Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = cascaded inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6082 KB  
Article
Parametric Design of an LCL Filter for Harmonic Suppression in a Three-Phase Grid-Connected Fifteen-Level CHB Inverter
by Madiha Sattar, Usman Masud, Abdul Razzaq Farooqi, Faraz Akram and Zeashan Khan
Designs 2026, 10(1), 6; https://doi.org/10.3390/designs10010006 - 16 Jan 2026
Viewed by 149
Abstract
With the increasing integration of renewable energy sources into the grid, power quality at the point of common coupling (PCC)—particularly harmonic distortion introduced by power electronic converters—has become a critical concern. This paper presents a rigorous design and evaluation of a three-phase, fifteen-level [...] Read more.
With the increasing integration of renewable energy sources into the grid, power quality at the point of common coupling (PCC)—particularly harmonic distortion introduced by power electronic converters—has become a critical concern. This paper presents a rigorous design and evaluation of a three-phase, fifteen-level cascaded H-bridge multilevel inverter (CHB MLI) with an LCL filter, selected for its superior harmonic attenuation, compact size, and cost-effectiveness compared to conventional passive filters. The proposed system employs Phase-Shifted Pulse Width Modulation (PS PWM) for balanced operation and low output distortion. A systematic, reproducible methodology is used to design the LCL filter, which is then tested across a wide range of switching frequencies (1–5 kHz) and grid impedance ratios (X/R = 2–9) in MATLAB/Simulink R2025a. Comprehensive simulations confirm that the filter effectively reduces both voltage and current total harmonic distortion (THD) to levels well below the 5% limit specified by IEEE 519, with optimal performance (0.53% current THD, 0.69% voltage THD) achieved at 3 kHz and X/R ≈ 5.6. The filter demonstrates robust performance regardless of grid conditions, making it a practical and scalable solution for modern renewable energy integration. These results, further supported by parametric validation and clear design guidelines, provide actionable insights for academic research and industrial deployment. Full article
Show Figures

Figure 1

23 pages, 91075 KB  
Article
Improved Lightweight Marine Oil Spill Detection Using the YOLOv8 Algorithm
by Jianting Shi, Tianyu Jiao, Daniel P. Ames, Yinan Chen and Zhonghua Xie
Appl. Sci. 2026, 16(2), 780; https://doi.org/10.3390/app16020780 - 12 Jan 2026
Viewed by 230
Abstract
Marine oil spill detection using Synthetic Aperture Radar (SAR) is crucial but challenged by dynamic marine conditions, diverse spill scales, and limitations in existing algorithms regarding model size and real-time performance. To address these challenges, we propose LSFE-YOLO, a YOLOv8s-optimized (You Only Look [...] Read more.
Marine oil spill detection using Synthetic Aperture Radar (SAR) is crucial but challenged by dynamic marine conditions, diverse spill scales, and limitations in existing algorithms regarding model size and real-time performance. To address these challenges, we propose LSFE-YOLO, a YOLOv8s-optimized (You Only Look Once version 8) lightweight model with an original, domain-tailored synergistic integration of FasterNet, GN-LSC Head (GroupNorm Lightweight Shared Convolution Head), and C2f_MBE (C2f Mobile Bottleneck Enhanced). FasterNet serves as the backbone (25% neck width reduction), leveraging partial convolution (PConv) to minimize memory access and redundant computations—overcoming traditional lightweight backbones’ high memory overhead—laying the foundation for real-time deployment while preserving feature extraction. The proposed GN-LSC Head replaces YOLOv8’s decoupled head: its shared convolutions reduce parameter redundancy by approximately 40%, and GroupNorm (Group Normalization) ensures stable accuracy under edge computing’s small-batch constraints, outperforming BatchNorm (Batch Normalization) in resource-limited scenarios. The C2f_MBE module integrates EffectiveSE (Effective Squeeze and Excitation)-optimized MBConv (Mobile Inverted Bottleneck Convolution) into C2f: MBConv’s inverted-residual design enhances multi-scale feature capture, while lightweight EffectiveSE strengthens discriminative oil spill features without extra computation, addressing the original C2f’s scale variability insufficiency. Additionally, an SE (Squeeze and Excitation) attention mechanism embedded upstream of SPPF (Spatial Pyramid Pooling Fast) suppresses background interference (e.g., waves, biological oil films), synergizing with FasterNet and C2f_MBE to form a cascaded feature optimization pipeline that refines representations throughout the model. Experimental results show that LSFE-YOLO improves mAP (mean Average Precision) by 1.3% and F1 score by 1.7% over YOLOv8s, while achieving substantial reductions in model size (81.9%), parameter count (82.9%), and computational cost (84.2%), alongside a 20 FPS (Frames Per Second) increase in detection speed. LSFE-YOLO offers an efficient and effective solution for real-time marine oil spill detection. Full article
Show Figures

Figure 1

18 pages, 3115 KB  
Article
A Novel Reactive Power Decoupling Strategy for VSG Inverter Systems Using Adaptive Dynamic Virtual Impedance
by Wei Luo, Chenwei Zhang, Weizhong Chen, Bin Zhang and Zhenyu Lv
Electronics 2026, 15(1), 241; https://doi.org/10.3390/electronics15010241 - 5 Jan 2026
Viewed by 228
Abstract
Virtual synchronous machine (VSG) technology provides a robust framework for integrating electric vehicle energy storage into modern microgrids. Nonetheless, conventional VSG control often suffers from intense interaction between active and reactive power flows, which can trigger persistent steady-state errors, power fluctuations, and potential [...] Read more.
Virtual synchronous machine (VSG) technology provides a robust framework for integrating electric vehicle energy storage into modern microgrids. Nonetheless, conventional VSG control often suffers from intense interaction between active and reactive power flows, which can trigger persistent steady-state errors, power fluctuations, and potential system collapse. This research addresses these challenges by developing a 5th-order electromagnetic dynamic model tailored for a two-stage cascaded bridge inverter. By synthesizing a 3rd-order power regulation loop with a 2nd-order output stage, the proposed model captures stability boundaries across an extensive parameter spectrum. Unlike traditional 3rd-order “quasi-steady-state” approaches—which overlook essential dynamics under weak-damping or low-inertia conditions—this study utilizes the 5th-order model to derive an adaptive dynamic virtual impedance decoupling technique. This strategy facilitates real-time compensation of the cross-coupling between active and reactive channels, significantly boosting the inverter’s damping ratio. Quantitative analysis confirms that this approach curtails overshoot by 85.6% and accelerates the stabilization process by 42%, markedly enhancing the overall dynamic performance of the grid-connected system. Full article
(This article belongs to the Special Issue Intelligent Control Strategies for Power Electronics)
Show Figures

Figure 1

23 pages, 4464 KB  
Article
Diagnosis of Cascaded Open/Short-Circuit Fault in Three-Phase Inverter Using Two-Stage Interval Sliding Mode Observer
by Cen Chen, He Du, Xuerong Ye, Xiaowen Nie, Chunqing Wang and Guofu Zhai
Energies 2025, 18(24), 6498; https://doi.org/10.3390/en18246498 - 11 Dec 2025
Viewed by 319
Abstract
A three-phase inverter faces the risk of open-circuit (OC) and short-circuit (SC) faults in operation and requires real-time fault diagnosis. However, existing diagnosis methods have the following limitations: (1) insufficient rapid diagnosis capability for multi-switch cascaded faults; (2) inability to achieve diagnosis for [...] Read more.
A three-phase inverter faces the risk of open-circuit (OC) and short-circuit (SC) faults in operation and requires real-time fault diagnosis. However, existing diagnosis methods have the following limitations: (1) insufficient rapid diagnosis capability for multi-switch cascaded faults; (2) inability to achieve diagnosis for hybrid OC and SC faults. To address these issues, this paper proposes a diagnosis method for cascaded switch open/short-circuit fault in a three-phase inverter based on a two-stage interval sliding mode observer (ISMO). First, by establishing a mixed logic dynamic (MLD) model considering open- and short-circuit faults, the different fault operating states of the three-phase inverter can be fully characterized. Furthermore, a two-stage cascaded ISMO was designed. The pre-stage ISMO rapidly detects abnormal status and fault phase, while the post-stage ISMO accurately isolates OC and SC faults. After diagnosis, the corresponding fault identification of the observer is set for the next fault diagnosis, achieving the sequential diagnosis of cascaded faults. The proposed diagnosis method was tested to validate its effectiveness. Full article
Show Figures

Figure 1

19 pages, 4034 KB  
Article
Assessment of a Hybrid Modulation Strategy for Asymmetrical Cascaded Multilevel Inverters Under Comparative Analysis
by Gerlando Frequente, Massimo Caruso, Giuseppe Schettino and Rosario Miceli
Electronics 2025, 14(21), 4354; https://doi.org/10.3390/electronics14214354 - 6 Nov 2025
Viewed by 499
Abstract
This paper presents a novel hybrid modulation technique for Asymmetrical Cascaded H-Bridge Multilevel Inverters (ACHBMLIs), specifically designed to enhance both efficiency and harmonic performance. Unlike conventional strategies, the proposed method optimizes the switching scheme by operating the high-voltage H-Bridge at the fundamental frequency, [...] Read more.
This paper presents a novel hybrid modulation technique for Asymmetrical Cascaded H-Bridge Multilevel Inverters (ACHBMLIs), specifically designed to enhance both efficiency and harmonic performance. Unlike conventional strategies, the proposed method optimizes the switching scheme by operating the high-voltage H-Bridge at the fundamental frequency, thereby significantly reducing switching losses while maintaining low harmonic distortion levels comparable to traditional Pulse Width Modulation (PWM). To assess the effectiveness of the approach, a comprehensive comparison was conducted against two widely adopted modulation techniques for ACHBMLIs: Multicarrier Pulse Width Modulation (MPWM) and the Staircase Modulation Strategy (SMS). The evaluation involved both simulation and real-time Hardware-in-the-Loop (HIL) testing of a 7-level three-phase ACHBMLI, with a focus on key performance indicators such as voltage and current harmonic distortion, as well as converter efficiency. The results demonstrate that the proposed hybrid modulation achieves higher efficiency than PWM and lower current Total Harmonic Distortion (THD) than SMS. These findings highlight the potential of the hybrid strategy as a compelling solution for applications that demand an optimal balance between energy efficiency and waveform quality. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Graphical abstract

17 pages, 13332 KB  
Article
Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs
by Zhenyan Liang, Jiang Wang, Yitong Wu and Zhen Zhang
Energies 2025, 18(21), 5864; https://doi.org/10.3390/en18215864 - 6 Nov 2025
Viewed by 616
Abstract
This paper presents a cascaded control strategy for neutral-point-clamped three-level (NPC-3L) inverter-fed permanent magnet synchronous motors (PMSMs), integrating continuous-control-set model-predictive control (CCS-MPC) with mid-point voltage regulation and an online Lyapunov-stable neural-network (NN) disturbance observer. The outer CCS-MPC loop optimizes voltage vector application for [...] Read more.
This paper presents a cascaded control strategy for neutral-point-clamped three-level (NPC-3L) inverter-fed permanent magnet synchronous motors (PMSMs), integrating continuous-control-set model-predictive control (CCS-MPC) with mid-point voltage regulation and an online Lyapunov-stable neural-network (NN) disturbance observer. The outer CCS-MPC loop optimizes voltage vector application for accurate current tracking and harmonic suppression, while the inner loop balances mid-point voltage by adjusting the dwell times of P/N small-voltage vectors (VVs). The NN-based disturbance observer compensates parameter mismatches in real time, reducing steady-state dq-axis current errors. To validate the effectiveness of the proposed strategy, experiments are conducted using a three-phase PMSM fed by three-phase NPC-3L inverters. Experimental results demonstrate substantial improvements in mid-point voltage balance, current quality, and robustness against model uncertainties. Full article
(This article belongs to the Collection State-of-the-Art of Electrical Power and Energy System in China)
Show Figures

Figure 1

18 pages, 2022 KB  
Article
Research on the Spatiotemporal Effects of Water Temperature in the Construction of Cascade Dams on the Yangtze River Main Stream Based on Optimized CNN-LSTM Attention Model
by Shanghong Zhang, Hao Wang, Ruicheng Zhang, Hua Zhang and Yang Zhou
Sustainability 2025, 17(20), 9046; https://doi.org/10.3390/su17209046 - 13 Oct 2025
Viewed by 639
Abstract
Hydrothermal conditions are a key indicator influencing the evolution of aquatic ecosystems, closely affecting the physical, chemical, and biological properties of water bodies. The construction of cascaded dams on the main stem of the Yangtze River has altered the natural water temperature regime, [...] Read more.
Hydrothermal conditions are a key indicator influencing the evolution of aquatic ecosystems, closely affecting the physical, chemical, and biological properties of water bodies. The construction of cascaded dams on the main stem of the Yangtze River has altered the natural water temperature regime, impacting the hydrothermal status of the water. Utilizing multi-source remote sensing data from Google Earth Engine to invert river surface water temperatures, a parameter-optimized CNN-LSTM-Attention hybrid interpretable water temperature prediction model was constructed. The model demonstrated credible accuracy. Based on the inversion results, the study revealed the spatiotemporal evolution characteristics of water temperature in the main stem of the Yangtze River before and after cascaded dam construction in the lower Jinsha River region and the Three Gorges Reservoir area. The results found that after the construction of the Three Gorges Dam, the annual average water temperature increased significantly by 0.813 °C. The “cold water stagnation effect” induced by cascaded development caused the water temperature amplitude to increase from 8.96 °C to 10.6 °C. Furthermore, the regulating effect of tributary confluence exhibited significant differences. For instance, colder tributaries like the Yalong River reduced the main stem water temperature, while warmer tributaries like the Jialing River, conversely, increased the main stem temperature. The construction of cascaded dams led to distinct variation characteristics in the areas downstream of the dams within the reservoir regions, where tributary inflows caused corresponding changes in the main stem water temperature. This study elucidates the long-term spatiotemporal variation characteristics of water temperature in the main stem of the Yangtze River. The model prediction results can assist in constructing an early warning indicator system for water temperature changes, providing reliable data support for promoting water environment sustainability and ecological civilization construction in the river basin. Full article
Show Figures

Figure 1

23 pages, 4758 KB  
Article
Virtual Inertia of Electric Vehicle Fast Charging Stations with Dual Droop Control and Augmented Frequency Support
by Nargunadevi Thangavel Sampathkumar, Anbuselvi Shanmugam Velu, Brinda Rajasekaran and Kumudini Devi Raguru Pandu
Sustainability 2025, 17(20), 8997; https://doi.org/10.3390/su17208997 - 10 Oct 2025
Viewed by 696
Abstract
High penetration of Inverter-Based Resources (IBRs) into the power grid could diminish the rotational inertia offered by a traditional power system and thus impact frequency stability. Several techniques are adopted to provide virtual inertial support to the grid for a short duration in [...] Read more.
High penetration of Inverter-Based Resources (IBRs) into the power grid could diminish the rotational inertia offered by a traditional power system and thus impact frequency stability. Several techniques are adopted to provide virtual inertial support to the grid for a short duration in the presence of IBRs. This paper uses the combined inertia support of a Dual Active Bridge (DAB) and a Voltage Source Converter (VSC)-fed Electric Vehicle Fast Charging System (EVFCS) is used to provide virtual inertia support to the grid. The Voltage Source Converter is designed to provide DC bus voltage regulation. Coordinated control of DAB converters and VSCs for mitigating frequency oscillations using cascaded droop-integrated Proportional Integral (PI) controllers is proposed. An aggregated low-frequency model of a DAB converter is considered in this work. The inertia of the DC link capacitor of the VSCs and battery is sequentially extracted to offer grid frequency support. In this work, the single droop control, dual droop control, grid-forming and Augmented Frequency Support (AFS) modes are explored to provide virtual inertia support to the grid. Full article
Show Figures

Figure 1

19 pages, 3275 KB  
Article
Design and Analysis of Compact K/Ka-Band CMOS Four-Way Power Splitters for K/Ka-Band LEO Satellite Communications and 28/39 GHz 5G NR
by Yo-Sheng Lin and Chin-Yi Huang
Electronics 2025, 14(18), 3736; https://doi.org/10.3390/electronics14183736 - 21 Sep 2025
Viewed by 860
Abstract
We present the design and analysis of three CMOS 4-way power splitters operating in the K/Ka-band (18–27 GHz/27–40 GHz) for low Earth orbit (LEO) satellite communications and 26.5–29.5/37–40 GHz 5G radio applications. The first power splitter (PS1) consists of a two-way power splitter [...] Read more.
We present the design and analysis of three CMOS 4-way power splitters operating in the K/Ka-band (18–27 GHz/27–40 GHz) for low Earth orbit (LEO) satellite communications and 26.5–29.5/37–40 GHz 5G radio applications. The first power splitter (PS1) consists of a two-way power splitter using circular double-helical transmission lines (DH-TLs) cascaded with two two-way power splitters using noninverting circular sole-helical coupled-TL (SH-CL). The second power splitter (PS2) consists of a two-way power splitter using circular DH-TLs cascaded with two two-way power splitters using inverting circular SH-CL. The third power splitter (PS3) consists of three two-way power splitters using DH-TLs. For each two-way power splitter, a parallel input capacitor is included to satisfy the requirement for two equivalent quarter-wavelength (λ/4) TLs, ensuring a low input reflection coefficient. λ/10-DH-TL-based-double-λ/4-TLs, λ/12-noninverting-SH-CL-based-double-λ/4-TLs, and λ/9-inverting-SH-CL-based-double-λ/4-TLs are utilized to attain compact chip size and low amplitude inequality (AI) and phase deviation (PD). Prominent results are attained. For instance, the chip size of PS1 is 0.057 mm2. At 33 GHz, PS1 attains S11 of −16 dB, S22 of −21.2 dB, S33 of −19.7 dB, S23 of −15.3 dB, S21 of −7.862 dB, S31 of −7.803 dB, AI23 of −0.059 dB, and PD23 of 0.197°. The chip size of PS2 is 0.071 mm2. At 33 GHz, PS2 attains S11 of −13.5 dB, S22 of −16.1 dB, S33 of −16.7 dB, S23 of −34.8 dB, S21 of −8.1 dB, S31 of −8.146 dB, AI23 of 0.046 dB, and PD23 of −0.581°. To the authors’ knowledge, the overall performance of PS1, PS2, and PS3 ranks among the best published in the literature for K- and Ka-band four-way power splitters. Full article
Show Figures

Figure 1

20 pages, 3844 KB  
Article
Open-Circuit Fault Detection in a 5-Level Cascaded H-Bridge Inverter Using 1D CNN and LSTM
by Chouaib Djaghloul, Kambiz Tehrani and François Vurpillot
Energies 2025, 18(18), 5004; https://doi.org/10.3390/en18185004 - 20 Sep 2025
Cited by 1 | Viewed by 784
Abstract
It is well known that power converters have the highest failure rate in the energy conversion chain in different industrial applications. This could definitely affect the reliability of the system. The reliability of converters in power conversion systems is crucial, as failures can [...] Read more.
It is well known that power converters have the highest failure rate in the energy conversion chain in different industrial applications. This could definitely affect the reliability of the system. The reliability of converters in power conversion systems is crucial, as failures can lead to critical consequences and damage other system components. Therefore, it is important to predict and detect failures and take corrective actions to prevent them. One of the most common types of failure in power converters is semiconductor failure, which can manifest as an open circuit or a short circuit. This paper focuses on single and double open-circuit switch failures in a 5-level cascaded H-bridge inverter, for which a fast, precise method is required. A data-driven approach is employed here, using the output voltage and voltages across each H-bridge as diagnostic signals. A 1D-CNN LSTM neural network is trained to accurately detect and localize open-circuit faults, providing a reliable, practical solution. Full article
Show Figures

Figure 1

24 pages, 3908 KB  
Article
Transform Domain Based GAN with Deep Multi-Scale Features Fusion for Medical Image Super-Resolution
by Huayong Yang, Qingsong Wei and Yu Sang
Electronics 2025, 14(18), 3726; https://doi.org/10.3390/electronics14183726 - 20 Sep 2025
Viewed by 958
Abstract
High-resolution (HR) medical images provide clearer anatomical details and facilitate early disease diagnosis, yet acquiring HR scans is often limited by imaging conditions, device capabilities, and patient factors. We propose a transform domain deep multiscale feature fusion generative adversarial network (MSFF-GAN) for medical [...] Read more.
High-resolution (HR) medical images provide clearer anatomical details and facilitate early disease diagnosis, yet acquiring HR scans is often limited by imaging conditions, device capabilities, and patient factors. We propose a transform domain deep multiscale feature fusion generative adversarial network (MSFF-GAN) for medical image super-resolution (SR). Considering the advantages of generative adversarial networks (GANs) and convolutional neural networks (CNNs), MSFF-GAN integrates a deep multi-scale convolution network into the GAN generator, which is composed primarily of a series of cascaded multi-scale feature extraction blocks in a coarse-to-fine manner to restore the medical images. Two tailored blocks are designed: a multiscale information distillation (MSID) block that adaptively captures long- and short-path features across scales, and a granular multiscale (GMS) block that expands receptive fields at fine granularity to strengthen multiscale feature extraction with reduced computational cost. Unlike conventional methods that predict HR images directly in the spatial domain, which often yield excessively smoothed outputs with missing textures, we formulate SR as the prediction of coefficients in the non-subsampled shearlet transform (NSST) domain. This transform domain modeling enables better preservation of global anatomical structure and local texture details. The predicted coefficients are inverted to reconstruct HR images, and the transform domain subbands are also fed to the discriminator to enhance its discrimination ability and improve perceptual fidelity. Extensive experiments on medical image datasets demonstrate that MSFF-GAN outperforms state-of-the-art approaches in structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR), while more effectively preserving global anatomy and fine textures. These results validate the effectiveness of combining multiscale feature fusion with transform domain prediction for high-quality medical image super-resolution. Full article
(This article belongs to the Special Issue New Trends in AI-Assisted Computer Vision)
Show Figures

Figure 1

27 pages, 3770 KB  
Article
Precision Time Interval Generator Based on CMOS Counters and Integration with IoT Timing Systems
by Nebojša Andrijević, Zoran Lovreković, Vladan Radivojević, Svetlana Živković Radeta and Hadžib Salkić
Electronics 2025, 14(16), 3201; https://doi.org/10.3390/electronics14163201 - 12 Aug 2025
Viewed by 1791
Abstract
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor [...] Read more.
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor (CMOS) logic counters (Integrated Circuit (IC) IC 7493 and IC 4017) and inverter-based crystal oscillators (IC 74LS04). The proposed system enables frequency division from 1 MHz down to 1 Hz through a cascade of binary and Johnson counters, enhanced with digitally controlled multiplexers for output signal selection. Unlike conventional timing systems relying on expensive Field-Programmable Gate Array (FPGA) or Global Navigation Satellite System (GNSS)-based synchronization, this approach offers a robust, locally controlled reference clock suitable for IoT nodes without network access. The hardware is integrated with Arduino and ESP32 microcontrollers via General-Purpose Input/Output (GPIO) level interfacing, supporting real-time timestamping, deterministic task execution, and microsecond-level synchronization. The system was validated through Python-based simulations incorporating Gaussian jitter models, as well as real-time experimental measurements using Arduino’s micros() function. Results demonstrated stable pulse generation with timing deviations consistently below ±3 µs across various frequency modes. A comparative analysis confirms the advantages of this CMOS-based timing solution over Real-Time Clock (RTC), Network Time Protocol (NTP), and Global Positioning System (GPS)-based methods in terms of local autonomy, cost, and integration simplicity. This work provides a practical and scalable time reference architecture for educational, industrial, and distributed applications, establishing a new bridge between classical digital circuit design and modern Internet of Things (IoT) timing requirements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

31 pages, 9665 KB  
Article
Motor Airgap Torque Harmonics Due to Cascaded H-Bridge Inverter Operating with Failed Cells
by Hamid Hamza, Ideal Oscar Libouga, Pascal M. Lingom, Joseph Song-Manguelle and Mamadou Lamine Doumbia
Energies 2025, 18(16), 4286; https://doi.org/10.3390/en18164286 - 12 Aug 2025
Viewed by 784
Abstract
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical [...] Read more.
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical challenge for field engineers. This paper proposes mathematical expressions that are crucial for an accurate torsional analysis during the design stage of VFDs, as required by international standards such as API 617, API 672, etc. By accurately reconstructing the electromagnetic torque from the stator voltages and currents in the (αβ0) reference frame, the obtained expressions enable the precise prediction of the exact locations of torque harmonics induced by the inverter under various real-world operating conditions, without the need for installed torque sensors. The neutral-shifted and peak-reduction fault-tolerant control techniques are commonly adopted under faulty operation of these VFDs. However, their effects on the pulsating torques harmonics in machine air-gap remain uncovered. This paper fulfils this gap by conducting a detailed evaluation of spectral characteristics of these fault-tolerant methods. The theoretical analyses are supported by MATLAB/Simulink 2024 based offline simulation and Typhoon based virtual real-time simulation results performed on a (4.16 kV and 7 MW) vector-controlled induction motor fed by a 7-level cascaded H-bridge inverter. According to the theoretical analyses- and simulation results, the Neutral-shifted and Peak-reduction approaches rebalance the motor input line-to-line voltages in the event of an inverter’s failed cells but, in contrast to the normal mode the carrier, all the triplen harmonics are no longer suppressed in the differential voltage and current spectra due to inequal magnitudes in the phase voltages. These additional current harmonics induce extra airgap torque components that can excite the lowly damped eigenmodes of the mechanical shaft found in the oil and gas applications and shut down the power conversion system due torsional vibrations. Full article
Show Figures

Figure 1

24 pages, 9734 KB  
Article
Investigating the Influence of PWM-Driven Cascaded H-Bridges Multilevel Inverter on Interior Permanent Magnet Synchronous Motor Power Losses
by Claudio Nevoloso, Gioacchino Scaglione, Giuseppe Schettino, Antonino Oscar Di Tommaso, Fabio Viola, Ciro Spataro and Rosario Miceli
Energies 2025, 18(15), 3911; https://doi.org/10.3390/en18153911 - 22 Jul 2025
Viewed by 892
Abstract
This paper presents an accurate analysis of the power losses of an interior permanent magnet synchronous motor fed by a cascaded H-bridge multilevel inverter. The main goal of this study is to investigate the impact of the cascaded h-bridge inverter, multicarrier PWM strategies, [...] Read more.
This paper presents an accurate analysis of the power losses of an interior permanent magnet synchronous motor fed by a cascaded H-bridge multilevel inverter. The main goal of this study is to investigate the impact of the cascaded h-bridge inverter, multicarrier PWM strategies, and inverter switching frequency on the synchronous motor power losses. With this aim in mind, a detailed frequency domain power analysis was carried out on motor power losses at different operating points in the frequency–torque plane. Motor power losses were further categorized into fundamental and harmonic power losses. This evaluation involved driving the power converter using six distinct multicarrier PWM strategies at four different switching frequencies. Additionally, a comparison was conducted with a conventional two-level PWM inverter to quantify the reduction in motor power losses. The experimental results show that the cascaded h-bridge inverter guarantees a notable increase in the motor efficiency, up to 7%, and losses in segregation at the fundamental frequency, if compared to the standard two-level PWM inverter, especially at low speed and with partial-load conditions. Such results mark out the cascaded H-bridge inverter as a valuable choice, also with regard to low-voltage drive applications. Full article
Show Figures

Figure 1

20 pages, 2926 KB  
Article
Discrete-Time Internal Model Control with Equal-Order Fractional Butterworth Filter for Multivariable Systems
by Kaiyue Liu, Shuke Lyu, Rui Wang, Chenkang Gao, Xiangyu Yang and Yongtao Liu
Processes 2025, 13(7), 2161; https://doi.org/10.3390/pr13072161 - 7 Jul 2025
Viewed by 705
Abstract
A novel discrete-time internal model control (IMC) method cascaded with a discrete-time equal-order fractional Butterworth (EFBW) filter is proposed for multivariable systems with time-delay and non-minimum-phase (NMP) zeros. This is the first attempt to design such a control scheme in the discrete-time domain, [...] Read more.
A novel discrete-time internal model control (IMC) method cascaded with a discrete-time equal-order fractional Butterworth (EFBW) filter is proposed for multivariable systems with time-delay and non-minimum-phase (NMP) zeros. This is the first attempt to design such a control scheme in the discrete-time domain, as previous work has typically focused on continuous-time systems. An inverted decoupling (ID) method is introduced and integrated with the discrete-time IMC controller, forming a discrete-time ID-IMC scheme that mitigates coupling effects among control loops. Additionally, a discrete-time EFBW filter is designed to balance flexibility and design complexity effectively, with technical specifications guiding the determination of the filter’s optimal order. Structured singular value analysis is conducted to guarantee the stability and robustness of the resulting closed-loop system. Illustrative examples are provided, demonstrating the effectiveness and advantages of the proposed control method. Full article
(This article belongs to the Special Issue Condition Monitoring and the Safety of Industrial Processes)
Show Figures

Figure 1

Back to TopTop