Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (826)

Search Parameters:
Keywords = cardiovascular fibrosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 616 KiB  
Article
Noninvasive Assessment of Arterial Wall and Soluble ST2 in Patients with Type 2 Diabetes and Coronary Artery Disease
by Edyta Radzik, Marcin Schulz, Brygida Przywara-Chowaniec and Andrzej Tomasik
Int. J. Mol. Sci. 2025, 26(15), 7561; https://doi.org/10.3390/ijms26157561 - 5 Aug 2025
Abstract
Diabetes-related pathophysiological processes contribute to endothelial dysfunction, arterial stiffening (AS), hypertension, vascular remodeling, and impaired myocardial perfusion. This study aimed to assess the relationship between arterial wall parameters and sST2 concentration as potential risk factors in type 2 diabetes (T2DM) and investigate sex-related [...] Read more.
Diabetes-related pathophysiological processes contribute to endothelial dysfunction, arterial stiffening (AS), hypertension, vascular remodeling, and impaired myocardial perfusion. This study aimed to assess the relationship between arterial wall parameters and sST2 concentration as potential risk factors in type 2 diabetes (T2DM) and investigate sex-related differences. To achieve this, we enrolled 100 patients with suspected or exacerbated coronary artery disease (CAD) and divided them into a T2DM group (n = 58) and a control group (n = 42). Endothelial reactivity (lnRHI), ABI, sST2 levels, and carotid–femoral (cfPWV) and carotid–radial pulse wave velocity (crPWV) were assessed. Coronary angiography was performed in every patient, and epicardial flow and myocardial perfusion were evaluated using QuBE and FLASH. Our results showed that the coronary angiographic findings were similar in both groups. However, T2DM patients had a significantly higher central AS (cfPWV 10.8 ± 2 vs. 9.9 ± 2.7 m/s, p < 0.05) and vascular age (70.0 ± 12.3 vs. 61.3 ± 15.4 years, p < 0.05), while peripheral AS, RHI, and ABI showed no differences. CfPWV correlated with renal function; higher HbA1c and sST2 levels were additionally associated with advanced vascular age. Notably, central AS and vascular age were higher in men with T2DM but not in women. These findings indicate that T2DM patients exhibit increased central AS and vascular aging, influenced by sST2 levels, suggesting fibrosis as a target for precision medicine in T2DM. Full article
Show Figures

Figure 1

18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 159
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

14 pages, 759 KiB  
Review
The State of Weight in Cystic Fibrosis: Understanding Nutritional Status and Individualizing Nutritional Care in the Modulator Era
by Sapna Khemka, Stacie Hunter, Jessica Jones, Keishla Valentín-Martínez, Christina B. Chadwick and Rosara Bass
Nutrients 2025, 17(15), 2533; https://doi.org/10.3390/nu17152533 - 31 Jul 2025
Viewed by 210
Abstract
There is a well-established association between cystic fibrosis (CF) and malnutrition. Several comorbid conditions have also been associated with undernutrition in people with cystic fibrosis (PwCF). Highly effective modulator therapy has allowed for a paradigm shift altering disease progression and management. Modulator use [...] Read more.
There is a well-established association between cystic fibrosis (CF) and malnutrition. Several comorbid conditions have also been associated with undernutrition in people with cystic fibrosis (PwCF). Highly effective modulator therapy has allowed for a paradigm shift altering disease progression and management. Modulator use has even been associated with acceleration of weight trajectory causing overnutrition, which can lead to cardiovascular and metabolic comorbid conditions. This review explores how nutritional status is evolving in the era of cystic fibrosis transmembrane conductance regulator (CFTR) modulators in people with CF, specifically in children. By synthesizing current research, we aim to support pediatric healthcare providers and nutritionists in delivering tailored, proactive nutritional care in this new therapeutic landscape. Full article
(This article belongs to the Special Issue Nutrition and Cystic Fibrosis in Children)
Show Figures

Figure 1

18 pages, 333 KiB  
Review
Molecular Mechanisms of Cardiac Adaptation After Device Deployment
by Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni and Antonio Curcio
J. Cardiovasc. Dev. Dis. 2025, 12(8), 291; https://doi.org/10.3390/jcdd12080291 - 30 Jul 2025
Viewed by 133
Abstract
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through [...] Read more.
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings. Full article
(This article belongs to the Section Electrophysiology and Cardiovascular Physiology)
Show Figures

Graphical abstract

16 pages, 7401 KiB  
Article
Sitagliptin Mitigates Diabetic Cardiomyopathy Through Oxidative Stress Reduction and Suppression of VEGF and FLT-1 Expression in Rats
by Qamraa H. Alqahtani, Tahani A. ALMatrafi, Amira M. Badr, Sumayya A. Alturaif, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Biomolecules 2025, 15(8), 1104; https://doi.org/10.3390/biom15081104 - 30 Jul 2025
Viewed by 302
Abstract
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s [...] Read more.
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s potential as a therapeutic agent, functioning not only to control blood sugar levels but also to enhance vascular health and strengthen cardiac resilience in diabetes. The investigation focused on alterations in the vascular endothelial growth factor (VEGF) and its receptor-1 (FLT-1) signaling pathways, as well as its potential to suppress inflammation and oxidative stress. A number of rats received a single dose of streptozotocin (STZ) 55 mg/kg (i.p.) to induce DM. Sitagliptin was administered orally (100 mg/kg/90 days) to normal and diabetic rats, after which samples were collected for investigation. Sitagliptin significantly mitigated weight loss in diabetic rats. Its administration significantly reduced blood glucose levels and improved serum troponin I and CK-MB levels. Heart sections from diabetic rats showed a marked increase in mTOR, VEGF, and FLT-1 immune reaction, while sitagliptin-treated diabetic rats’ heart sections showed moderate immune reactions. Sitagliptin’s protective effect was also associated with reduced inflammation, and apoptotic markers. In conclusion, Sitagliptin is suggested to offer beneficial effects on the vascular health of cardiac blood vessels, thereby potentially reducing myocardial stress in diabetic patients. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Diseases)
Show Figures

Graphical abstract

16 pages, 1308 KiB  
Review
Multimodality Imaging in Aldosterone-Induced Cardiomyopathy: Early Detection and Prognostic Implications
by Francesca Zoccatelli, Gabriele Costa, Matteo Merlo, Francesca Pizzolo, Simonetta Friso and Luigi Marzano
Diagnostics 2025, 15(15), 1896; https://doi.org/10.3390/diagnostics15151896 - 29 Jul 2025
Viewed by 407
Abstract
Primary aldosteronism (PA), the most common cause of secondary hypertension, is increasingly recognized as an independent driver of adverse cardiac remodeling, mediated through mechanisms beyond elevated blood pressure alone. Chronic aldosterone excess leads to myocardial fibrosis, left ventricular hypertrophy, and diastolic dysfunction via [...] Read more.
Primary aldosteronism (PA), the most common cause of secondary hypertension, is increasingly recognized as an independent driver of adverse cardiac remodeling, mediated through mechanisms beyond elevated blood pressure alone. Chronic aldosterone excess leads to myocardial fibrosis, left ventricular hypertrophy, and diastolic dysfunction via mineralocorticoid receptor activation, oxidative stress, inflammation, and extracellular matrix dysregulation. These changes culminate in a distinct cardiomyopathy phenotype, often underrecognized in early stages. Multimodality cardiac imaging, led primarily by conventional and speckle-tracking echocardiography, and complemented by exploratory cardiac magnetic resonance (CMR) techniques such as T1 mapping and late gadolinium enhancement, enables non-invasive assessment of structural, functional, and tissue-level changes in aldosterone-mediated myocardial damage. While numerous studies have established the diagnostic and prognostic relevance of imaging in PA, several gaps remain. Specifically, the relative sensitivity of different modalities in detecting subclinical myocardial changes, the long-term prognostic significance of imaging biomarkers, and the differential impact of adrenalectomy versus medical therapy on cardiac reverse remodeling require further clarification. Moreover, the lack of standardized imaging-based criteria for defining and monitoring PA-related cardiomyopathy hinders widespread clinical implementation. This narrative review aims to synthesize current knowledge on the pathophysiological mechanisms of aldosterone-induced cardiac remodeling, delineate the strengths and limitations of existing imaging modalities, and critically evaluate the comparative effects of surgical and pharmacologic interventions. Emphasis is placed on early detection strategies, identification of imaging biomarkers with prognostic utility, and integration of multimodal imaging into clinical decision-making pathways. By outlining current evidence and highlighting key unmet needs, this review provides a framework for future research aimed at advancing personalized care and improving cardiovascular outcomes in patients with PA. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Graphical abstract

41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 429
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

27 pages, 2366 KiB  
Review
S-Nitrosylation in Cardiovascular Disorders: The State of the Art
by Caiyun Mao, Jieyou Zhao, Nana Cheng, Zihang Xu, Haoming Ma, Yunjia Song and Xutao Sun
Biomolecules 2025, 15(8), 1073; https://doi.org/10.3390/biom15081073 - 24 Jul 2025
Viewed by 367
Abstract
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, [...] Read more.
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, and other post-translational modifications. It is instrumental in regulating vascular and myocardial systolic and diastolic functions, vascular endothelial cell and cardiomyocyte apoptosis, and cardiac action potential and repolarization. Aberrant S-nitrosylation levels are implicated in the pathogenesis of various cardiovascular diseases, including systemic hypertension, pulmonary arterial hypertension, atherosclerosis, heart failure, myocardial infarction, arrhythmia, and diabetic cardiomyopathy. Insufficient S-nitrosylation leads to impaired vasodilation and increased vascular resistance, while excessive S-nitrosylation contributes to cardiac hypertrophy and myocardial fibrosis, thereby accelerating ventricular remodeling. This paper reviews the S-nitrosylated proteins in the above-mentioned diseases and their impact on these conditions through various signaling pathways, with the aim of providing a theoretical foundation for the development of novel therapeutic strategies or drugs targeting S-nitrosylated proteins. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

24 pages, 3224 KiB  
Review
Quercetin in Idiopathic Pulmonary Fibrosis and Its Comorbidities: Gene Regulatory Mechanisms and Therapeutic Implications
by Verónica Rocío Vásquez-Garzón, Juan Manuel Velázquez-Enríquez, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Jaime Arellanes-Robledo, Cristian Jiménez-Martínez and Rafael Baltiérrez-Hoyos
Genes 2025, 16(8), 856; https://doi.org/10.3390/genes16080856 - 23 Jul 2025
Viewed by 950
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, has emerged as a promising compound due to its antioxidant, anti-inflammatory, and antifibrotic properties. Preclinical and clinical studies have demonstrated its ability to modulate key molecular pathways involved in IPF, including Nrf2, SIRT1/AMPK, and the regulation of fibrosis-associated microRNAs (miRNAs). Furthermore, quercetin shows therapeutic potential across a range of IPF-related comorbidities, including chronic obstructive pulmonary disease, pulmonary hypertension, lung cancer, cardiovascular disease, diabetes, and psychiatric disorders. Under these conditions, quercetin acts via epigenetic modulation of miRNAs and regulation of oxidative stress and inflammatory signaling pathways. This review highlights the multifunctional role of quercetin in IPF and its comorbidities, emphasizing its gene regulatory mechanisms and potential as an adjunctive or alternative therapeutic strategy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 2539 KiB  
Article
Relationship Between Frontal QRS-T Angle and Non-Alcoholic Fatty Liver Disease (NAFLD) Fibrosis Score in Patients with Stable Angina Pectoris
by Ali Gökhan Özyıldız, Afag Özyıldız, Hüseyin Durak, Nadir Emlek and Mustafa Çetin
J. Clin. Med. 2025, 14(14), 5117; https://doi.org/10.3390/jcm14145117 - 18 Jul 2025
Viewed by 307
Abstract
Aim: The frontal QRS-T (fQRS-T) angle serves as an electrocardiography indicator that visually represents the disparity between the frontal QRS axis and the T axis. The heterogeneity between cardiac depolarization and repolarization rises with an increase in the fQRS-T angle. Prior research has [...] Read more.
Aim: The frontal QRS-T (fQRS-T) angle serves as an electrocardiography indicator that visually represents the disparity between the frontal QRS axis and the T axis. The heterogeneity between cardiac depolarization and repolarization rises with an increase in the fQRS-T angle. Prior research has demonstrated a relationship between the fQRS-T angle and the extent of atherosclerosis, along with the risk of cardiovascular mortality. The non-alcoholic fatty liver disease fibrosis score (NFS) is a non-invasive scoring tool used to quantify the degree of liver fibrosis in individuals with non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease increases the risk of atherosclerotic cardiovascular disease, which can be predicted using the NFS. The objective of this study is to examine the potential correlation between the fQRS-T angle and NFS in patients with stable angina pectoris. Materials and Methods: This cross-sectional study included 177 (48 women) non-alcoholic patients who underwent coronary angiography due to stable angina pectoris. Individual NFS values were calculated using clinical and laboratory data. Patients were categorized into two groups based on a NFS threshold value of 0.67. Following a minimum fasting period of 12 h, biochemical laboratory parameters were acquired using a peripheral venous sample, and electrocardiographic data were recorded. Results: The univariate logistic regression analysis revealed significant associations between hypertension (p = 0.018), coronary artery disease (p = 0.014), neutrophil (p = 0.024), hemoglobin (p = 0.038), and low-density lipoprotein (LDL, p = 0.007) with the NFS. The electrocardiographic variables related to the score included the QRS duration (p = 0.015), Pmax (p = 0.026), QTC interval (p = 0.02), and fQRS-T angle (p < 0.001). In the multivariate logistic regression analysis, NFS was independently associated with LDL (OR: 0.984, 95% CI: 0.970–0.998, p = 0.024) and fQRS-T angle (OR: 3.472, 95% CI: 1.886–6.395, p < 0.001). Conclusions: The FQRS-T angle may exhibit a distinct correlation with NAFLD. Extensive investigations should validate this link, since the fibrosis score can serve as an effective tool for monitoring patients prior to the onset of clinical symptoms associated with liver fibrosis. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

34 pages, 1051 KiB  
Review
Atrial Fibrillation in Diabetes: Pathogenesis and Targeted Rhythm Control Strategies
by Konstantinos Grigoriou, Paschalis Karakasis, Konstantinos Pamporis, Panagiotis Theofilis, Dimitrios Patoulias, Efstratios Karagiannidis, Barbara Fyntanidou, Antonios P. Antoniadis and Nikolaos Fragakis
Curr. Issues Mol. Biol. 2025, 47(7), 559; https://doi.org/10.3390/cimb47070559 - 17 Jul 2025
Viewed by 486
Abstract
Diabetes mellitus and atrial fibrillation (AF) frequently coexist, creating a complex bidirectional relationship that exacerbates cardiovascular risk and challenges clinical management. Diabetes fosters a profibrotic, pro-inflammatory, and proarrhythmic atrial substrate through a constellation of pathophysiologic mechanisms, including metabolic remodeling, oxidative stress, mitochondrial dysfunction, [...] Read more.
Diabetes mellitus and atrial fibrillation (AF) frequently coexist, creating a complex bidirectional relationship that exacerbates cardiovascular risk and challenges clinical management. Diabetes fosters a profibrotic, pro-inflammatory, and proarrhythmic atrial substrate through a constellation of pathophysiologic mechanisms, including metabolic remodeling, oxidative stress, mitochondrial dysfunction, ion channel dysregulation, and autonomic imbalance, thereby promoting AF initiation and progression. Conventional rhythm control strategies remain less effective in diabetic individuals, underscoring the need for innovative, substrate-targeted interventions. In this context, sodium–glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have emerged as promising agents with pleiotropic antiarrhythmic properties, modulating fibrosis, inflammation, and mitochondrial integrity. Moreover, advances in anti-inflammatory, antifibrotic, and ion channel-modulating therapeutics, coupled with novel mitochondrial-targeted strategies, are reshaping the therapeutic landscape. Multi-omics approaches are further refining our understanding of diabetes-associated AF, facilitating precision medicine and biomarker-guided interventions. This review delineates the molecular nexus linking diabetes and AF, critically appraises emerging rhythm control strategies, and outlines translational avenues poised to advance individualized management in this high-risk population. Full article
(This article belongs to the Special Issue Advances in Molecular Therapies and Disease Associations in Diabetes)
Show Figures

Figure 1

20 pages, 3356 KiB  
Review
Tricuspid Regurgitation in the Era of Transcatheter Interventions: The Pivotal Role of Multimodality Imaging
by Valeria Maria De Luca, Stefano Censi, Rita Conti, Roberto Nerla, Sara Bombace, Tobias Friedrich Ruf, Ralph Stephan von Bardeleben, Philipp Lurz, Fausto Castriota and Angelo Squeri
J. Clin. Med. 2025, 14(14), 5011; https://doi.org/10.3390/jcm14145011 - 15 Jul 2025
Viewed by 345
Abstract
Over the last ten years, transcatheter tricuspid valve interventions (TTVIs) have emerged as effective options for symptomatic patients with moderate-to-severe tricuspid regurgitation (TR) who are at prohibitive surgical risk. Successful application of these therapies depends on a patient-tailored, multimodal imaging workflow. Transthoracic and [...] Read more.
Over the last ten years, transcatheter tricuspid valve interventions (TTVIs) have emerged as effective options for symptomatic patients with moderate-to-severe tricuspid regurgitation (TR) who are at prohibitive surgical risk. Successful application of these therapies depends on a patient-tailored, multimodal imaging workflow. Transthoracic and transesophageal echocardiography remain the first-line diagnostic tools, rapidly stratifying TR severity, mechanism, and right ventricular function, and identifying cases requiring further evaluation. Cardiac computed tomography (CT) then provides anatomical detail—quantifying tricuspid annular dimension, leaflet tethering, coronary artery course, and venous access anatomy—to refine candidacy and simulate optimal device sizing and implantation angles. In patients with suboptimal echocardiographic windows or equivocal functional data, cardiovascular magnetic resonance (CMR) offers gold-standard quantification of RV volumes, ejection fraction, regurgitant volume, and tissue characterization to detect fibrosis. Integration of echo-derived parameters, CT anatomical notes, and CMR functional assessment enables the heart team to better select patients, plan procedures, and determine the optimal timing, thereby maximizing procedural success and minimizing complications. This review describes the current strengths, limitations, and future directions of multimodality imaging in comprehensive evaluations of TTVI candidates. Full article
Show Figures

Figure 1

22 pages, 3129 KiB  
Article
Characterizing the Impact of Fabrication Methods on Mechanically Tunable Gelatin Hydrogels for Cardiac Fibrosis Studies
by Jordyn Folh, Phan Linh Dan Tran and Renita E. Horton
Bioengineering 2025, 12(7), 759; https://doi.org/10.3390/bioengineering12070759 - 13 Jul 2025
Viewed by 434
Abstract
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase [...] Read more.
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase (mTG) hydrogels for modeling cardiovascular diseases. Gelatin hydrogels were fabricated via direct mixing or immersion crosslinking methods. Hydrogel formulations were assessed using the Piuma nanoindenter and Instron systems. This study investigates the effects of fabrication methods, UV ozone (UVO) sterilization, crosslinking methods, and incubation media on hydrogel stiffness. Further, this study examined the response of murine cardiac fibroblasts to hydrogel stiffness. The hydrogels exhibited modulus ranges relevant to both healthy and fibrotic cardiac tissues. UVO exposure led to slight decreases in hydrogel modulus, while the fabrication method had a significant impact on the modulus. Hydrogels incubated in phosphate buffered saline (PBS) were stiffer than those incubated in Medium 199 (M199), which correlated with lower pH in PBS. Fibroblasts cultured on stiffer hydrogels display enhanced smooth muscle actin (SMA) expression, suggesting sensitivity to material stiffness. These findings highlight how fabrication parameters influence the modulus of gelatin-mTG hydrogels for cardiac tissue models. Full article
Show Figures

Graphical abstract

24 pages, 6501 KiB  
Article
CSPG4.CAR-T Cells Modulate Extracellular Matrix Remodeling in DMD Cardiomyopathy
by Maria Grazia Ceraolo, Marika Milan, Nicole Fratini, Raffaello Viganò, Salma Bousselmi, Andrea Soluri, Elisa Pesce, Pier Luigi Mauri, Giusy Ciuffreda, Elisa Landoni, Francesca Brambilla, Gianpietro Dotti, Dario Di Silvestre, Fabio Maiullari, Claudia Bearzi and Roberto Rizzi
Int. J. Mol. Sci. 2025, 26(14), 6590; https://doi.org/10.3390/ijms26146590 - 9 Jul 2025
Viewed by 656
Abstract
Targeting fibrosis in Duchenne muscular dystrophy (DMD)-associated cardiomyopathy is a critical outstanding clinical issue, as cardiac failure remains a leading cause of death despite advances in supportive care. This study evaluates the therapeutic efficacy of CSPG4-targeted chimeric antigen receptor (CAR) T cells in [...] Read more.
Targeting fibrosis in Duchenne muscular dystrophy (DMD)-associated cardiomyopathy is a critical outstanding clinical issue, as cardiac failure remains a leading cause of death despite advances in supportive care. This study evaluates the therapeutic efficacy of CSPG4-targeted chimeric antigen receptor (CAR) T cells in reducing cardiac fibrosis and improving heart function in a preclinical model of the disease. DMD is a progressive genetic disorder characterized by degeneration of skeletal and cardiac muscle. Cardiomyopathy, driven by fibrosis and chronic inflammation, is a leading contributor to mortality in affected patients. Proteoglycans such as CSPG4, critical regulators of extracellular matrix dynamics, are markedly overexpressed in dystrophic hearts and promote pathological remodeling. Current treatments do not adequately target the fibrotic and inflammatory processes underlying cardiac dysfunction. CSPG4-specific CAR-T cells were engineered and administered to dystrophic mice. Therapeutic efficacy was assessed through histological, molecular, and echocardiographic analyses evaluating cardiac fibrosis, inflammation, innervation, and overall function. Treatment with CSPG4 CAR-T cells preserved myocardial integrity, improved cardiac performance, and reduced both fibrosis and inflammatory markers. The therapy also restored cardiac innervation, indicating a reversal of neural remodeling commonly seen in muscular dystrophy-related cardiomyopathy. CSPG4-targeted CAR-T therapy offers a novel, cell-based strategy to mitigate cardiac remodeling in dystrophic hearts. By addressing core fibrotic and inflammatory drivers of disease, this approach represents a significant advancement in the development of precision immune therapies for muscular dystrophies and cardiovascular conditions. Full article
(This article belongs to the Special Issue Molecular Research in Cardiovascular Disease, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop