Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,547)

Search Parameters:
Keywords = carrier role

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3980 KB  
Review
Current State of Research on the Three-Dimensional Particle Electrode System for Treating Organic Pollutants from Wastewater Streams: Particle Electrode, Degradation Mechanism, and Synergy Effects
by Guene L. Razack, Jiayi Wang, Xian Zhao, Worou Chabi Noel, Hanjun Sun, Jiwei Pang, Jie Ding, Wenshuo Wang, Xiaoyin Yang, Chenhao Cui, Yani Zang, Yuqian Wang, Geng Luo, Nanqi Ren and Shanshan Yang
Water 2025, 17(16), 2490; https://doi.org/10.3390/w17162490 - 21 Aug 2025
Viewed by 129
Abstract
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational [...] Read more.
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational flexibility, high current efficiency, low energy consumption, and the ability to degrade non-biodegradable organic pollutants, ultimately mineralizing them. This review provides a comprehensive and systematic exploration of the research and development of particle electrodes for use in 3D electrochemical reactors in wastewater treatment. The pivotal role of particle electrodes in removing organic contaminants from wastewater was highlighted, with most materials used as particle electrodes characterized by a specific surface area and well-defined porous structure, both of which were thoroughly discussed. Through the synergistic mechanism of adsorption, the particle electrode aids in the breakdown of organic contaminants, demonstrating the 3D particle electrode’s effectiveness in facilitating multiple oxidation mechanisms for organic wastewater treatment. Furthermore, this review categorized various particle electrode types used in 3D electrochemical wastewater treatment based on their primary components or carriers and the presence or absence of catalysts. Finally, the current status and prospects for the development and enhancement of 3D electrode particles were presented. This review offers valuable insights into the application of the 3D electrode process for environmental water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

52 pages, 1938 KB  
Review
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Anticancer Phytochemical Delivery: Advances, Challenges, and Future Prospects
by Shery Jacob, Rekha Rao, Bapi Gorain, Sai H. S. Boddu and Anroop B. Nair
Pharmaceutics 2025, 17(8), 1079; https://doi.org/10.3390/pharmaceutics17081079 - 21 Aug 2025
Viewed by 322
Abstract
Phytochemicals exhibit a broad spectrum of pharmacological activities, including significant anticancer potential. However, their clinical translation is often hampered by poor aqueous solubility, low bioavailability, and chemical instability. Lipid-based nanocarriers, especially solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have proven to [...] Read more.
Phytochemicals exhibit a broad spectrum of pharmacological activities, including significant anticancer potential. However, their clinical translation is often hampered by poor aqueous solubility, low bioavailability, and chemical instability. Lipid-based nanocarriers, especially solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have proven to be effective strategies for addressing these challenges. These nanocarriers improve the solubility, stability, and bioavailability of phytochemical-based anticancer agents, while enabling controlled and tumor-specific drug release. Encapsulation of anticancer phytochemicals such as curcumin, quercetin, resveratrol, silymarin, and naringenin in SLNs and NLCs has demonstrated improved therapeutic efficacy, cellular uptake, and reduced systemic toxicity. Co-delivery strategies, combining multiple phytochemicals or phytochemical–synthetic drug pairs, further contribute to synergistic anticancer effects, dose reduction, and minimized side effects, particularly important in complex cancers such as glioblastoma, breast, and colon cancers. This review presents a comparative overview of SLNs and NLCs in terms of formulation methods, in vitro characterization, and classification of key phytochemicals based on chemical structure and botanical sources. The roles of these lipidic carriers in enhancing anticancer activity, challenges in formulation, and recent patent filings are discussed to highlight ongoing innovations. Additionally, hybrid lipid–polymer nanoparticles are introduced as next-generation carriers combining the benefits of both systems. Future research should aim to develop scalable, biomimetic, and stimuli-responsive nanostructures through advanced surface engineering. Collaborative interdisciplinary efforts and regulatory harmonization are essential to translate these lipid-based carriers into clinically viable platforms for anticancer phytochemical delivery. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

16 pages, 9200 KB  
Article
Construction of Donor–Acceptor Heterojunctions via Microphase Separation of Discotic Liquid Crystals with Ambipolar Transport
by Heng Liu, Mingsi Xie, Yaohong Liu, Gaojun Jia, Ruijuan Liao, Ao Zhang, Yi Fang, Xiaoli Song, Chunxiu Zhang and Haifeng Yu
Molecules 2025, 30(16), 3441; https://doi.org/10.3390/molecules30163441 - 21 Aug 2025
Viewed by 254
Abstract
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results [...] Read more.
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results suggest that all the blends formed liquid crystalline phases, where both compounds in the blends self-assembled separately into columns yet cooperatively contributed to the overall hexagonal or tetragonal columnar mesophase structure. The charge carrier mobilities were characterized using a time-of-flight technique. The phase-separated columnar nanostructures of the donor and acceptor components play an important role in the formation of molecular heterojunctions exhibiting highly efficient ambipolar charge transport, with mobilities on the order of 10−3 cm2 V−1 s−1. These blends with ambipolar transport properties have great potential for application in non-fullerene organic solar cells, particularly in bulk heterojunction architectures. Full article
Show Figures

Figure 1

30 pages, 1145 KB  
Review
Decrypting the Immune Symphony for RNA Vaccines
by Brian Weidensee and Itishri Sahu
Vaccines 2025, 13(8), 882; https://doi.org/10.3390/vaccines13080882 - 20 Aug 2025
Viewed by 210
Abstract
Messenger RNA (mRNA) vaccine technology has revolutionized the field of immunization, offering a non-infectious, non-genome-integrating platform that addresses many limitations of traditional vaccine modalities. Recent advancements in chemical modifications, delivery systems, and manufacturing processes have enhanced the stability, efficacy, and safety of RNA-based [...] Read more.
Messenger RNA (mRNA) vaccine technology has revolutionized the field of immunization, offering a non-infectious, non-genome-integrating platform that addresses many limitations of traditional vaccine modalities. Recent advancements in chemical modifications, delivery systems, and manufacturing processes have enhanced the stability, efficacy, and safety of RNA-based therapeutics, expanding their application beyond infectious diseases to include genetic disorders, cancer, and rare diseases. Central to the success of RNA vaccines is their ability to orchestrate a finely tuned immune response, leveraging both innate and adaptive immunity to achieve robust and durable protection. This review synthesizes current knowledge on the immunological mechanisms underpinning RNA vaccine efficacy, with a focus on the roles of pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) in sensing exogenous RNA, the impact of RNA modifications and manufacturing impurities on innate immune activation, and the subsequent cytokine and chemokine milieu that shapes adaptive responses. We also discuss the dual role of lipid nanoparticle (LNP) delivery systems as both carriers and adjuvants, highlighting their contribution to the vaccine’s immunogenicity and reactogenicity profile. Understanding these complex immune interactions is critical for optimizing RNA vaccine design, minimizing adverse effects, and expanding their therapeutic potential. This review aims to provide a comprehensive overview of the immune symphony orchestrated by RNA vaccines and to identify key areas for future research to further refine and expand the utility of this transformative technology. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

22 pages, 3101 KB  
Article
The Influence of Genetic Polymorphisms and Psychosocial Determinants on Suicidal Behaviors: A Case–Control Study of CRHR1, NTRK2, and FKBP5
by Mihaela Elvira Cîmpianu, Emilian Onișan, Viviana Maria Sărac, Ioan Sărac, Mariana Ganea, Gligor Octavia, Ștefana Bâlici, Gheorghe Zsolt Nicula, Elena Maria Domșa, Teodora Cîmpianu, Sergiu Ionica Rusu, Horia George Coman, Mihaela Laura Vică Matei and Costel Vasile Siserman
Int. J. Mol. Sci. 2025, 26(16), 8053; https://doi.org/10.3390/ijms26168053 - 20 Aug 2025
Viewed by 162
Abstract
Suicide, a major contributor to global mortality rates, especially among young patients, remains insufficiently integrated into public health initiatives despite notable progress in identifying its determinants. The prediction of suicidal behavior remains complex, often relying on subjective assessments rather than objective biomarkers. Single [...] Read more.
Suicide, a major contributor to global mortality rates, especially among young patients, remains insufficiently integrated into public health initiatives despite notable progress in identifying its determinants. The prediction of suicidal behavior remains complex, often relying on subjective assessments rather than objective biomarkers. Single nucleotide polymorphisms (SNPs) such as rs110402 (CRHR1 gene), rs3800373 (FKBP5 gene), and rs2289656 (NTRK2 gene) have been linked to physiological mechanisms involving stress response and activation of the hypothalamic–pituitary–adrenal (HPA) axis, which contributes to anxiety and stress regulation. This study aimed to assess stress-related gene polymorphisms in individuals with suicidal behavior compared to controls. According to our results, the presence of the A allele of rs2289656 was associated with a protective effect, while the GG genotype conferred a higher susceptibility to suicidal behaviors. Significant associations were observed between trauma and abuse history and the rs110402 polymorphism in CRHR1 gene, highlighting a protective role for the GG genotype and increased predisposition to stress-related psychiatric conditions and suicidal behavior for A allele carriers. No valid associations were found for rs3800373 in the FKBP5 gene, although suggestive trends related to depression and self-aggression were noted. Our findings underscore the need to identify reliable biomarkers associated with suicide risk, highlighting the importance of integrating hereditary and psychosocial data to better understand the underlying mechanisms and to support the development of effective early interventions. Full article
(This article belongs to the Special Issue Biological Barriers: Consciousness and Mental Illness)
Show Figures

Figure 1

15 pages, 1687 KB  
Article
Catalytic Role of Nickel in Hydrogen Storage and Release Using Dibenzyltoluene as a Liquid Organic Hydrogen Carrier
by Jesús Rodríguez Ruiz, Nuria García-Mancha, Roberto Campana and Carlos Tardío
Energies 2025, 18(16), 4429; https://doi.org/10.3390/en18164429 - 20 Aug 2025
Viewed by 385
Abstract
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations [...] Read more.
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations in terms of cost and availability. This study uses the DBT system to explore the potential of nickel (Ni) as a catalytic alternative. In dehydrogenation, its role as an additive in low-loaded Pt-based catalysts (0.25 wt%) was evaluated, showing a significant increase in activity, with dehydrogenation levels exceeding 95%, compared to 82% obtained with monometallic Pt catalysts. This improvement is attributed to the formation of Pt-Ni alloys. On the other hand, although the bimetallic systems were not effective in hydrogenation, a commercial Ni/Al2O3-SiO2 catalyst was tested, achieving hydrogenation degrees of 80% in just 40 min, after pressure and catalyst loading optimization. These results position Ni as a key component in LOHC catalysis, either as an effective additive in Pt-based systems or as an active metal itself, due to its excellent performance and low cost. This paves the way for economically viable and efficient catalytic solutions for hydrogen storage applications, bridging the gap between performance and practicality. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

43 pages, 13206 KB  
Review
Cerium-Doped Strontium Ferrate Perovskite Oxides: Sustainable Materials to Face Energy and Environmental Challenges
by Maria Laura Tummino, Francesca Deganello and Vittorio Boffa
Sustain. Chem. 2025, 6(3), 24; https://doi.org/10.3390/suschem6030024 - 20 Aug 2025
Viewed by 474
Abstract
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in [...] Read more.
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in the unusual 4+ oxidation state, although some Fe3+ is often present, depending on the synthesis and processing conditions and the type and amount of dopant. When doped with cerium at the Sr site, the SrFeO3−δ cubic structure is stabilized, more oxygen vacancies form and the Fe4+/Fe3+ redox couple plays a key role in its functional properties. Alone or combined with other materials, Ce-doped strontium ferrates can be successfully applied to wastewater treatment. Specific doping at the Fe site enhances their electronic conductivity for use as electrodes in solid oxide fuel cells and electrolyzers. Their oxygen storage capacity and oxygen mobility are also exploited in chemical looping reactions. The main limitations of these materials are SrCO3 formation, especially at the surface; their low surface area and porosity; and cation leaching at acidic pH values. However, these limitations can be partially addressed through careful selection of synthesis, processing and testing conditions. This review highlights the high versatility and efficiency of cerium-doped strontium ferrates for energy and environmental applications, both at low and high temperatures. The main literature on these compounds is reviewed to highlight the impact of their key properties and synthesis and processing parameters on their applicability as sustainable thermocatalysts, electrocatalysts, oxygen carriers and sensors. Full article
Show Figures

Graphical abstract

31 pages, 7032 KB  
Review
Rheological, Structural, and Biological Trade-Offs in Bioink Design for 3D Bioprinting
by Jeevithan Elango and Camilo Zamora-Ledezma
Gels 2025, 11(8), 659; https://doi.org/10.3390/gels11080659 - 19 Aug 2025
Viewed by 257
Abstract
Bioinks represent the core of 3D bioprinting, as they are the carrier responsible for enabling the fabrication of anatomically precise, cell-laden constructs that replicate native tissue architecture. Indeed, their role goes beyond structural support, as they must also sustain cellular viability, proliferation, and [...] Read more.
Bioinks represent the core of 3D bioprinting, as they are the carrier responsible for enabling the fabrication of anatomically precise, cell-laden constructs that replicate native tissue architecture. Indeed, their role goes beyond structural support, as they must also sustain cellular viability, proliferation, and differentiation functions, which are critical for applications in the field of regenerative medicine and personalized therapies. However, at present, a persistent challenge lies in reconciling the conflicting demands of rheological properties, which are essential for printability and biological functionality. This trade-off limits the clinical translation of bioprinted tissues, particularly for vascularized or mechanically dynamic organs. Despite huge progress during the last decade, challenges persist in standardizing bioink characterization, scaling production, and ensuring long-term biomimetic performance. Based on these challenges, this review explores the inherent trade-off faced by bioink research optimizing rheology to ensure printability, shape fidelity, and structural integrity, while simultaneously maintaining high cell viability, proliferation, and tissue maturation offering insights into designing next-generation bioinks for functional tissue engineering. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Graphical abstract

21 pages, 2108 KB  
Article
Valorization of Carménère Grape Pomace: Extraction, Microencapsulation, and Evaluation of the Bioactivity of Polyphenols in Caco-2 Cells
by Paula Valenzuela-Bustamante, Paula Cornejo, Nicolás Nolan, Alina Concepción-Alvarez, Raquel Bridi, Miguel Ángel Rincón-Cervera, Omar Porras, Adriano Costa de Camargo and M. Fernanda Arias-Santé
Int. J. Mol. Sci. 2025, 26(16), 7994; https://doi.org/10.3390/ijms26167994 - 19 Aug 2025
Viewed by 203
Abstract
Grape pomace is a major by-product of winemaking and a rich source of phenolic compounds with antioxidant potential. The Carménère variety, emblematic of Chilean viticulture, remains underutilized despite its high anthocyanin and flavanol content. This study aimed to develop a cost-effective method to [...] Read more.
Grape pomace is a major by-product of winemaking and a rich source of phenolic compounds with antioxidant potential. The Carménère variety, emblematic of Chilean viticulture, remains underutilized despite its high anthocyanin and flavanol content. This study aimed to develop a cost-effective method to recover and stabilize bioactive compounds from Carménère grape pomace. Five extracts were obtained using ethanol–water mixtures (0–100%) and characterized by HPLC-DAD and antioxidant assays (DPPH, FRAP, ORAC-FL). The 80% ethanol extract (EET-80) showed the highest antioxidant capacity (FRAP: 2909.3 ± 37.6; ORAC-FL: 1864.3 ± 157.8 µmol TE/g dw) and was selected for microencapsulation via spray drying using maltodextrin. This scalable technique protects thermosensitive compounds and enhances their applicability. The optimized 1:50 extract-to-carrier ratio achieved high encapsulation efficiency (85.7 ± 0.7%). In Caco-2 cells, the microencapsulated extract (5–250 µg/mL) showed no alteration in metabolic activity and significantly reduced intracellular ROS levels (65% inhibition at 250 µg/mL). Solvent polarity selectively influenced polyphenol recovery—50% ethanol favored catechin (581.1 µg/g) and epicatechin (1788.3 µg/g), while 80% ethanol enhanced malvidin-3-O-glucoside (118.0 µg/g). These findings support the valorization of Carménère grape pomace as a sustainable source of antioxidants and highlight the role of microencapsulation in improving extract stability and functionality. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 1709 KB  
Article
Interplays of ADH1B Genotype, Alcohol Consumption, and Gut Microbiota in Relation to Insulin Resistance
by Brian Wang, Brandilyn A. Peters-Samuelson, Kai Luo, Christina Cordero, Krista M. Perreira, Amber Pirzada, Martha L. Daviglus, Yang Li, Robert C. Kaplan, Robert D. Burk and Qibin Qi
Nutrients 2025, 17(16), 2669; https://doi.org/10.3390/nu17162669 - 18 Aug 2025
Viewed by 373
Abstract
Background/Objective: Alcohol consumption has been linked to alterations in gut microbiota and insulin resistance. The alcohol dehydrogenase 1B (ADH1B) gene plays a crucial role in alcohol catabolism, where rs1229984 variant carriers (CT/TT) catabolize ethanol at an 80-fold faster rate than non-carriers (CC). This [...] Read more.
Background/Objective: Alcohol consumption has been linked to alterations in gut microbiota and insulin resistance. The alcohol dehydrogenase 1B (ADH1B) gene plays a crucial role in alcohol catabolism, where rs1229984 variant carriers (CT/TT) catabolize ethanol at an 80-fold faster rate than non-carriers (CC). This study investigates the relationships between ADH1B gene rs1229984 mutation, alcohol consumption, gut microbiota, and insulin resistance. Methods: We performed cross-sectional analysis on fecal metagenomic sequencing data from diabetes-free participants in a longitudinal cohort of the Hispanic Community Health Study/Study of Latinos. We used Analysis of Composition of Microbiomes to identify gut microbial species associated with alcohol consumption in non-carriers (n = 1399) and carriers (n = 193). We constructed genotype-specific gut microbiome scores (GMSs) based on the identified species associated with alcohol consumption to examine how gut microbiota may influence the relationship between alcohol consumption and insulin resistance across ADH1B genotypes. Insulin resistance was defined as Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) > 2.5. Results: Distinct microbial species associated with alcohol consumption were identified in non-carriers (54 species) and carriers (16 species). In non-carriers, the genotype-specific GMS modified the relationship between alcohol consumption and insulin resistance (Pinteraction = 0.011). The odds ratios (OR) for insulin resistance with increasing alcohol consumption levels across low, moderate, and high tertiles of GMS were 0.75 (95%CI 0.58–0.96), 0.82 (0.67–1), and 1.13 (0.93–1.39), respectively. We identified that individual alcohol-related species, such as Prevotella copri, Ruminococcus callidus, and Erysipelatoclostridium ramosum, modified the relationship between alcohol consumption and insulin resistance in non-carriers. Conclusions: This study suggests that the ADH1B gene rs1229984 mutation is associated with gut microbiota profiles altered by alcohol consumption. Our findings also suggest a potential role of gut microbiota in the protective association between alcohol consumption and insulin resistance in the ADH1B variant non-carriers. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

14 pages, 2928 KB  
Article
Gold Nanoparticles-Functionalized Ultrathin Graphitic Carbon Nitride Nanosheets for Boosting Solar Hydrogen Production: The Role of Plasmon-Induced Interfacial Electric Fields
by Haidong Yu, Ziqi Wei, Qiyue Gao, Ping Qu, Rui Wang, Xuehui Luo, Xiao Sun, Dong Li, Xiao Zhang, Jiufen Liu and Liang Feng
Molecules 2025, 30(16), 3406; https://doi.org/10.3390/molecules30163406 - 18 Aug 2025
Viewed by 336
Abstract
The design of photocatalysts capable of generating localized surface plasmon resonance (LSPR) effects represents a promising strategy for enhancing photocatalytic activity. However, the mechanistic role of plasmonic nanoparticles-induced interfacial electric fields in driving photocatalytic processes remains poorly understood. To produce a Schottky junction, [...] Read more.
The design of photocatalysts capable of generating localized surface plasmon resonance (LSPR) effects represents a promising strategy for enhancing photocatalytic activity. However, the mechanistic role of plasmonic nanoparticles-induced interfacial electric fields in driving photocatalytic processes remains poorly understood. To produce a Schottky junction, varying amounts of Au nanoparticles widely utilized to broaden the light absorption were loaded onto ultrathin carbon nitride sheets (Au/UCN). The Au/UCN-20 Schottky junction exhibits exceptional photocatalytic activity, achieving a hydrogen evolution rate (14.2 mmol·g−1 over a 4 h period) while maintaining robust stability through five consecutive photocatalytic cycles. The LSPR activity of Au nanoparticles are responsible for the broadened light absorption spectrum of Au/UCN nanocomposites. The interfacial electric field generated at the Au /UCN heterojunction is proposed to enhance charge-transfer efficiency through Schottky barrier penetration of photocarriers, mediated by electric field-driven carrier migration, according to surface potential and finite-difference time-domain (FDTD). These findings uncover a previously obscured photocatalytic mechanism driven by LSPR-induced interfacial electric fields, pioneering a quantum-dot-directed strategy to precisely engineer charge dynamics in advanced photocatalysts via targeted manipulation of nanoscale electric field effects. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

21 pages, 1307 KB  
Review
Synergistic Catalysis for Algae Control: Integrating Sonocavitation and Chemical Catalysis
by Yunxi Zhang, Xiaoge Wu and Muthupandian Ashokkumar
Catalysts 2025, 15(8), 784; https://doi.org/10.3390/catal15080784 - 17 Aug 2025
Viewed by 459
Abstract
This review systematically summarizes recent advances in ultrasound–chemical catalytic synergistic technology for controlling harmful algae blooms, focusing on the multi-mechanism cooperation of catalysts, oxidants, and nanomaterials within sonocavitation systems. The technology enhances coupling efficiency between cavitation effects and radical oxidation while leveraging interfacial [...] Read more.
This review systematically summarizes recent advances in ultrasound–chemical catalytic synergistic technology for controlling harmful algae blooms, focusing on the multi-mechanism cooperation of catalysts, oxidants, and nanomaterials within sonocavitation systems. The technology enhances coupling efficiency between cavitation effects and radical oxidation while leveraging interfacial regulation capabilities of catalysts (e.g., charge adsorption, carrier migration) to selectively disrupt algae cell structures and efficiently degrade extracellular organic matter. Three key innovations are highlighted: (1) development of a multi-mechanism synergistic system that overcomes traditional technical limitations through moderate pre-oxidation strategies for precise algae control; (2) first systematic elucidation of the bridging role of sonoporation in ultrasound–chemical synergy; (3) decipherment of interface-targeted regulation mechanisms that enhance oxidation efficiency. Collectively, these advances establish an engineerable new paradigm characterized by high efficiency, operational stability, and minimized ecological risks. Full article
Show Figures

Graphical abstract

31 pages, 4081 KB  
Review
Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design
by Bingqing Chang, Xin Liu, Xianghai Song, Yangyang Yang, Jisheng Zhang, Weiqiang Zhou and Pengwei Huo
Catalysts 2025, 15(8), 782; https://doi.org/10.3390/catal15080782 - 16 Aug 2025
Viewed by 516
Abstract
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly [...] Read more.
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly convert CO2 into high-value-added hydrocarbon fuels and to use solar energy, a clean energy source, to drive the reaction. However, traditional semiconductor catalysts generally suffer from insufficient activity and poor product selectivity in the actual reaction, which cannot meet the requirements of practical applications. In recent years, sulfur vacancy, as an effective material modulation strategy, has demonstrated a remarkable role in enhancing photocatalytic performance. This paper reviews a series of research reports on sulfur vacancies in recent years, introduces the methods of preparing sulfur vacancies, and summarizes the commonly used characterization methods of sulfur vacancies. Finally, the mechanism of introducing sulfur vacancies to promote CO2 reduction is discussed, which improves the photocatalytic activity and selectivity by enhancing light absorption, facilitating carrier separation, improving CO2 adsorption and activation, and promoting the stability of reaction intermediates. This review aims to provide theoretical support for an in-depth understanding of the role of sulfur vacancies in photocatalytic systems and to provide a view on the future direction and potential challenges of sulfur vacancies. Full article
(This article belongs to the Special Issue Catalytic Carbon Emission Reduction and Conversion in the Environment)
Show Figures

Graphical abstract

36 pages, 2601 KB  
Review
Cyclodextrin-Based Delivery Systems for Flavonoids: Mechanisms, Advances, Formulation, and Application Opportunities
by Ferenc Fenyvesi, Ágnes Klusóczki, Ágnes Rusznyák, Barbara Zsebik, Ildikó Bácskay and Judit Váradi
Antioxidants 2025, 14(8), 998; https://doi.org/10.3390/antiox14080998 - 14 Aug 2025
Viewed by 328
Abstract
Flavonoids play an important role in preventive and therapeutic research due to their significant antioxidant properties. However, their application is limited by several pharmacokinetic drawbacks, such as poor water solubility and low bioavailability. Cyclodextrin-based delivery systems offer an opportunity to overcome these disadvantages. [...] Read more.
Flavonoids play an important role in preventive and therapeutic research due to their significant antioxidant properties. However, their application is limited by several pharmacokinetic drawbacks, such as poor water solubility and low bioavailability. Cyclodextrin-based delivery systems offer an opportunity to overcome these disadvantages. Cyclodextrins are able to form stable, water-soluble inclusion complexes with flavonoids, thereby improving their solubility, chemical stability, and antioxidant activity. This review summarizes the structural characteristics and complexation mechanisms of various flavonoid–cyclodextrin complexes and examines how these interactions influence biological activity. Special attention is given to nanotechnological formulations—such as liposomes, nanofibers, and nanosponges—that enable targeted drug delivery and enhanced therapeutic efficacy. The aim of this review is to provide a comprehensive overview of the role of cyclodextrin-based carriers in the formulation of flavonoids and to highlight the future potential of these systems in modern therapeutics and functional product development. Full article
Show Figures

Figure 1

13 pages, 583 KB  
Article
Seasonal Dynamics and Pathogen Diversity of Tick Species Parasitizing Migratory Birds in Sardinia, Italy: Implications for the Spread of Rickettsia, Babesia, and Theileria Species
by Chisu Valentina, Laura Giua, Piera Bianco, Giovanna Chessa, Cipriano Foxi, Gaia Muroni, Giovanna Masala and Ivana Piredda
Vet. Sci. 2025, 12(8), 753; https://doi.org/10.3390/vetsci12080753 - 13 Aug 2025
Viewed by 303
Abstract
Migratory birds play a key role in the ecology of tick-borne pathogens, serving as both hosts for ticks and as potential carriers of a wide range of infectious agents that can affect wildlife, domestic animals, and humans. Their long-distance movements contribute to the [...] Read more.
Migratory birds play a key role in the ecology of tick-borne pathogens, serving as both hosts for ticks and as potential carriers of a wide range of infectious agents that can affect wildlife, domestic animals, and humans. Their long-distance movements contribute to the dispersal of ticks and the pathogens they harbor, with potential implications for the emergence and spread of zoonotic disease. This study focuses on the prevalence of Rickettsia spp. and Babesia/Theileria spp. in ticks collected from migratory birds in Sardinia, Italy, during two consecutive migration seasons (April–May and October–November 2021), corresponding to the spring and autumn migratory periods. A total of 961 ticks, primarily Ixodes ricinus, was collected from various bird species. Molecular analyses using polymerase chain reaction (PCR) and sequencing enabled the detection and identification of multiple Rickettsia species, with R. helvetica, R. monacensis, and R. aeschlimannii being the most frequently identified. Protozoan pathogens, including B. venatorum and Theileria ovis, were also detected in the tick samples. These findings underscore the diversity of pathogens in bird-associated ticks and the role of migratory birds in the geographical spread of these diseases. These results also provide valuable insights into pathogen transmission dynamics and stress the importance of monitoring migratory birds to assess and mitigate the risks of zoonotic diseases. Further research is needed to clarify the ecological interactions among birds, ticks, and pathogens across different geographic regions. Full article
Show Figures

Figure 1

Back to TopTop