Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture Protocol
2.2. Growth Rate
2.3. Cell Composition
2.4. Physiological Parameters
2.5. Transcriptome Sequencing and Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Different Physiological Traits of Larger and Smaller Diatoms Under Different ATs
4.2. The Different Responses of Smaller and Larger Diatoms to the Temperature Rise at Different ATs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LAT | Low ambient temperature |
MAT | Medium ambient temperature |
HAT | High ambient temperature |
ROS | Reactive oxygen species |
NCMP | Provasoli-Guillard National Center of Marine Phytoplankton |
CCMA | Center for Collections of Marine Algae |
Chl a | Chlorophyll a |
Car | Carotenoid |
POC | Particulate organic carbon content |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
Pg | Gross photosynthetic O2 evolution rate |
Rd | Dark respiration rate |
CUE | Carbon use efficiency |
DEGs | Differentially expressed genes |
Nr | NCBI non-redundant protein sequences |
Swiss-Prot | Manually annotated and reviewed protein sequence database |
KEGG | Kyoto Encyclopedia of Genes and Genomes database |
FC | Foldchange |
PsbO | Manganese-stabilizing protein |
PsbA | Photosystem II reaction center protein D1 |
PsbM | Photosystem II reaction center protein M |
PetH | Ferredoxin--NADP reductase |
PetJ | Cytochrome c6 |
LHCA1 | Photosystem I chlorophyll a/b-binding protein 1 |
LHCA4 | Photosystem I chlorophyll a/b-binding protein 4 |
PsaA | Photosystem I P700 chlorophyll a apoprotein A1 |
PsaF | Photosystem I reaction center subunit III |
AtpD | ATP synthase subunit delta |
AtpG | ATP synthase gamma chain |
PGK | Phosphoglycerate kinase |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
FBP | Fructose-1,6-bisphosphatase |
PRK | Phosphoribulokinase |
Rubisco | Ribulose bisphosphate carboxylase |
G6PI | Glucose-6-phosphate 1-epimerase |
PK | Pyruvate kinase |
ripA | Ribose-5-phosphate isomerase 1 |
PRPS | Ribose-phosphate pyrophosphokinase 1 |
PC | Pyruvate carboxylase |
CS | Citrate synthase |
OGDH | 2-oxoglutarate dehydrogenase E1 component |
LSC | Succinyl-CoA synthetase alpha subunit |
SDH | Succinate dehydrogenase |
MDH | Malate dehydrogenase |
ND | 2-oxoglutarate dehydrogenase E1 component |
ATP5F1A | ATP synthase subunit alpha |
ATP5F1C | ATP synthase subunit gamma |
Prx | Peroxiredoxin |
VDE | Violaxanthin de-epoxidase |
ZEP | Zeaxanthin epoxidase |
FCP | Fucoxanthin-chlorophyll protein |
References
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Zweng, M.M. World ocean heat content and thermosteric sea level change (0–2000 m), 1955-2010. Geophys. Res. Lett. 2012, 39, 51106. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Giménez, L.; Boersma, M.; Wiltshire, K.H. Amultiple baseline approach for marine heatwaves. Limnol. Oceanogr. 2024, 69, 638–651. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Jacox, M.G.; Hazen, E.L.; Zaba, K.D.; Rudnick, D.L.; Edwards, C.A.; Moore, A.M.; Bograd, S.J. Impacts of the 2015-2016 El Niño on the California Current System: Early assessment and comparison to past events. Geophys. Res. Lett. 2016, 43, 7072–7080. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, H.; Ma, J.; Deng, J. Predictability of Northwest Pacific marine heatwaves in summer based on NUIST-CFS1.0 hindcasts. Weather Clim. 2023, 42, 100617. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C. Variations in summer marine heatwaves in the South China Sea. Geophys. Res. Oceans 2021, 126, e2021JC017792. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Nielsen, D.M.; Olonscheck, D.; Baehr, J. Arctic marine heatwaves forced by greenhouse gases and triggered by abrupt sea-ice melt. Commun. Earth Environ. 2024, 5, 57. [Google Scholar] [CrossRef]
- Behrenfeld, M.J. Climate-mediated dance of the plankton. Nat. Clim. Change 2014, 4, 880–887. [Google Scholar] [CrossRef]
- Jabre, L.; Allen, A.E.; Mccain, J.S.P.; Mccrow, J.P.; Tenenbaum, N.; Spackeen, J.L.; Sipler, R.E.; Green, B.R.; Bronk, D.A.; Hutchins, D.A.; et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc. Natl. Acad. Sci. USA 2020, 118, e2107238118. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, S.-F.; Xie, Z.-X.; Li, D.-X.; Lin, L.; Wang, M.-H.; Wang, D.-Z. Metabolic Adaptation of a Globally Important Diatom following 700 Generations of Selection under a Warmer Temperature. Environ. Sci. Technol. 2022, 56, 5247–5255. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, D.; Ciotti, B.J.; Montagnes, D.J.S. Protists decrease in size linearly with temperature: Ca. 2.5% °C1. Proc. Biol. Sci. 2003, 270, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.K.; Aranguren-Gassis, M.; Kremer, C.T.; Gould, M.R.; Anderson, K.; Klausmeier, C.A.; Litchman, E. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 2017, 23, 3269–3280. [Google Scholar] [CrossRef]
- Barton, S.; Jenkins, J.; Buckling, A.; Schaum, C.E.; Smirnoff, N.; Raven, J.A.; Yvon-Durocher, G. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol. Lett. 2020, 23, 722–733. [Google Scholar] [CrossRef]
- Rehder, L.; Rost, B.; Rokitta, S.D. Abrupt and acclimation responses to changing temperature elicit divergent physiological effects in the diatom Phaeodactylum tricornutum. New Phytol. 2023, 239, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Kranz, S.A.; Young, J.N.; Hopkinson, B.M.; Goldman, J.A.; Tortell, P.D. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. New Phytol. 2015, 205, 192–201. [Google Scholar] [CrossRef]
- Leung, P.T.; Yi, A.X.; Ip, J.C.; Mak, S.S.; Leung, K.M. Photosynthetic and transcriptional responses of the marine diatom Thalassiosira pseudonana to the combined effect of temperature stress and copper exposure. Mar. Pollut. Bull. 2017, 124, 938–945. [Google Scholar] [CrossRef]
- Schaum, C.E.; Barton, S.; Bestion, E.; Buckling, A.; Garcia-Carreras, B.; Lopez, P.; Lowe, C.; Pawar, S.; Smirnoff, N.; Trimmer, M.; et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat. Ecol. Evol. 2017, 1, 0094. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, X.; Wang, M.; Wang, D.Z. Rapid Adaption but Genetic Diversity Loss of a Globally Distributed Diatom in the Warmer Ocean. Glob. Change Biol. 2024, 30, e17602. [Google Scholar] [CrossRef]
- Mai, G.; Liu, J.; Xia, X.; Pang, X.; Li, G. Acutely Rising Temperature Reduces Photosynthetic Capacity of Phytoplankton Assemblages in Tropical Oceans: A Large-Scale Investigation. Front. Mar. Sci. 2021, 8, 710697. [Google Scholar] [CrossRef]
- Dalpadado, P.; Roxy, M.K.; Arrigo, K.R.; van Dijken, G.L.; Chierici, M.; Ostrowski, M.; Skern-Mauritzen, R.; Bakke, G.; Richardson, A.J.; Sperfeld, E. Rapid climate change alters the environment and biological production of the Indian Ocean. Sci. Total Environ. 2024, 906, 167342. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Wang, Y.; Xiu, P.; Yu, Y.; Ma, W.; Chai, F. Combined oceanic and atmospheric forcing of the 2013/14 marine heatwave in the northeast Pacific. npj Clim. Atmos. Sci. 2023, 6, 3. [Google Scholar] [CrossRef]
- Finkel, Z.V.; Beardall, J.; Flynn, K.J.; Quigg, A.; Rees, T.A.V.; Raven, J.A. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J. Plankton Res. 2010, 32, 119–137. [Google Scholar] [CrossRef]
- Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 1995, 9, 359–372. [Google Scholar] [CrossRef]
- Armbrust, E.V. The life of diatoms in the world’s oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef]
- Tréguer, P.; Bowler, C.; Moriceau, B.; Dutkiewicz, S.; Gehlen, M.; Aumont, O.; Bittner, L.; Dugdale, R.; Finkel, Z.; Iudicone, D.; et al. Influence of diatom diversity on the ocean biological carbon pump. Nature Geosci. 2018, 11, 27–37. [Google Scholar] [CrossRef]
- Beardall, J.; Allen, D.; Bragg, J.; Finkel, Z.V.; Flynn, K.J.; Quigg, A.; Rees, T.A.V.; Richardson, A.; Raven, J.A. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. 2009, 181, 295–309. [Google Scholar] [CrossRef]
- Fan, J.; Li, F.; Hu, S.; Gao, K.; Xu, J. Larger diatoms are more sensitive to temperature changes and prone to succumb to warming stress. Limnol. Oceanogr. 2023, 68, 2512–2528. [Google Scholar] [CrossRef]
- Key, T.; Mccarthy, A.; Campbell, D.A.; Six, C.; Roy, S.; Finkel, Z.V. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ. Microbiol. 2010, 12, 95–104. [Google Scholar] [CrossRef]
- Marañón, E.; Cermeño, P.; López-Sandoval, D.C.; Rodríguez-Ramos, T.; Rodríguez, J. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 2013, 16, 371–379. [Google Scholar] [CrossRef]
- Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 2015, 7, 241–264. [Google Scholar] [CrossRef]
- Xu, G.; Liu, J.; Chen, B.; Li, G. Photoperiod mediates the differential physiological responses of smaller Thalassiosira pseudonana and larger Thalassiosira punctigera to temperature changes. J. Appl. Phycol. 2020, 32, 2863–2874. [Google Scholar] [CrossRef]
- Zhan, W.; Zhang, Y.; He, Q.; Zhan, H. Shifting responses of phytoplankton to atmospheric and oceanic forcing in a prolonged marine heatwave. Limnol. Oceanogr. 2023, 68, 1821–1834. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, J.; Li, T.; Song, H.; Chen, B.; Chen, B.; Li, G. Contrasting effects of temperature rise in different seasons on larger and smaller phytoplankton assemblages in a temperate coastal water, Laoshan Bay, northern Yellow Sea, China. Mar. Environ. Res. 2025, 206, 107034. [Google Scholar] [CrossRef]
- Berges, J.A.; Franklin, D.J.; Harrison, P.J. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 2001, 37, 1138–1145. [Google Scholar] [CrossRef]
- Wilhelm, C.; Jungandreas, A.; Jakob, T.; Goss, R. Light acclimation in diatoms: From phenomenology to mechanisms. Mar. Genom. 2014, 16, 5–15. [Google Scholar] [CrossRef]
- Li, G.; Campbell, D.A. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Photosynth. Res. 2017, 131, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Smayda, T.J.; Boleyn, B.J. Experimental observations on the flotation of marine diatoms. I. Thalassiosira cf. nana, Thalassiosira rotula and Nitzschia seriata. Limnol. Oceanogr. 1965, 10, 499–509. [Google Scholar] [CrossRef]
- Li, G.; Talmy, D.; Campbell, D.A. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. J. Phycol. 2017, 53, 95–107. [Google Scholar] [CrossRef]
- Jo, J.; Hugonnet, H.; Lee, M.J.; Park, Y.K. Digital cytometry: Extraction of forward and side scattering signals from holotomography. arXiv 2024, arXiv:2408.15522. [Google Scholar] [CrossRef]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2004, 73, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liu, J.; Xu, G.; Li, G. Lowering pO2 Interacts with Photoperiod to Alter Physiological Performance of the Coastal Diatom Thalassiosira pseudonana. Microorganisms 2021, 9, 2541. [Google Scholar] [CrossRef]
- Allison, S.D.; Wallenstein, M.D.; Bradford, M.A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 2010, 3, 336–340. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Dewey, C.N.; Bo, L. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhou, Y.; Beardall, J.; Raven, J.A.; Peng, B.; Xu, L.; Zhang, H.; Li, J.; Xia, J.; Jin, P. The dynamics of adaptive evolution in microalgae in a high-CO2 ocean. New Phytol. 2024, 245, 1608–1624. [Google Scholar] [CrossRef]
- Barton, S. Understanding the Responses of Marine Phytoplankton to Experimental Warming. Ph.D. Thesis, Philosophy in Biological Sciences, The University of Exeter, Cornwall, UK, 2018. [Google Scholar]
- Yamori, W.; Suzuki, K.; Noguchi, K.; Nakai, M.; Terashima, I. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ. 2006, 29, 1659–1670. [Google Scholar] [CrossRef]
- Deschaseaux, E.; O’brien, J.; Siboni, N.; Petrou, K.; Seymour, J.R. Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate Alexandrium minutum during a simulated marine heatwave. Biogeosciences 2019, 16, 4377–4391. [Google Scholar] [CrossRef]
- Barbara, L.; Thomas, M. Polar microalgae: New approaches towards understanding adaptations to an extreme and changing environment. Biology 2014, 3, 56–80. [Google Scholar] [CrossRef]
- Torstensson, A.; Jiménez, C.; Nilsson, A.K.; Wulff, A. Elevated temperature and decreased salinity both affect the biochemical composition of the Antarctic sea-ice diatom Nitzschia lecointei, but not increased pCO2. Polar Biol. 2019, 42, 2149–2164. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.; Song, H.; Xu, G.; Zhao, W.; Li, G. Decreasing available O2 interacts with light to alter the growth and fatty acid content in a marine diatom. Environ. Exp. Bot. 2024, 220, 105667. [Google Scholar] [CrossRef]
- Dall’osto, L.; Bassi, R.; Ruban, A. Photoprotective mechanisms: Carotenoids. Plast. Biol. 2014, 5, 393–435. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Sharif, S.; Saeed, M.; Tahir, A. Role of carotenoids in photosynthesis. In Carotenoids: Structure and Function in the Human Body; Zia-Ul-Haq, M., Dewanjee, S., Riaz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 147–187. [Google Scholar] [CrossRef]
- Le Bouteiller, A.; Blanchot, J.; Rodier, M. Size distribution patterns of phytoplankton in the western Pacific: Towards a generalization for the tropical open ocean. Deep Sea Res. A 1992, 39, 805–823. [Google Scholar] [CrossRef]
- Shalapyonok, A.; Olson, R.J.; Shalapyonok, L.S. Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: Composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep Sea Res. Part II 2001, 48, 1231–1261. [Google Scholar] [CrossRef]
- Guidi, L.; Stemmann, L.; Jackson, G.A.; Ibanez, F.; Claustre, H.; Legendre, L.; Picheral, M.; Gorskya, G. Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis. Limnol. Oceanogr. 2009, 54, 1951–1963. [Google Scholar] [CrossRef]
- Reynolds, R.A.; Stramski, D. Optical characterization of marine phytoplankton assemblages within surface waters of the western Arctic Ocean. Limnol. Oceanogr. 2019, 64, 2478–2496. [Google Scholar] [CrossRef]
- Li, M.; Kim, C. Chloroplast ROS and stress signaling. Plant Commun. 2022, 3, 100264. [Google Scholar] [CrossRef]
- Asada, K.; Takahashi, M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition; Kyle, D.J., Osmond, C.B., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1987; pp. 227–287. [Google Scholar]
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C.Y.S. Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Sci. Rep. 2021, 11, 3864. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Yang, C.; Huang, H.; Li, Y.; Long, S.; Yang, H.; Liu, L.; Shen, Y.; Wang, Z. Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane. Agronomy 2024, 14, 2640. [Google Scholar] [CrossRef]
- Yu, J.; Tian, J.-Y.; Jiang, Y.; Wang, X.-D.; Song, X.-R.; Liu, L.-F.; Yang, G.-P. Effects of micro-and nano-plastics on growth, antioxidant system, DMS, and DMSP production in Emiliania huxleyi. Environ. Pollut. 2024, 351, 124084. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Ji, Y.; Huang, Q.; Li, P.; Pan, J.; Lu, H.; Liang, Z.; Guo, Y.; Zhong, J.; Beardall, J.; et al. A reduction in metabolism explains the tradeoffs associated with the long-term adaptation of phytoplankton to high CO2 concentrations. New Phytol. 2022, 233, 2155–2167. [Google Scholar] [CrossRef] [PubMed]
- Marella, T.K.; Bhattacharjya, R.; Tiwari, A. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microb. Cell Fact. 2021, 20, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, F.; Wu, J.; Overmans, S.; Ye, M.; Xiao, M.; Peng, B.; Xu, L.; Huang, J.; Lu, Y.; et al. The adaptive mechanisms of the marine diatom Thalassiosira weissflogii to long-term high CO2 and warming. Plant J. 2024, 119, 2001–2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Liu, J.; Song, H.; Chen, B.; Ji, H.; Yang, X.; Li, G. Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature. Microorganisms 2025, 13, 1652. https://doi.org/10.3390/microorganisms13071652
Zhao W, Liu J, Song H, Chen B, Ji H, Yang X, Li G. Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature. Microorganisms. 2025; 13(7):1652. https://doi.org/10.3390/microorganisms13071652
Chicago/Turabian StyleZhao, Wei, Jihua Liu, Hui Song, Bokun Chen, Hongli Ji, Xue Yang, and Gang Li. 2025. "Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature" Microorganisms 13, no. 7: 1652. https://doi.org/10.3390/microorganisms13071652
APA StyleZhao, W., Liu, J., Song, H., Chen, B., Ji, H., Yang, X., & Li, G. (2025). Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature. Microorganisms, 13(7), 1652. https://doi.org/10.3390/microorganisms13071652