Seasonal Dynamics and Pathogen Diversity of Tick Species Parasitizing Migratory Birds in Sardinia, Italy: Implications for the Spread of Rickettsia, Babesia, and Theileria Species
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Molecular Tick Identification and Pathogen Detection
2.3. Purification and Sequencing
3. Results
3.1. Tick Species Composition
3.2. Rickettsia spp. Prevalence During Migration Seasons
3.3. Babesia/Theileria spp. Prevalence During Migration Seasons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, G.; Green, R. The Value of Ringing for Bird Conservation. Br. Trust. Ornithol. Ringing Migr. 2009, 24, 205–212. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, J.; Xu, Y. Prioritizing Global Conservation of Migratory Birds over Their Migration Network. One Earth 2023, 6, 1340–1349. [Google Scholar] [CrossRef]
- Hoffman, T.; Olsen, B.; Lundkvist, Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African–Western Palearctic. Microorganisms 2023, 11, 158. [Google Scholar] [CrossRef]
- La Sorte, F.; Fink, D. Migration Distance, Ecological Barriers and En-Route Variation in the Migratory Behaviour of Terrestrial Bird Populations. Glob. Ecol. Biogeogr. 2017, 26, 216–227. [Google Scholar] [CrossRef]
- Altizer, S.; Bartel, R.; Han, B.A. Animal Migration and Infectious Disease Risk. Science 2011, 331, 296–302. [Google Scholar] [CrossRef]
- Tonk-Rügen, M.; Kratou, M.; Cabezas-Cruz, A. A Warming World, a Growing Threat: The Spread of Ticks and Emerging Tick-Borne Diseases. Pathogens 2025, 14, 213. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brunner, J.L. Climate Change and Ixodes Tick-Borne Diseases of Humans. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2015, 370, 20140051. [Google Scholar] [CrossRef]
- Noll, M.; Wall, R.; Makepeace, B.L.; Vineer, H.R. Distribution of Ticks in the Western Palearctic: An Updated Systematic Review (2015–2021). Parasites Vectors 2023, 16, 141. [Google Scholar] [CrossRef]
- Chisu, V.; Loi, F.; Foxi, C.; Chessa, G.; Masu, G.; Rolesu, S.; Masala, G. Coexistence of Tick-Borne Pathogens in Ticks Collected from Their Hosts in Sardinia: An Update. Acta Parasitol. 2020, 65, 999–1004. [Google Scholar] [CrossRef]
- Chisu, V.; Leulmi, H.; Masala, G.; Piredda, M.; Foxi, C.; Parola, P. Detection of Rickettsia Hoogstraalii, Rickettsia Helvetica, Rickettsia Massiliae, Rickettsia Slovaca and Rickettsia Aeschlimannii in Ticks from Sardinia, Italy. Ticks Tick-Borne Dis. 2017, 8, 347–352. [Google Scholar] [CrossRef]
- Yi, B.; Fan, M.; Chen, J.; Yao, J.; Chen, X.; Liu, H. An Alarming Public Health Problem: Ticks and Tick-Borne Pathogens in Urban Recreational Parks. China CDC Wkly. 2025, 7, 553–560. [Google Scholar] [CrossRef]
- Battisti, E.; Urach, K.; Hodzic, A.; Fusani, L.; Hufnagl, P.; Felsberger, G.; Ferroglio, E.; Duscher, G.G. Zoonotic Pathogens in Ticks from Migratory Birds, Italy. Emerg. Infect. Dis. 2020, 26, 2986–2988. [Google Scholar] [CrossRef]
- Eikenaar, C.; Hessler, S.; Hegemann, A. Migrating Birds Rapidly Increase Constitutive Immune Function during Stopover. R. Soc. Open Sci. 2020, 7, 192031. [Google Scholar] [CrossRef] [PubMed]
- Banović, P.; Díaz-Sánchez, A.A.; Foucault-Simonin, A.; Mateos-Hernandez, L.; Wu-Chuang, A.; Galon, C.; Simin, V.; Mijatović, D.; Bogdan, I.; Corona-González, B.; et al. Emerging Tick-Borne Spotted Fever Group Rickettsioses in the Balkans. Infect. Genet. Evol. 2023, 107, 105400. [Google Scholar] [CrossRef] [PubMed]
- Chisu, V.; Foxi, C.; Mannu, R.; Satta, G.; Masala, G. A Five-Year Survey of Tick Species and Identification of Tick-Borne Bacteria in Sardinia, Italy. Ticks Tick-Borne Dis. 2018, 9, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Chisu, V.; Alberti, A.; Zobba, R.; Foxi, C.; Masala, G. Molecular Characterization and Phylogenetic Analysis of Babesia and Theileria Spp. in Ticks from Domestic and Wild Hosts in Sardinia. Acta Trop. 2019, 196, 60–65. [Google Scholar] [CrossRef]
- Chisu, V.; Giua, L.; Bianco, P.; Foxi, C.; Chessa, G.; Masala, G.; Piredda, I. Tick Dispersal and Borrelia Species in Ticks from Migratory Birds: Insights from the Asinara National Park, Sardinia, Italy. Microbiol. Res. 2025, 16, 88. [Google Scholar] [CrossRef]
- Black, W.C.; Piesman, J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc. Natl. Acad. Sci. USA 1994, 91, 10034–10038. [Google Scholar] [CrossRef]
- Labruna, M.B.; Whitworth, T.; Horta, M.C.; Bouyer, D.H.; McBride, J.W.; Pinter, A.; Popov, V.; Gennari, S.M.; Walker, D.H. Rickettsia Species Infecting Amblyomma Cooperi Ticks from an Area in the State of São Paulo, Brazil, Where Brazilian Spotted Fever Is Endemic. J. Clin. Microbiol. 2004, 42, 90–98. [Google Scholar] [CrossRef]
- Dahmana, H.; Amanzougaghene, N.; Davoust, B.; Normand, T.; Carette, O.; Demoncheaux, J.-P.; Mulot, B.; Fabrizy, B.; Scandola, P.; Chik, M.; et al. Great Diversity of Piroplasmida in Equidae in Africa and Europe, Including Potential New Species. Vet. Parasitol. Reg. Stud. Rep. 2019, 18, 100332. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Dagona, A.G. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Rataud, A.; Henry, P.-Y.; Moutailler, S.; Marsot, M. Research Effort on Birds’ Reservoir Host Potential for Lyme Borreliosis: A Systematic Review and Perspectives. Transbound. Emerg. Dis. 2021, 69, 2512–2522. [Google Scholar] [CrossRef] [PubMed]
- Dumas, A.; Bouchard, C.; Dibernardo, A.; Drapeau, P.; Lindsay, L.R.; Ogden, N.H.; Leighton, P.A. Transmission Patterns of Tick-Borne Pathogens among Birds and Rodents in a Forested Park in Southeastern Canada. PLoS ONE 2022, 17, e0266527. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Vourc’h, G.; Raffetin, A.; Falchi, A.; Figoni, J.; Fite, J.; Hoch, T.; Moutailler, S.; Quillery, E. The Control of Hyalomma Ticks, Vectors of the Crimean-Congo Hemorrhagic Fever Virus: Where Are We Now and Where Are We Going? PLoS Negl. Trop. Dis. 2022, 16, e0010846. [Google Scholar] [CrossRef] [PubMed]
- Majid, A.; Almutairi, M.M.; Alouffi, A.; Tanaka, T.; Yen, T.-Y.; Tsai, K.-H.; Ali, A. First Report of Spotted Fever Group Rickettsia Aeschlimannii in Hyalomma Turanicum, Haemaphysalis Bispinosa, and Haemaphysalis Montgomeryi Infesting Domestic Animals: Updates on the Epidemiology of Tick-Borne Rickettsia Aeschlimannii. Front. Microbiol. 2023, 14, 1283814. [Google Scholar] [CrossRef]
- Kahl, O.; Gray, J.S. The Biology of Ixodes Ricinus with Emphasis on Its Ecology. Ticks Tick-Borne Dis. 2023, 14, 102114. [Google Scholar] [CrossRef] [PubMed]
- Kocianová, E.; Rusňáková Tarageľová, V.; Harustiakova, D.; Spitalská, E. Seasonal Infestation of Birds with Immature Stages of Ixodes Ricinus and Ixodes Arboricola. Ticks Tick-Borne Dis. 2017, 8, 423–431. [Google Scholar] [CrossRef]
- Van Gestel, M.; Heylen, D.; Verheyen, K.; Fonville, M.; Sprong, H.; Matthysen, E. Recreational Hazard: Vegetation and Host Habitat Use Correlate with Changes in Tick-Borne Disease Hazard at Infrastructure within Forest Stands. Sci. Total Environ. 2024, 919, 170749. [Google Scholar] [CrossRef]
- Mancuso, E.; Di Domenico, M.; Di Gialleonardo, L.; Menegon, M.; Toma, L.; Di Luca, M.; Casale, F.; Di Donato, G.; D’Onofrio, L.; De Rosa, A.; et al. Tick Species Diversity and Molecular Identification of Spotted Fever Group Rickettsiae Collected from Migratory Birds Arriving from Africa. Microorganisms 2023, 11, 2036. [Google Scholar] [CrossRef]
- Pedersen, B.N.; Jenkins, A.; Kjelland, V. Tick-Borne Pathogens in Ixodes Ricinus Ticks Collected from Migratory Birds in Southern Norway. PLoS ONE 2020, 15, e0230579. [Google Scholar] [CrossRef] [PubMed]
- Wallménius, K.; Barboutis, C.; Fransson, T.; Jaenson, T.G.T.; Lindgren, P.-E.; Nyström, F.; Olsen, B.; Salaneck, E.; Nilsson, K. Spotted Fever Rickettsia Species in Hyalomma and Ixodes Ticks Infesting Migratory Birds in the European Mediterranean Area. Parasites Vectors 2014, 7, 318. [Google Scholar] [CrossRef]
- Nilsson, K.; Wallménius, K.; Hartwig, S.; Norlander, T.; Påhlson, C. Bell’s Palsy and Sudden Deafness Associated with Rickettsia Spp. Infection in Sweden. A Retrospective and Prospective Serological Survey Including PCR Findings. Eur. J. Neurol. 2014, 21, 206–214. [Google Scholar] [CrossRef]
- Scarpulla, M.; Barlozzari, G.; Salvato, L.; De Liberato, C.; Lorenzetti, R.; Macrì, G. Rickettsia Helvetica in Human-Parasitizing and Free-Living Ixodes Ricinus from Urban and Wild Green Areas in the Metropolitan City of Rome, Italy. Vector-Borne Zoonotic Dis. 2018, 18, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Mancianti, F. Potential Role of Avian Populations in the Epidemiology of Rickettsia Spp. and Babesia Spp. Vet. Sci. 2021, 8, 334. [Google Scholar] [CrossRef]
- Rumer, L.; Graser, E.; Hillebrand, T.; Talaska, T.; Dautel, H.; Mediannikov, O.; Roy-Chowdhury, P.; Sheshukova, O.; Mantke, O.D.; Niedrig, M. Rickettsia Aeschlimannii in Hyalomma Marginatum Ticks, Germany. Emerg. Infect. Dis. 2011, 17, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.O.; Bergvall, U.A.; Chirico, J.; Christensson, M.; Lindgren, P.-E.; Nordström, J.; Kjellander, P. Molecular Detection of Babesia Capreoli and Babesia Venatorum in Wild Swedish Roe Deer, Capreolus Capreolus. Parasites Vectors 2016, 9, 221. [Google Scholar] [CrossRef]
- Fanelli, A. A Historical Review of Babesia spp. Associated with Deer in Europe: Babesia divergens/Babesia divergens-like, Babesia capreoli, Babesia venatorum, Babesia cf. odocoilei. Vet. Parasitol. 2021, 294, 109433. [Google Scholar] [CrossRef]
- Chisu, V.; Serra, E.; Foxi, C.; Chessa, G.; Masala, G. Molecular Investigation of Theileria and Babesia Species in Domestic Mammals from Sardinia, Italy. Vet. Sci. 2023, 10, 59. [Google Scholar] [CrossRef]
- Latrofa, M.S.; Giannelli, A.; Persichetti, M.F.; Pennisi, M.G.; Solano-Gallego, L.; Brianti, E.; Parisi, A.; Wall, R.; Dantas-Torres, F.; Otranto, D. Ixodes Ventalloi: Morphological and Molecular Support for Species Integrity. Parasitol. Res. 2017, 116, 251–258. [Google Scholar] [CrossRef]
Pathogen | Target Gene | Primer/Probe | Sequence | References |
---|---|---|---|---|
Rickettsia spp. | gltA | CS5 Forw | s5′-GAGAGAAAATTATATATCCAAATGTTGAT-3′ | [19] |
CS5 Rev | 5′-AGGGTCTTCGTGCATTTCTT-3′ | |||
CS5 Probe | FAM-CATTGTGCCATCCAGCCTACGGT -BHQ1 | |||
Rickettsia spp. | gltA | gltA For | 5′-CCTATGGCTATTATGCTTGC-3′ | [10] |
gltA Rev | 5′-ATTGCAAAAAGTACAGTGAACA -3′ | |||
Piroplasmida | 5.8S rRNA gene | 5.8S Forw | 5′-AYYKTYAGCGRTGGATGTC-3′ | [20] |
5.8S Rev | 5′-TCGCAGRAGTCTKCAAGTC-3′ | |||
5.8S Probe | FAM-TTYGCTGCGTCCTTCATCGTTGT-MGB | |||
Piroplasmida | 18S rRNA gene | BJ1 For | 5′-GTCTTGTAATTGGAATGATGG-3′ | [16] |
BN2 Rev | 5′-TAGTTTATGGTTAGGACTACG-3′ |
Season | Bird Species (Scientific name) | Migration Type | Tested Ticks (n% of Total Ticks) | Parasitized Birds (n% of Total Birds) | Birds Parasitized/Examined | Tick Species Associated | L | N | A | Total |
---|---|---|---|---|---|---|---|---|---|---|
Autumn | European robin (Erithacus rubecula) | Short-distance | 579 (67%) | 301 (74.3%) | 301/579 (52%) | I. ricinus | 284 | 100 | 14 | 398 |
I. frontalis | 78 | 24 | 8 | 110 | ||||||
I. inopinatus | 1 | 0 | 0 | 1 | ||||||
I. ventalloi | 4 | 0 | 0 | 4 | ||||||
Ixodes spp. | 39 | 24 | 3 | 66 | ||||||
Common blackbird (Turdus merula) | Short-distance | 188 (21.8%) | 54 (13.3%) | 54/188 (28.7%) | I. frontalis | 1 | 1 | 1 | 3 | |
I. ricinus | 128 | 56 | 0 | 184 | ||||||
I. ventalloi | 0 | 1 | 0 | 1 | ||||||
Song thrush (Turdus philomelos) | Short-distance | 68 (8%) | 34 (8.4%) | 34/68 (50%) | I.ricinus | 43 | 22 | 1 | 66 | |
I. inopinatus | 2 | 0 | 0 | 2 | ||||||
Woodlark (Lullula arborea) | Short-distance | 17 (2%) | 7 (1.7%) | 7/17 (41.2%) | I. ricinus | 1 | 0 | 11 | 12 | |
Hy. marginatum | 2 | 2 | 1 | 5 | ||||||
Eurasian blackcap (Sylvia atricapilla) | Long-distance | 4 (0.5%) | 4 (1%) | 4/4 (100%) | I. frontalis | 4 | 0 | 0 | 4 | |
Garden warbler (Sylvia borin) | Long-distance | 2 (0.2%) | 2 (0.5%) | 2/2 (100%) | I. ricinus | 1 | 1 | 0 | 2 | |
Common redstart (Phoenicurus phoenicurus) | Long-distance | 3 (0.4%) | 2 (0.5%) | 2/3 (66.7%) | I. ricinus | 3 | 0 | 0 | 3 | |
Little owl (Athene noctua) | Resident | 1 (0.1%) | 1 (0.3%) | 1/1 (100%) | I. ricinus | 1 | 0 | 0 | 1 | |
TOTAL | - | - | 862 | 405 | - | - | 592 | 231 | 39 | 862 |
Season | Bird Species (Scientific name) | Migration Type | Tested Ticks (n% of Total Ticks) | Parasitized Birds (n% of Total Birds) | Birds Parasitized/Examined | Tick Species Associated | L | N | A | Total |
---|---|---|---|---|---|---|---|---|---|---|
Spring | Common redstart (Phoenicurus phoenicurus) | Long-distance | 56 (57%) | 25 (44.6%) | 25/56 (44.6%) | Hy. marginatum | 7 | 5 | 23 | 35 |
Hy. rufipes | 2 | 1 | 14 | 17 | ||||||
Rh. bursa | 1 | 0 | 0 | 1 | ||||||
I. inopinatus | 1 | 0 | 0 | 1 | ||||||
I. ventalloi | 0 | 1 | 0 | 1 | ||||||
I. frontalis | 1 | 0 | 0 | 1 | ||||||
Wood warbler (Phylloscopus sibilatrix) | Long-distance | 11 (11%) | 7 (12.5%) | 7/11 (63.6%) | Hy. marginatum | 5 | 0 | 6 | 11 | |
European pied flycatcher (Ficedula hypoleuca) | Long-distance | 8 (8%) | 7 (12.5%) | 7/8 (87.5%) | Hy. marginatum | 1 | 4 | 3 | 8 | |
European robin (Erithacus rubecula) | Short-distance | 10 (10%) | 5 (8.9%) | 5/10 (50%) | Hy. marginatum | 9 | 0 | 1 | 10 | |
Common whitethroat (Sylvia communis) | Long-distance | 3 (3%) | 3 (5.3%) | 3/3 (100%) | Hy. marginatum | 0 | 0 | 3 | 3 | |
Willow warbler (Phylloscopus trochilus) | Long-distance | 2 (2%) | 2 (3.6%) | 2/2 (100%) | Hy. marginatum | 0 | 0 | 2 | 2 | |
Common nightingale (Luscinia megarhynchos) | Long-distance | 3 (3%) | 2 (3.6%) | 2/3 (66.6%) | Amblyomma marmoreum | 0 | 0 | 1 | 1 | |
Hy. marginatum | 2 | 0 | 0 | 2 | ||||||
Song thrush (Turdus philomelos) | Short-distance | 2 (2%) | 1 (1.8%) | 1/2 (50%) | Hy. marginatum | 1 | 1 | 0 | 2 | |
Whinchat (Saxicola rubetra) | Long-distance | 1 (1%) | 1 (1.8%) | 1/1 (100%) | Hyalomma spp. | 0 | 1 | 0 | 1 | |
Tyrrhenian spotted flycatcher (Muscicapa striata tyrrhenica) | Long-distance | 1 (1%) | 1 (1.8%) | 1/1 (100%) | I. frontalis | 0 | 1 | 0 | 1 | |
Eurasian magpie (Pica pica) | Resident | 1 (1%) | 1 (1.8%) | 1/1 (100%) | Hy. marginatum | 0 | 0 | 1 | 1 | |
Woodchat shrike (Lanius senator) | Long-distance | 1 (1%) | 1 (1.8%) | 1/1 (100%) | I. frontalis | 0 | 0 | 1 | 1 | |
TOTAL | - | - | 99 | 56 | - | - | 30 | 14 | 55 | 99 |
Bird Species | Tick Species | Tick Stage | R. helvetica | R. monacensis | R. aeschlimannii | R. sibirica | R. raoultii | Total |
---|---|---|---|---|---|---|---|---|
European robin (Erithacus rubecula) | I. ricinus | L | 31 | 26 | 0 | 0 | 0 | 57 |
I. ricinus | N | 5 | 4 | 0 | 0 | 0 | 9 | |
I. frontalis | L | 0 | 3 | 0 | 0 | 0 | 3 | |
Blackbird (Turdus merula) | I. ricinus | L | 6 | 3 | 0 | 0 | 0 | 9 |
I. ricinus | N | 4 | 5 | 0 | 0 | 0 | 9 | |
I. frontalis | L | 0 | 1 | 0 | 0 | 0 | 1 | |
I. frontalis | N | 1 | 0 | 0 | 0 | 0 | 1 | |
Hy. marginatum | N | 0 | 1 | 0 | 0 | 0 | 1 | |
Song thrush (Turdus philomelos) | I. ricinus | L | 2 | 3 | 0 | 0 | 0 | 5 |
I. ricinus | N | 0 | 2 | 0 | 0 | 0 | 2 | |
I. frontalis | L | 0 | 1 | 0 | 0 | 0 | 1 | |
Woodchat shrike (Lanius senator) | I. ricinus | A | 0 | 0 | 3 | 0 | 0 | 3 |
I. ricinus | N | 0 | 0 | 1 | 0 | 0 | 1 | |
I. frontalis | A | 0 | 0 | 2 | 0 | 0 | 2 | |
I. frontalis | N | 0 | 0 | 2 | 0 | 0 | 2 | |
Hy. marginatum | L | 0 | 0 | 1 | 0 | 0 | 1 | |
Common redstart (Phoenicurus phoenicurus) | I.ricinus | A | 1 | 0 | 0 | 0 | 0 | 1 |
I. ricinus | A | 0 | 0 | 9 | 2 | 0 | 11 | |
I. ricinus | N | 0 | 0 | 2 | 0 | 0 | 2 | |
I. ricinus | L | 0 | 0 | 2 | 0 | 0 | 2 | |
Hy. marginatum | N | 0 | 0 | 1 | 0 | 0 | 1 | |
Hy. rufipes | A | 0 | 0 | 3 | 0 | 0 | 3 | |
Pied flycatcher (Ficedula hypoleuca) | I. ricinus | A | 0 | 0 | 2 | 0 | 0 | 2 |
Whitethroat (Sylvia communis) | I. ricinus | A | 0 | 0 | 1 | 0 | 0 | 1 |
Nightingale (Luscinia megarhynchos) | I. ricinus | L | 0 | 0 | 0 | 0 | 1 | 1 |
Total | 50 | 49 | 29 | 2 | 1 | 131 |
Bird Species | Tick Species | Tick Stage | B. venatorum | B. capreoli | T. ovis | T. sp. OT3 | T. orientalis | T. equi | Total |
---|---|---|---|---|---|---|---|---|---|
European robin (Erithacus rubecula) | I. ricinus | L | 1 | 0 | 2 | 1 | 1 | 1 | 6 |
I. frontalis | L | 0 | 0 | 0 | 0 | 1 | 0 | 1 | |
I. ventalloi | L | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
I. ricinus | L | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
Common blackbird (Turdus merula) | I. ricinus | L | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
I. ricinus | N | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
I. ricinus | L | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
I. frontalis | L | 0 | 0 | 0 | 0 | 1 | 0 | 1 | |
Song thrush (Turdus philomelos) | I. ricinus | L | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
TOTAL | 2 | 1 | 5 | 1 | 4 | 1 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentina, C.; Giua, L.; Bianco, P.; Chessa, G.; Foxi, C.; Muroni, G.; Masala, G.; Piredda, I. Seasonal Dynamics and Pathogen Diversity of Tick Species Parasitizing Migratory Birds in Sardinia, Italy: Implications for the Spread of Rickettsia, Babesia, and Theileria Species. Vet. Sci. 2025, 12, 753. https://doi.org/10.3390/vetsci12080753
Valentina C, Giua L, Bianco P, Chessa G, Foxi C, Muroni G, Masala G, Piredda I. Seasonal Dynamics and Pathogen Diversity of Tick Species Parasitizing Migratory Birds in Sardinia, Italy: Implications for the Spread of Rickettsia, Babesia, and Theileria Species. Veterinary Sciences. 2025; 12(8):753. https://doi.org/10.3390/vetsci12080753
Chicago/Turabian StyleValentina, Chisu, Laura Giua, Piera Bianco, Giovanna Chessa, Cipriano Foxi, Gaia Muroni, Giovanna Masala, and Ivana Piredda. 2025. "Seasonal Dynamics and Pathogen Diversity of Tick Species Parasitizing Migratory Birds in Sardinia, Italy: Implications for the Spread of Rickettsia, Babesia, and Theileria Species" Veterinary Sciences 12, no. 8: 753. https://doi.org/10.3390/vetsci12080753
APA StyleValentina, C., Giua, L., Bianco, P., Chessa, G., Foxi, C., Muroni, G., Masala, G., & Piredda, I. (2025). Seasonal Dynamics and Pathogen Diversity of Tick Species Parasitizing Migratory Birds in Sardinia, Italy: Implications for the Spread of Rickettsia, Babesia, and Theileria Species. Veterinary Sciences, 12(8), 753. https://doi.org/10.3390/vetsci12080753