Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (775)

Search Parameters:
Keywords = carotenoid metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2633 KiB  
Article
Microbial–Organic Inputs with Glycine Supplementation Enhance Growth and Heat Stress Tolerance in Lettuce
by Kanjana Kudpeng, Ahmad Nuruddin Khoiri, Thanawat Duangfoo, Supapon Cheevadhanarak and Jiraporn Jirakkakul
Horticulturae 2025, 11(8), 935; https://doi.org/10.3390/horticulturae11080935 - 8 Aug 2025
Viewed by 318
Abstract
The escalating demand for sustainable agriculture calls for innovative strategies that enhance crop resilience while minimizing dependence on synthetic fertilizers. This study evaluated the synergistic effects of a microbial consortium (PYS), organic fertilizer (OF), glycine (Gly), and indole-3-acetic acid (IAA) on lettuce under [...] Read more.
The escalating demand for sustainable agriculture calls for innovative strategies that enhance crop resilience while minimizing dependence on synthetic fertilizers. This study evaluated the synergistic effects of a microbial consortium (PYS), organic fertilizer (OF), glycine (Gly), and indole-3-acetic acid (IAA) on lettuce under heat stress. The experiment was conducted in a greenhouse in Bangkok, Thailand, simulating tropical high-temperature conditions. The PYS+OF+Gly treatment significantly improved fresh weight, matching the performance of chemical fertilizer (CF) and indicating a strong growth-promoting synergy. Chlorophyll a, chlorophyll b, and carotenoid contents were higher in PYS or PYS+OF treatment, suggesting enhanced photosynthetic efficiency. At 60 days, PYS-based treatments also led to substantial increases in total phenolics and flavonoids, coupled with reduced lipid peroxidation and elevated antioxidant activities (DPPH, APX, CAT, POD, and SOD). However, vitamin C levels remained highest in the CF and OF controls, indicating a potential metabolic shift toward phenylpropanoid rather than ascorbate biosynthesis. Overall, our results demonstrate that combining microbial consortia with organic and biostimulant inputs could enhance growth, stress tolerance, and the nutritional quality of lettuce. This integrated approach presents a promising strategy for climate-resilient crop production and warrants further validation across different crops, environmental settings, and large-scale agricultural systems. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 682
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

21 pages, 7671 KiB  
Article
The Scarlet Alchemy of Survival: Integrated Transcriptomic and Metabolomic Analysis of Leaf Coloration in Endangered Parrotia subaequalis
by Lifang Zhang, Aya Hafsi, Xianting Wang, Chenyun Zhang, Zedong Lang, Mingjian Yu and Yanming Fang
Plants 2025, 14(15), 2345; https://doi.org/10.3390/plants14152345 - 29 Jul 2025
Viewed by 435
Abstract
Parrotia subaequalis is a rare and endangered deciduous tree native to China, valued for its vibrant autumn foliage and ornamental appeal. Its leaves exhibit striking coloration, ranging from red to yellow and purple, yet the physiological and molecular mechanisms behind this variation remain [...] Read more.
Parrotia subaequalis is a rare and endangered deciduous tree native to China, valued for its vibrant autumn foliage and ornamental appeal. Its leaves exhibit striking coloration, ranging from red to yellow and purple, yet the physiological and molecular mechanisms behind this variation remain poorly understood. Here, we combined transcriptomic, metabolomic, and physiological analyses to investigate pigment changes within the yellow leaf phenotype of P. subaequalis. Our findings revealed significant differences in gene expression and metabolic profiles between yellow and green leaves, particularly in starch and sucrose metabolism, photosynthesis, and carbon metabolism. Yellow leaves exhibited reduced photosynthetic capacity and carotenoid levels, alongside increased D-glucose concentration. These findings suggest that visible color transitions are likely driven by coordinated changes in carbohydrate metabolism, photosynthetic function, and organic compound accumulation. This study provides novel insights into the molecular and physiological mechanisms governing leaf pigmentation in an endangered tree, with useful information relevant to their conservation and sustainable utilization. Full article
(This article belongs to the Special Issue Research on Genetic Breeding and Biotechnology of Forest Trees)
Show Figures

Figure 1

14 pages, 1769 KiB  
Article
The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
by Ichrak Sekri, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos and Habib Ayadi
J. Mar. Sci. Eng. 2025, 13(8), 1452; https://doi.org/10.3390/jmse13081452 - 29 Jul 2025
Viewed by 352
Abstract
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. [...] Read more.
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. Moderate intensity (8000 lux) of white light is sufficient to produce this microalga. The colors of light strongly affect the parameters of the growth of Nephroselmis under each light intensity (p < 0.05). The yellow and green light supported the highest growth rates for the three intensities. Blue and green light at 15,000 Lux stimulates high levels of chl-a corresponding to antenna size 2.80 and 2.46. Nephroselmis illuminated with red light synthesizes carotenoids reaching 13 µg mL−1 at 15,000 lux. This latter for each color stops the proliferation of Nephroselmis, and cells shift their metabolism towards the accumulation of protein. Nephroselmis accumulates more protein, followed by carbohydrates, lipids and polyphenols. Nephroselmis exhibited the highest protein (64% D.W) content when cultured under white light, and the green at 15,000 lux enhanced their production. Nephroselmis is rich in carbohydrates, which accounted for more than 20% D.W under all combinations of light intensities and colors. The accumulation of polyphenols and carotenoids under high-intensity red and white light may reflect an oxidative stress response, suggesting their role as protective antioxidants. The capacity of Nephroselmis sp. to thrive and synthesize valuable metabolites under variable light regimes underscores its potential as a robust candidate for the production of various molecules. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

16 pages, 1005 KiB  
Review
Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
by Renata Nurzyńska-Wierdak
Metabolites 2025, 15(8), 502; https://doi.org/10.3390/metabo15080502 - 28 Jul 2025
Viewed by 435
Abstract
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption [...] Read more.
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption of fruits, vegetables, whole grains and other plant foods negatively correlates with the risk of developing chronic diseases. Green leafy vegetables (GLVs) are a key element of healthy eating habits and an important source of vitamins C and E, carotenoids—mainly β-carotene and lutein—and minerals. This review discusses and summarizes the current knowledge on the health benefits of consuming GLVs in the prevention and treatment of MetS to provide a compendium for other researchers investigating new natural products. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Figure 1

20 pages, 2432 KiB  
Article
Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs
by Anna Rusaczonek, Patryk Sankiewicz, Maria Duszyn, Mirosława Górecka, Katarzyna Chwedorzewska and Ewa Muszyńska
Agriculture 2025, 15(15), 1586; https://doi.org/10.3390/agriculture15151586 - 24 Jul 2025
Viewed by 311
Abstract
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within [...] Read more.
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within the same family. Helichrysum italicum and Salvia officinalis had the highest polyphenol levels, while Achillea millefolium and Ocimum basilicum had the lowest. Total polyphenols did not always correlate with antioxidant activity. For instance, Petroselinum hortense and Salvia rosmarinus showed high antioxidant activity despite low polyphenol levels, whereas Levisticum officinale and Artemisia dracunculus combined both. Mentha spicata, M. x citrata, Origanum vulgare, and S. officinalis were rich in carotenoids, while H. italicum showed high α-carotene but low levels of other carotenoids. Most Lamiaceae accumulated a high amount of chlorophylls and polyphenols. Cultivated herbs like M. spicata, M. x citrata, and S. officinalis exhibited stronger and more diverse properties than wild species. It can be concluded that taxonomy alone does not predict antioxidant potential. The differences observed may be attributed to species-specific metabolic pathways, ecological adaptations, or environmental factors influencing phytochemical expression. These findings highlight the importance of conducting species-level screenings in the search for plant-derived antioxidants with potential therapeutic applications. Full article
Show Figures

Graphical abstract

15 pages, 3899 KiB  
Article
Transcriptome and Metabolome Revealed Impacts of Zn Fertilizer Application on Flavonoid Biosynthesis in Foxtail Millet
by Ke Ma, Xiangyu Li, Xiangyang Chen, Chu Wang, Zecheng Zhang, Xiangyang Yuan, Fu Chen and Xinya Wen
Agronomy 2025, 15(8), 1767; https://doi.org/10.3390/agronomy15081767 - 23 Jul 2025
Viewed by 267
Abstract
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in [...] Read more.
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in foxtail millet under different Zn application methods. The results showed that different Zn application methods significantly increased the total polyphenol, carotenoid, total flavonoid, and Zn contents in the grains of foxtail millet. Under the basal soil application (S3) and foliar spray (F2) treatments, the total flavonoid content significantly increased by 45.87% and 64.40%, respectively, compared with that of CK. Basal soil Zn fertilization increased the flavonoid content of foxtail millet by up-regulating genes related to flavonoid metabolism and biosynthesis, including flavanone-3-hydroxylase, chalcone isomerase, and leucoanthocyanidin reductase. Foliar Zn application enhanced flavonoid content by up-regulating genes involved in flavonoid metabolic and biosynthetic processes and chalcone isomerase. In conclusion, using Zn fertilizer can improve the synthesis and metabolism of foxtail millet flavonoids, effectively increase the content of functional substances in grains, and realize the biofortification of foxtail millet grains. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 16505 KiB  
Article
Delayed Starch Degradation Triggers Chromoplast Structural Aberration to Inhibit Carotenoid Cleavage: A Novel Mechanism for Flower Color Deepening in Osmanthus fragrans
by Xiangling Zeng, Yunfei Tan, Xin Wen, Qiang He, Hui Wu, Jingjing Zou, Jie Yang, Xuan Cai and Hongguo Chen
Horticulturae 2025, 11(7), 864; https://doi.org/10.3390/horticulturae11070864 - 21 Jul 2025
Viewed by 359
Abstract
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud [...] Read more.
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud mutation cultivar ‘Huolian Jindan’ (HLJD) as materials, combining genome resequencing, ultrastructural observation, targeted metabolomics, and transcriptomic analysis to elucidate the molecular and cellular mechanisms underlying flower color variation. Phylogenetic analysis confirms that HLJD is a natural bud mutation of JQG. Ultrastructural observations reveal that during petal development, chromoplasts are transformed from proplastids. In HLJD petals, starch granules degrade more slowly and exhibit abnormal morphology, resulting in chromoplasts displaying crystalline, tubular, and fibrous composite structures, in contrast to the typical spherical plastoglobuli found in JQG. Targeted metabolomics identified 34 carotenoids, showing significant increases in the levels of ε-carotene, γ-carotene, α-carotene, and β-carotene in HLJD petals compared to JQG, with these levels continuing to accumulate throughout the flowering process, while the levels of the cleavage products α-ionone and β-ionone decrease. Transcriptomic analysis indicates that carotenoid metabolic pathway genes do not correlate directly with the phenotype; however, 49 candidate genes significantly associated with pigment accumulation were identified. Among these, the expression of genes such as glycoside hydrolases (LYG036752, etc.), sucrose synthase (LYG010191), and glucose-1-phosphate adenylyltransferase (LYG003610) are downregulated in HLJD. This study proposes for the first time the pathway of “starch degradation delay → chromoplast structural abnormalities → carotenoid cleavage inhibition” for deepening flower color, providing a new theoretical model for the metabolic regulation of carotenoids in non-photosynthetic tissues of plants. This research not only identifies key target genes (such as glycoside hydrolases) for the color breeding of O. fragrans but also establishes a theoretical foundation for the color enhancement of other ornamental plants. Full article
Show Figures

Figure 1

17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 936
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

22 pages, 1670 KiB  
Review
Molecular Control of Flower Colour Change in Angiosperms
by Fernanda M. Rezende, Magdalena Rossi and Cláudia M. Furlan
Plants 2025, 14(14), 2185; https://doi.org/10.3390/plants14142185 - 15 Jul 2025
Viewed by 914
Abstract
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores [...] Read more.
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores the genetic, biochemical, and ecological bases of floral colour change, focusing on the biosynthesis and regulation of the three major classes of plant pigments: carotenoids, flavonoids (particularly anthocyanins), and betalains. These pigments, derived from primary metabolism through distinct biosynthetic pathways, define the spatial and temporal variability of floral colouration. We discuss the molecular mechanisms underlying flower colour change from opening to senescence, highlighting pigment biosynthesis and degradation, pH shifts, metal complexation, and co-pigmentation. Additionally, we address the regulatory networks, including transcription factors (MYB, bHLH, and WDR) and post-transcriptional control, that influence pigment production. Finally, we provide a comprehensive survey of angiosperm species exhibiting dynamic petal colour changes, emphasizing how these mechanisms are regulated. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Flower Development and Plant Reproduction)
Show Figures

Figure 1

24 pages, 3617 KiB  
Article
Comparative Transcriptome Analysis in Tomato Fruit Reveals Genes, Pathways, and Processes Affected by the LEC1-LIKE4 Transcription Factor
by Venetia Koidou, Dimitrios Valasiadis, Nestor Petrou, Christina Emmanouilidou and Zoe Hilioti
Int. J. Mol. Sci. 2025, 26(14), 6728; https://doi.org/10.3390/ijms26146728 - 14 Jul 2025
Viewed by 413
Abstract
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) [...] Read more.
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) transcription factor, in tomato fruit development using RNA-sequencing data from zinc-finger nuclease (ZFN)-targeted disruption lines. Differential gene expression (DEG) analyses of two independent l1l4 mutant lines compared to the wild-type line revealed significant alterations in key metabolic pathways and regulatory networks that are implicated in fruit ripening. Specifically, L1L4 disruption impacted the genes and pathways related to the fruit’s color development (carotenoid and flavonoids), texture (cell wall modification), flavor (sugar and volatile organic compound metabolism), and ripening-related hormone signaling. The analyses also revealed multiple differentially expressed histones, histone modifiers, and transcription factors (ERFs, MYBs, bHLHs, WRKYs, C2H2s, NACs, GRAS, MADs, and bZIPs), indicating that L1L4 participates in a complex regulatory network. These findings provide valuable insights into the role of L1L4 in orchestrating tomato fruit development and highlight it as a potential target for genetically improving the fruit quality. Full article
(This article belongs to the Special Issue Genomics, Genetics, and the Future of Fruit Improvement)
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature
by Wei Zhao, Jihua Liu, Hui Song, Bokun Chen, Hongli Ji, Xue Yang and Gang Li
Microorganisms 2025, 13(7), 1652; https://doi.org/10.3390/microorganisms13071652 - 12 Jul 2025
Viewed by 389
Abstract
The acute rise in temperature due to marine heatwaves has a strong impact on marine phytoplankton. To determine whether these effects depend on ambient temperature and cell size, we acclimated two diatom species, smaller Thalassiosira pseudonana (Hasle and Heimdal, 1970) and larger Thalassiosira [...] Read more.
The acute rise in temperature due to marine heatwaves has a strong impact on marine phytoplankton. To determine whether these effects depend on ambient temperature and cell size, we acclimated two diatom species, smaller Thalassiosira pseudonana (Hasle and Heimdal, 1970) and larger Thalassiosira rotula (Meunier, 1910), at low (LAT), medium (MAT) and high ambient temperatures (HAT) and examined their physiochemical and transcriptional responses to temperature rise (AT + 6 °C). The specific growth rate (µ) of smaller cells was increased by 32% due to temperature rise at LAT, but decreased by 13% at HAT, with the stimulatory and inhibitory extent being ~50% less than that of larger cells. At LAT, chlorophyll a (Chl a), carotenoid (Car) and carbon (POC) contents were increased in smaller cells due to temperature rise, but were decreased in larger cells; at HAT, Chl a and Car were increased in both smaller and larger cells and POC was increased in only smaller cells. At LAT, temperature rise led to a disproportionate increase in photosynthesis and dark respiration, resulting in an increase in carbon utilization efficiency (CUE) in smaller cells and a decrease in CUE in larger cells; at HAT, there was a decrease in CUE in both the smaller and larger cells, but to a lesser extent in the former than in the latter. Our results also show that smaller cells cope with the acute temperature rise mainly by strengthening their enzyme activity (e.g., the antioxidant system) and conservatively regulating their metabolism, while larger cells mainly regulate their photosynthetic and central carbon metabolism. Moreover, larger cells can outperform their smaller counterparts when the temperature rise occurs at lower ambient temperature. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 2730 KiB  
Article
Physiological and Biochemical Responses and Transcriptome Analysis of Bangia fuscopurpurea (Rhodophyta) Under High-Temperature Stress
by Minghao Zhao, Hongyan Zheng, Zepan Chen and Weizhou Chen
Curr. Issues Mol. Biol. 2025, 47(7), 484; https://doi.org/10.3390/cimb47070484 - 25 Jun 2025
Viewed by 568
Abstract
With the advancement of human industrial activities, increased carbon dioxide emissions have made global warming an inescapable trend. Elevated temperatures exert profound effects on the viability of large macroalgae. Bangia fuscopurpurea (Rhodophyta) is a commercially important large red alga widely cultivated along the [...] Read more.
With the advancement of human industrial activities, increased carbon dioxide emissions have made global warming an inescapable trend. Elevated temperatures exert profound effects on the viability of large macroalgae. Bangia fuscopurpurea (Rhodophyta) is a commercially important large red alga widely cultivated along the coastal waters of Putian, Fujian Province, China; however, its physiological, biochemical, and molecular responses to heat stress remain unclear. To address this question, we cultured B. fuscopurpurea at 15 °C (control) and 28 °C (heat stress) for 7 days, assessed changes in growth and photosynthetic parameters, and performed transcriptome sequencing. Growth analysis revealed that the relative growth rate of B. fuscopurpurea at 28 °C was significantly lower than that at 15 °C. After 1 day at 28 °C, the chlorophyll a and carotenoid contents increased significantly; the phycobiliprotein levels rose markedly on days 4 and 7, whereas the Fv/Fm ratio decreased significantly on days 1, 4, and 7. Transcriptomic analysis indicated that heat stress up-regulated the majority of differentially expressed genes (DEGs) in B. fuscopurpurea. KEGG pathway enrichment analysis revealed that the DEGs were predominantly associated with photosynthesis, carbohydrate and energy metabolism, glycerophospholipid metabolism, and the glutathione cycle. In summary, B. fuscopurpurea mitigates the adverse effects of heat stress by up-regulating genes involved in photosynthesis, antioxidant defenses, and glycerophospholipid metabolism. These findings enhance our understanding of the physiological adaptations and molecular mechanisms by which B. fuscopurpurea responds to heat stress. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Figure 1

12 pages, 1005 KiB  
Article
Habitat Urbanization, Circulating Glucose and Carotenoid Levels, and Body Condition Predict Variation in Blood Ketone Levels in House Finches (Haemorhous mexicanus) from the American Southwest
by Kevin J. McGraw, Victor Aguiar de Souza Penha, Kathryn N. DePinto, Dean J. Drake, Elise Crawford-Paz Soldán and Danielle Pais
Birds 2025, 6(3), 34; https://doi.org/10.3390/birds6030034 - 24 Jun 2025
Viewed by 511
Abstract
Real-time health assessment is crucial for diagnosing emerging threats to wildlife. Point-of-care instruments now allow detailed, affordable measurements of blood metabolites (e.g., glucose, triglycerides, ketones) in free-ranging animals. Ketones, however, remain understudied, especially in relation to environmental and life-history traits. Here, we assessed [...] Read more.
Real-time health assessment is crucial for diagnosing emerging threats to wildlife. Point-of-care instruments now allow detailed, affordable measurements of blood metabolites (e.g., glucose, triglycerides, ketones) in free-ranging animals. Ketones, however, remain understudied, especially in relation to environmental and life-history traits. Here, we assessed blood ketone variation in male House Finches (Haemorhous mexicanus) across two seasons (summer and winter) as a function of body condition, circulating glucose, carotenoids, lipid-soluble vitamins, and habitat urbanization (urban/suburban/rural). In both seasons, the interaction between capture site and glucose concentration predicted ketone levels: urban and suburban birds showed a negative relationship, while in summer, rural birds showed a positive one. Additionally, in winter, ketone levels were negatively associated with plasma carotenoids, indicating birds with higher carotenoid levels had lower ketone concentrations. These findings suggest that similar to patterns seen in biomedical research and our previous work on carotenoids and health, ketone status can serve as a valuable indicator of nutritional condition and fat metabolism in wild birds, particularly in the context of urbanization. Full article
(This article belongs to the Special Issue Resilience of Birds in Changing Environments)
Show Figures

Figure 1

26 pages, 2501 KiB  
Article
The Role of Genetic Variation in Modulating the Effects of Blended Fruits and Vegetables Versus Fruit- and Vegetable-Coated Food Products on Antioxidant Capacity, DNA Protection, and Vascular Health: A Randomized Controlled Trial
by Julia N. DeBenedictis, Na Xu, Theo M. de Kok and Simone G. van Breda
Nutrients 2025, 17(12), 2036; https://doi.org/10.3390/nu17122036 - 18 Jun 2025
Viewed by 572
Abstract
Background/Objectives: Fruits and vegetables (F&Vs) are major dietary sources of phytochemicals, crucial for preventing non-communicable diseases. However, barriers such as preparation inconvenience and a short shelf life hinder their consumption. F&V-coated foods have emerged as an alternative. This human nutrition intervention study [...] Read more.
Background/Objectives: Fruits and vegetables (F&Vs) are major dietary sources of phytochemicals, crucial for preventing non-communicable diseases. However, barriers such as preparation inconvenience and a short shelf life hinder their consumption. F&V-coated foods have emerged as an alternative. This human nutrition intervention study assessed the effects of a blended F&Vs mixture versus an F&V-coated food on phytochemical absorption and chronic disease risk markers. It also explored how genetic variation influences physiological responses to these F&V products. Methods: In this randomized-controlled trial, participants were assigned to one of three dietary interventions: a blended F&V mixture (“F&V Blend”), a rice-based cereal product coated with this blend (“Coated Pearl”), or the same product without the F&V mixture (“Uncoated Pearl”). The four-week study included a two-week run-in and a two-week intervention phase, each followed by a test day. Measurements included DNA damage resistance (comet assay), plasma antioxidant status (Trolox capacity and superoxide levels), microvasculature health (retinal analysis), and plasma phytochemical concentrations (colorimetric analyses or HPLC). To assess group differences, a linear mixed model was used. Fifteen polymorphic genes related to phytochemical metabolism and oxidative stress were tested using TaqMan and PCR, with outcomes analyzed via ANOVA. Results: The F&V Blend and Coated Pearl products increased plasma carotenoid levels versus the Uncoated Pearl product. Only the F&V Blend improved retinal dilation and DNA resistance. Surprisingly, the Uncoated Pearl product enhanced antioxidant capacity, lowered superoxide levels, and improved retinal microvasculature. Genotype effects were minimal, except for HNF1A, where wildtypes in the Uncoated Pearl group showed a higher antioxidant capacity. Conclusions: Fresh F&Vs were more effective than coated alternatives in improving vascular health and DNA protection. Full article
(This article belongs to the Special Issue Fruits and Vegetable Bioactive Substances and Nutritional Value)
Show Figures

Graphical abstract

Back to TopTop