Mansouri, N.; Benbrahim-Cherief, N.; Chainet, E.; Charlot, F.; Encinas, T.; Boudinar, S.; Benfedda, B.; Hamad, L.; Kadri, A. Electrodeposition of equiatomic FeNi and FeCo nanowires: Structural and magnetic properties. J. Magn. Magn. Mater. 2020, 493, 165746. [Google Scholar] [CrossRef]
- Llavona, Á.; Pérez, L.; Carmen Sánchez, M.; de Manuel, V. Enhancement of anomalous codeposition in the synthesis of Fe–Ni alloys in nanopores. Electrochim. Acta 2013, 106, 392–397. [Google Scholar] [CrossRef]
- Matlosz, M. Competitive adsorption effects in the electrodeposition of Iron-Nickel alloys. J. Electrochem. Soc. 1993, 140, 2272–2279. [Google Scholar] [CrossRef]
Solution Number | Composition of the Medium | pH | ||||
---|---|---|---|---|---|---|
FeSO4 | CoSO4 | NiSO4 | H3BO3 | C6H8O6 | ||
[g/L]/[mol/dm3] | ||||||
E1 | 16.68/0.06 | 33.73/0.12 | - | 24.72/0.4 | 0.5/0.003 | 2.8 |
E2 | 2.78/0.01 | 5.62/0.02 | - | |||
E3 | 2.78/0.01 | - | 44.71/0.17 | 3.2 |
Potential [V] | Solution Composition [mol/dm3] | Molar Ratio in Solution Fe:Co | Nanowire Composition [%] | Atomic Ratio in Nanowires Fe:Co | SR Parameter | ||
---|---|---|---|---|---|---|---|
FeSO4 | CoSO4 | Fe | Co | ||||
−1.0 | 0.06 | 0.12 | 0.5 | 47 | 53 | 0.9 | 1.8 |
−2.0 | 44 | 56 | 0.8 | 1.6 | |||
−1.0 | 0.01 | 0.02 | 0.5 | 40 | 60 | 0.7 | 1.4 |
−2.0 | 34 | 66 | 0.5 | 1.0 |
FeCo | |||||
hkl | Reference * | Fe47Co53 −1.0 V | Fe44Co56 −1.0 V | Fe40Co60 −2.0 V | Fe34Co66 −2.0 V |
2θ [deg] | |||||
110 | 44.94 | 45.00 | 45.06 | 45.08 | 44.96 |
200 | 65.43 | 65.54 | - | 65.58 | - |
210 | 74.35 | 74.23 | 74.20 | 74.23 | 74.22 |
211 | 82.90 | 83.07 | 83.14 | 83.18 | 83.01 |
220 | 99.7 | - | - | - | - |
Relative Intensity [%] | |||||
110 | 100 | 100 | 100 | 100 | 100 |
200 | 11.3 | 6 | - | 8 | - |
210 | 0.1 | 31 | 35 | 22 | 44 |
211 | 17.0 | 16 | 20 | 14 | 13 |
220 | 4.4 | - | - | - | - |
FeNi | |||||
hkl | Reference * | Fe54Ni56 −1.0 V | Fe14Ni86 −1.3 V | Fe9Ni91 −1.6 V | Fe10Ni90 −2.0 V |
2θ [deg] | |||||
111 | 44.28 | 44.42 | 44.31 | 44.43 | 44.44 |
200 | 51.53 | 51.52 | 51.59 | 51.72 | 51.67 |
220 | 75.87 | - | 75.9 | 76.14 | - |
311 | 92.21 | - | 92.53 | 92.68 | 92.85 |
222 | 97.70 | - | 97.96 | 98.02 | - |
Relative Intensity [%] | |||||
111 | 100 | 100 | 100 | 100 | 100 |
200 | 60 | 20 | 29 | 20 | 24 |
220 | 30 | - | 8 | 35 | - |
311 | 40 | - | 8 | 7 | 11 |
222 | 10 | - | 6 | 3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nykiel, A.; Walcarius, A.; Kac, M. Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires. Materials 2025, 18, 2629. https://doi.org/10.3390/ma18112629
Nykiel A, Walcarius A, Kac M. Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires. Materials. 2025; 18(11):2629. https://doi.org/10.3390/ma18112629
Chicago/Turabian StyleNykiel, Anna, Alain Walcarius, and Malgorzata Kac. 2025. "Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires" Materials 18, no. 11: 2629. https://doi.org/10.3390/ma18112629
APA StyleNykiel, A., Walcarius, A., & Kac, M. (2025). Effect of the Electrodeposition Potential on the Chemical Composition, Structure and Magnetic Properties of FeCo and FeNi Nanowires. Materials, 18(11), 2629. https://doi.org/10.3390/ma18112629