Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,298)

Search Parameters:
Keywords = carbonaceous ore

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3939 KB  
Article
Super-Hydrophobic Polyurethane/Activated Biochar Composites with Polydimethylsiloxane Coating for High-Efficiency Organic Liquid Uptake
by Rafik Elarslene Dra, Badra Mahida, Malika Medjahdi, Belaid Mechab, Nadia Ramdani and Dominique Baillis
Materials 2026, 19(2), 415; https://doi.org/10.3390/ma19020415 - 21 Jan 2026
Abstract
The aim of this work is to develop structurally enhanced and highly hydrophobic polyurethane (PU) foams for the efficient remediation of liquid organic pollutants. For this purpose, PU foams were modified with renewable activated biochar derived from marine algae (AC) and a hydrophobic [...] Read more.
The aim of this work is to develop structurally enhanced and highly hydrophobic polyurethane (PU) foams for the efficient remediation of liquid organic pollutants. For this purpose, PU foams were modified with renewable activated biochar derived from marine algae (AC) and a hydrophobic polydimethylsiloxane (PDMS) coating, producing four systems: pristine PU, PU-AC, PU/PDMS, and the hybrid PU-AC/PDMS composite. The study evaluates how AC incorporation and PDMS surface functionalization influence the microstructure, chemical composition, wettability, thermal stability, and sorption behavior of the foams. SEM images revealed progressive reductions in pore size from 420 ± 80 μm (PU) to 360 ± 85 μm (PU-AC/PDMS), with AC introducing heterogeneity while PDMS preserved open-cell morphology. FTIR confirmed the presence of urethane linkages, carbonaceous structures, and PDMS siloxane groups. Surface hydrophobicity increased markedly from 88.53° (PU) to 148.25° (PU-AC/PDMS). TGA results showed that PDMS improved thermal stability through silica-rich char formation, whereas AC slightly lowered degradation onset. Sorption tests using petroleum-derived oils and hydrophobic organic liquids demonstrated a consistent performance hierarchy (PU < PU/PDMS < PU-AC < PU-AC/PDMS). The ternary composite achieved the highest uptake capacities, reaching 44–56 g/g for oils and up to 35 g/g for hydrophobic solvents, while maintaining reusability. These findings demonstrate that combining activated biochar with PDMS significantly enhances the functional properties of PU foams, offering an efficient and sustainable material for oil–water separation and organic pollutant remediation. Full article
Show Figures

Figure 1

18 pages, 5382 KB  
Article
Insight into the Formation of Winter Black Carbon and Brown Carbon over Xi’an in Northwestern China
by Dan Li, Qian Zhang, Ziqi Meng, Hongmei Xu, Peng Wei, Yu Wang and Zhenxing Shen
Toxics 2026, 14(1), 93; https://doi.org/10.3390/toxics14010093 - 20 Jan 2026
Abstract
This study evaluates the effectiveness of air pollution control measures in Xi’an, China, by investigating long-term changes in the concentrations, optical properties, and sources of black carbon (BC) and brown carbon (BrC). Wintertime observations of PM2.5 carbonaceous aerosols were conducted over multiple [...] Read more.
This study evaluates the effectiveness of air pollution control measures in Xi’an, China, by investigating long-term changes in the concentrations, optical properties, and sources of black carbon (BC) and brown carbon (BrC). Wintertime observations of PM2.5 carbonaceous aerosols were conducted over multiple years using a continuous Aethalometer. The data were analyzed using advanced aethalometer models, potential source contribution function (PSCF) analysis, and generalized additive models (GAMs) to deconstruct emission sources and formation pathways. Our results revealed a significant decrease in the mass concentration and light absorption coefficient of BC (babs-BC) between the earlier and later study periods, indicating successful emission reductions. In contrast, the light absorption from BrC (babs-BrC) remained relatively stable, suggesting persistent and distinct emission sources. Source apportionment analysis demonstrated a temporal shift in dominant regional influences, from biomass burning in the initial years to coal combustion in later years. In addition, GAMs showed that the primary driver for liquid fuel-derived BC transitioned from gasoline to diesel vehicle emissions. For solid fuels, residential coal combustion consistently contributed over 50% of BC, highlighting that improvements in coal combustion technology were effective in reducing BC emissions. Furthermore, a substantial fraction of BrC was increased, with nocturnal peaks associated with high relative humidity, emphasizing the aqueous-phase formation influences. Collectively, these findings demonstrated that although certain control strategies successfully mitigated BC, the persistent challenge of BrC pollution necessitates targeted measures addressing secondary formation and primary fossil fuel sources. Full article
Show Figures

Figure 1

27 pages, 2547 KB  
Review
A Review on Ionic Liquids in the Design of Carbon-Based Materials for Environmental Contaminant Removal
by Tamara Terzić, Tatjana Mitrović, Marija Perović and Tamara Lazarević-Pašti
Processes 2026, 14(2), 352; https://doi.org/10.3390/pr14020352 - 19 Jan 2026
Viewed by 37
Abstract
Contamination of water and soil with a wide range of pollutants, including pesticides, pharmaceuticals, and industrial chemicals, remains a significant environmental challenge. Carbon-based materials are widely recognized for their high adsorption capacity, chemical stability, and the possibility to tailor their surface and structural [...] Read more.
Contamination of water and soil with a wide range of pollutants, including pesticides, pharmaceuticals, and industrial chemicals, remains a significant environmental challenge. Carbon-based materials are widely recognized for their high adsorption capacity, chemical stability, and the possibility to tailor their surface and structural properties. In recent years, ionic liquids (ILs) have been explored as useful media and functionalization agents in the preparation of such materials. Their unique physicochemical properties can facilitate activation, influence pore structure, and introduce specific functional groups that improve interactions with target contaminants. This review summarizes recent developments in the use of ILs for the synthesis, modification, and regeneration of carbonaceous adsorbents. Particular attention is given to IL-assisted activation techniques, surface functionalization strategies, and reported improvements in adsorption performance. Key challenges, such as the environmental impact and cost of ILs, as well as prospects for developing more sustainable IL-based processes, are also discussed. Taken together, these findings highlight the relevance of IL-enabled carbon materials for practical adsorption processes, including water and wastewater treatment, selective pollutant removal, and regeneration-driven purification systems. Full article
Show Figures

Figure 1

16 pages, 4458 KB  
Article
Variation in Atmospheric 137Cs and the Carriers in Aerosol Samples Obtained from a Heavily Contaminated Area of Fukushima Prefecture
by Huihui Li, Peng Tang and Kazuyuki Kita
Toxics 2026, 14(1), 88; https://doi.org/10.3390/toxics14010088 - 19 Jan 2026
Viewed by 35
Abstract
Even a decade after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011, fluctuations in atmospheric 137Cs were still observed, and explanations for the fluctuations and their carriers remained elusive. In this study, small fluctuations within 0.0002 Bq∙m−3 [...] Read more.
Even a decade after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011, fluctuations in atmospheric 137Cs were still observed, and explanations for the fluctuations and their carriers remained elusive. In this study, small fluctuations within 0.0002 Bq∙m−3 were still detected in aerosol samples obtained from January to April, and slightly higher levels of atmospheric 137Cs were observed from May to September in a heavily contaminated area of Fukushima prefecture. Specifically, it is demonstrated that the 137Cs carriers in the aerosol samples were a combination of carbon-containing particles and aluminum-containing particles (Al particles dominated, with the percentage being 68%) in early May, whereas the main 137Cs carriers were carbonaceous particles, with the average percentage being 88% in September and at the end of May, using fluorescent upright microscope and scanning electron microscope equipped with an energy-dispersive X-ray spectrometer quantitatively. Additionally, small particles (less than 2 μm) and medium particles (2–8 μm) of carbonaceous particles had a higher level in the aerosol samples of May and September. Specifically, bacteria (1–1.8 μm) and spores (1.8–10 μm) had a linear relationship with the distribution of atmospheric 137Cs in the aerosol samples of September. In addition, temperature and precipitation were the main impact factors affecting the distribution of 137Cs and their carriers. This observation further suggests that there is still a need for long-term monitoring of atmospheric 137Cs. Full article
Show Figures

Graphical abstract

16 pages, 3363 KB  
Review
Peptide Identity of Electrochemically Deposited Polyarginine: A Critical Assessment
by Ivan Švancara and Milan Sýs
Chemosensors 2026, 14(1), 27; https://doi.org/10.3390/chemosensors14010027 - 16 Jan 2026
Viewed by 199
Abstract
This review examines the feasibility of electrochemical synthesis of poly-L-arginine (PArg) using repetitive cyclic voltammetry in neutral aqueous phosphate-buffered saline. Previous studies on electrochemical deposition of PArg onto different carbonaceous electrode materials are discussed with respect to the already reported mechanistic models. Some [...] Read more.
This review examines the feasibility of electrochemical synthesis of poly-L-arginine (PArg) using repetitive cyclic voltammetry in neutral aqueous phosphate-buffered saline. Previous studies on electrochemical deposition of PArg onto different carbonaceous electrode materials are discussed with respect to the already reported mechanistic models. Some controversial interpretations are of interest, predominantly the formation of peptide bonds during the electropolymerisation of L-arginine. Several alternative anodic pathways are considered via the possibilities and limitations of ways of attaching L-arginine molecules to the electrode surface. Furthermore, the role of oxygen-containing surface groups is discussed, as this aspect has been largely overlooked in the context of L-arginine deposition, despite the O-terminating character of the electrode surface and its effect on the reactivity of the nucleophilic guanidine group in L-arginine. Also, the application of extremely high potentials around +2 V vs. Ag/AgCl/3 mol L−1 KCl is considered, as it can lead to the generation of reactive oxygen species that may interfere with or even govern the entire deposition process. Thus, the absence of such considerations may raise doubts about the peptide nature of the electrochemically assisted polymerisation of this basic amino acid. Finally, it seems that the identity of the electrochemically synthesised PArg does not correspond to that of this polymer prepared by conventional methods, such as solid-phase peptide synthesis, solution-phase synthesis, or N-carboxy-anhydride polymerisation, and therefore the whole process remains unproved. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Figure 1

19 pages, 2034 KB  
Article
Enhanced Dielectric and Microwave-Absorbing Properties of Poly(Lactic Acid) Composites via Ionic Liquid-Assisted Dispersion of GNP/CNT Hybrid Fillers
by Ruan R. Henriques, André Schettini and Bluma G. Soares
J. Compos. Sci. 2026, 10(1), 50; https://doi.org/10.3390/jcs10010050 - 16 Jan 2026
Viewed by 180
Abstract
Poly(lactic acid) (PLA)-based nanocomposites containing a mixture of graphene nanoplatelets (GNP) and carbon nanotube (CNT) as hybrid fillers were prepared using a solution-assisted sonication process followed by melt processing. The effects of the filler dispersion on dielectric properties and microwave absorbing (MWA) performance [...] Read more.
Poly(lactic acid) (PLA)-based nanocomposites containing a mixture of graphene nanoplatelets (GNP) and carbon nanotube (CNT) as hybrid fillers were prepared using a solution-assisted sonication process followed by melt processing. The effects of the filler dispersion on dielectric properties and microwave absorbing (MWA) performance were systematically investigated. Two ionic liquids (ILs), trihexyl-(tetra-decyl)phosphonium bis (trifluoromethanesulfonyl)imide (IL1) and 11-carboxyundecyl-triphenylphosphonium bromide (IL2), were employed as dispersing agents for the carbonaceous fillers. Incorporation of IL-treated fillers resulted in enhanced dielectric permittivity and improved MWA performance of the PLA composites. The MWA properties were evaluated in X- band and Ku-band. A minimum reflection loss (RL) of −34 dB and an effective absorption bandwidth (EAB) of 2.1 GHz were achieved for the composite containing GNP/CNT/IL2 (HB3) at a weight ratio of 2.5:0.5:0.5 wt% with one 3 mm thick layer. The superior performance of IL2 is attributed to π-π and π-cation interactions between its phenyl-containing cation and the carbonaceous fillers, as well as improved compatibility with the PLA matrix due to carboxyl groups. Additionally, three-layered composite structures, combining PLA/GNP as the outer layer with IL-assisted hybrid fillers in the core and PLA/CNT at the bottom layer, achieved an extended EAB of 4.5 GHz for GNP/HB2/CNT arrangement and 4.35 GHz for the GNP/HB3/CNT arrangement, driven by enhanced scattering and internal reflection of microwaves. These results demonstrate the potential of IL-assisted hybrid filler dispersion in PLA for developing biodegradable materials with multifunctional applications as charge storage capacitors and microwave absorbing materials for sustainable electronics. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

10 pages, 2784 KB  
Communication
Corrosion of Carbon Steel in an Arsenic Trioxide Reduction Atmosphere Using Carbonaceous Materials for Elemental Arsenic Production
by Xiao Long, Wenbo Luo, Kai Zheng, Bo Feng, Xiang Li and Jierui Li
Materials 2026, 19(2), 336; https://doi.org/10.3390/ma19020336 - 14 Jan 2026
Viewed by 133
Abstract
Elemental arsenic (As) is essential for diverse industrial applications. Most elemental As in China is produced by reducing gaseous arsenic trioxide (As2O3) with carbonaceous materials in steel reactors. This study aimed to extend the reactor lifespan through corrosion experiments [...] Read more.
Elemental arsenic (As) is essential for diverse industrial applications. Most elemental As in China is produced by reducing gaseous arsenic trioxide (As2O3) with carbonaceous materials in steel reactors. This study aimed to extend the reactor lifespan through corrosion experiments and analysis. In this study, corroded regions of steel reactors were inspected after each production batch, and the corrosion process was examined. X-ray diffraction (XRD) was used to identify the major corrosion products, X-ray fluorescence (XRF) was used to measure the composition of corroded area, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to inspect the features and elemental distributions of the corroded steel-plate cross-sections. The results revealed that the steel wall near the charcoal zone exhibited the highest corrosion rate. Tin (Sn), selenium (Se), and antimony (Sb) did not promote the corrosion process, whereas carbon (C) accelerated it by forming an Fe–As–C system at the grain boundaries of the steel matrix, characterized by a low melting temperature. The important source of C responsible for initiating corrosion was solid-state C particles originating from reused materials from previous batches. Additionally, owing to the high processing temperature, oxygen (O) was transferred to the inner side of the steel wall before the dramatical corrosion of the matrix by elemental As and C. Results of this study provide references to increase the lifespan of steel reactors for elemental As production. Full article
Show Figures

Figure 1

23 pages, 6056 KB  
Article
Production and Characterization of Novel Photocatalytic Materials Derived from the Sustainable Management of Agro-Food By-Products
by Christina Megetho Gkaliouri, Eleftheria Tsampika Laoudikou, Zacharias Ioannou, Sofia Papadopoulou, Vasiliki Anastasia Giota and Dimitris Sarris
Molecules 2026, 31(2), 300; https://doi.org/10.3390/molecules31020300 - 14 Jan 2026
Viewed by 181
Abstract
Porous photocatalysts from agricultural waste, i.e., apricot and peach shell, with titanium dioxide were prepared by a carbonaceous method, the adsorption and photocatalytic degradation and its kinetics about methylene blue (MB) were studied systematically. The properties of the prepared composite sorbents were characterized [...] Read more.
Porous photocatalysts from agricultural waste, i.e., apricot and peach shell, with titanium dioxide were prepared by a carbonaceous method, the adsorption and photocatalytic degradation and its kinetics about methylene blue (MB) were studied systematically. The properties of the prepared composite sorbents were characterized using Brunauer–Emmett–Teller, surface area, scanning electron microscopy, and energy dispersive spectroscopy analyses. Several key factors, including radiation, pH, temperature, initial MB concentration, contact time, and sorbent dosage, as well as photocatalytic activity were investigated. All the waste-TiO2 adsorbents showed improved adsorption and photodegradation performance compared to commercial charchoal-TiO2. The produced materials presented high specific surface areas especially those derived from apricot shell-TiO2 with a combination of type I and IV adsorption isotherms with a hysteresis loop indicating micro and mesopore structures. In addition, under UV radiation, the composite sorbents exhibited greater MB removal efficiency than non-radiated composite sorbents. The examined conditions have shown the best MB adsorption results at pH greater than 7.5, temperature 30 °C, contact time 120 min, initial concentration 0.5 mg/L MB, and sorbent dosage equal to 2.0 g/L C/MB. The total removal rate of MB is 98.5%, while the respective amount of commercial charcoal-TiO2 is equal to 75.0%. The kinetic model that best describes the experimental data of MB degradation from the photocatalytic materials is the pseudo-second order model. In summary, this work highlights the effectiveness and feasibility of transforming agricultural waste into carbonaceous composite sorbent for the removal of cationic dyes from wastewater. Future work will involve scaling up the synthesis of the catalyst and evaluating its performance using bed reactors for industrial processes. Full article
Show Figures

Graphical abstract

19 pages, 6114 KB  
Article
Hydrogen Storage on Activated Carbons from Avocado Biomass Residues: Synthesis Route Assessment, Surface Properties and Multilayer Adsorption Modeling
by Zayda V. Herrera-Cuadrado, Lizeth J. Bastidas-Solarte, Erwin García-Hernández, Adrián Bonilla-Petriciolet, Carlos J. Duran-Valle, Didilia I. Mendoza-Castillo, Hilda E. Reynel-Ávila, Ma. del Rosario Moreno-Virgen, Gloria Sandoval-Flores and Sofía Alvarado-Reyna
C 2026, 12(1), 5; https://doi.org/10.3390/c12010005 - 12 Jan 2026
Viewed by 321
Abstract
This manuscript reports the preparation, surface characterization, and modeling of chars and activated carbons obtained from avocado biomass for hydrogen storage. Activated carbons were prepared from avocado biomass via the following stages: (a) pyrolysis of avocado biomass, (b) impregnation of the avocado-based char [...] Read more.
This manuscript reports the preparation, surface characterization, and modeling of chars and activated carbons obtained from avocado biomass for hydrogen storage. Activated carbons were prepared from avocado biomass via the following stages: (a) pyrolysis of avocado biomass, (b) impregnation of the avocado-based char using an aqueous lithium solution, and (c) thermal activation of lithium-loaded avocado char. The synthesis conditions of char and activated carbon samples were tailored to maximize their hydrogen adsorption properties at 77 K, where the impact of both pyrolysis and activation conditions was assessed. The hydrogen storage mechanism was discussed based on computational chemistry calculations and multilayer adsorption simulation. The modelling focuses on the analysis of the saturation of activated carbon active sites via the adsorption of multiple hydrogen molecules. The results showed that the activated carbon samples displayed adsorption capacities higher than their char counterparts by 71–91% because of the proposed activation protocol. The best activated carbon obtained from avocado residues showed a maximum hydrogen adsorption capacity of 142 cm3/g, and its storage performance can compete with other carbonaceous adsorbents reported in the literature. The hydrogen adsorption mechanism implied the formation of 2–4 layers on activated carbon surface, where physical interactions via oxygenated functionalities played a relevant role in the binding of hydrogen dimers and trimers. The results of this study contribute to the application of low-cost activated carbons from residual biomass as a storage medium in the green hydrogen supply chain. Full article
Show Figures

Graphical abstract

20 pages, 2748 KB  
Article
Seasonal Variation in PM2.5 Composition Modulates Oxidative Stress and Neutrophilic Inflammation with Involvement of TLR4 Signaling
by Duo Wang, Zirui Zeng, Aya Nawata, Ryoko Baba, Ryuji Okazaki, Tomoaki Okuda and Yasuhiro Yoshida
Antioxidants 2026, 15(1), 89; https://doi.org/10.3390/antiox15010089 - 9 Jan 2026
Viewed by 249
Abstract
Seasonal fluctuations in the chemical composition of fine particulate matter (PM2.5) are known to influence its toxicological properties; however, their integrated biological effects remain incompletely understood. In this study, PM2.5 was continuously collected over two consecutive years at a single [...] Read more.
Seasonal fluctuations in the chemical composition of fine particulate matter (PM2.5) are known to influence its toxicological properties; however, their integrated biological effects remain incompletely understood. In this study, PM2.5 was continuously collected over two consecutive years at a single urban site in Japan and classified by season. The samples were comprehensively characterized for ionic species, metals, carbonaceous fractions, and polycyclic aromatic hydrocarbons (PAHs), and their pulmonary effects were evaluated in vivo following intratracheal administration in mice. Seasonal PM2.5 exhibited pronounced compositional differences, with higher levels of secondary inorganic aerosol components in summer and enrichment of PAHs and mineral-associated components in winter. These seasonal differences translated into distinct biological responses. Reactive oxygen species (ROS) production (1.6–2.7-fold increase) and bronchoalveolar lavage (BAL) neutrophil infiltration were strongly associated with PAH-rich PM2.5, whereas interleukin-1α (IL-1α) showed robust positive correlations with mineral components, including K+, Ca2+, and Mg2+, which were predominantly enriched in winter PM2.5. In contrast, secondary inorganic aerosol species displayed a limited capacity to induce IL-1α. Compared with summer samples, winter PM2.5 induced significantly higher levels of ROS production and IL-1α (approximately 1.5–2.6-fold increase). Using TLR2- and TLR4-deficient mice, we further demonstrated that PM2.5-induced increases in BAL cell counts, ROS, IL-6, and TNF-α were partially attenuated in TLR4 knockout mice, indicating a contributory but not exclusive role for TLR4 signaling in PM2.5-driven pulmonary inflammation. Collectively, these findings demonstrate that seasonal variations in PM2.5 composition, not particle mass alone, critically shape oxidative stress and innate immune responses in the lungs. In particular, winter PM2.5 enriched in mineral-associated components preferentially activates IL-1α-mediated alarmin pathways, underscoring the importance of the particle composition in determining seasonal air pollution toxicity. Full article
(This article belongs to the Special Issue Oxidative Stress Induced by Air Pollution, 2nd Edition)
Show Figures

Figure 1

21 pages, 12210 KB  
Article
Mechanisms of Surface Deposition-Induced Optical Degradation of Mineral Pigments Under Soot Exposure: A Case Study of Painted Surfaces in Zhaomiao Temples, Inner Mongolia
by Xin Wen, Shiqiang Wang, Yi Meng, Diandian Chen and Xiaoming Su
Coatings 2026, 16(1), 80; https://doi.org/10.3390/coatings16010080 - 9 Jan 2026
Viewed by 242
Abstract
Soot particle deposition is a common form of surface contamination in enclosed architectural environments and can significantly alter the optical appearance of painted surfaces. In the Zhaomiao temple halls of Inner Mongolia, long-term exposure to soot generated by butter lamps and incense burning [...] Read more.
Soot particle deposition is a common form of surface contamination in enclosed architectural environments and can significantly alter the optical appearance of painted surfaces. In the Zhaomiao temple halls of Inner Mongolia, long-term exposure to soot generated by butter lamps and incense burning has led to pronounced color darkening of mural pigments. To clarify the mechanisms by which soot deposition affects pigment optical behavior, this study investigates the surface deposition-induced color degradation of mineral pigment coatings, using Zhaomiao temple murals as a representative application context. Thirty-six typical mineral pigments were prepared as standardized coating specimens, and controlled soot deposition experiments were conducted to simulate progressive particulate accumulation on pigment surfaces. Variations in Commission Internationale de l’Éclairage (CIE) XYZ tristimulus values, luminance, and color difference (ΔE) were quantitatively analyzed under different soot-loading conditions. The results show systematic luminance attenuation and chromatic compression with increasing soot deposition, indicating that optical degradation is primarily governed by surface absorption and scattering effects introduced by carbonaceous particles. These results establish a quantitative framework based on measurable optical parameters—rather than a single absolute value—for evaluating particulate-induced optical degradation of pigment coatings. This study provides a quantitative basis for evaluating particulate-induced optical degradation of pigment coatings and supports surface condition assessment and digital reconstruction of soot-contaminated painted surfaces in architectural contexts such as the Zhaomiao temples. Full article
Show Figures

Figure 1

14 pages, 2325 KB  
Article
Two Birds with One Stone: One-Pot Conversion of Waste Biomass into N-Doped Porous Biochar for Efficient Formaldehyde Adsorption
by Qingsong Zhao, Ning Xiang, Miao Xue, Chunlin Shang, Yiyi Li, Mengzhao Li, Qiqing Ji, Yangce Liu, Hongyu Hao, Zheng Xu, Fei Yang, Tiezheng Wang, Qiaoyan Li and Shaohua Wu
Molecules 2026, 31(2), 201; https://doi.org/10.3390/molecules31020201 - 6 Jan 2026
Viewed by 171
Abstract
Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which [...] Read more.
Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which is derived from its poor surface activity and insufficient number of pores. In this study, a series of nitrogen-doped porous biochars with adjustable N-containing groups and porosity were synthesized by one-step pyrolysis of melamine and waste jujube pit in different mass ratios (NBC-x, x represented the mass ratio of melamine to waste jujube pit, x = 4–12) for HCHO adsorption. The HCHO adsorption tests indicated that the insertion of nitrogen-containing species improved the adsorption capacity of pristine biochar (BC). However, after the insertion of excessive nitrogen-containing species, the porosity of the samples significantly decreased due to the blockage of pores, which could be disadvantageous for HCHO adsorption. DFT calculation results showed that N doping (especially pyrrolic-N) significantly increased the maxima of absolute ESP values of the carbonaceous models and consequently enhanced the affinity between polar HCHO and carbonaceous models (varied from −20.65 kJ/mol to −33.26 kJ/mol). Thus, the NBC-8 possessing both substantial nitrogen content (19.81 wt. %) and developed porosity (specific surface area of 223 m2/g) exhibited the highest HCHO uptake of 6.30 mg/g. This was approximately 6.4 times larger than that of BC. This work not only deepens the understanding of the HCHO adsorption mechanism at molecular scale, but also concurrently offers a facile and eco-friendly route of N-doped porous biochar preparation, an efficient technology with high-value utilization of waste biomass resources, and a sustainable method of pollution remediation. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

23 pages, 6651 KB  
Article
Multielectrode Advanced Oxidation Treatment of Tannery Wastewater: Mass Transfer Characterization, Process Performance, Kinetic Modeling, and Energetic Analysis
by Niswah Nafiat, Mohd Usman Mohd Junaidi, Mohd Azlan Hussain, Mohamad Fairus Rabuni, Adeline Seak May Chua and Faidzul Hakim Adnan
Processes 2026, 14(2), 184; https://doi.org/10.3390/pr14020184 - 6 Jan 2026
Viewed by 278
Abstract
Tannery wastewater from textile-related industries poses treatment challenges due to its high load of recalcitrant pollutants. Various advanced hybrid treatments, such as electro-oxidation (EO), have been proposed but mainly focus on electrode material development. Several studies on EO using multiple electrode pairs with [...] Read more.
Tannery wastewater from textile-related industries poses treatment challenges due to its high load of recalcitrant pollutants. Various advanced hybrid treatments, such as electro-oxidation (EO), have been proposed but mainly focus on electrode material development. Several studies on EO using multiple electrode pairs with large electroactive surface areas exist, however, none have reported on mass transfer characterization. This study addresses these gaps by investigating the electro-degradation performance of active (mixed-metal oxide, MMO) and non-active (boron-doped diamond, BDD) anodes paired with carbonaceous (graphite) and non-carbonaceous (stainless steel, SS) cathodes under applied current densities of 2 to 6 mA/cm2. A 2 L volume of simulated tannery wastewater containing recalcitrant tannic acid was treated using three electrode pairs with a total surface area of 500 cm2. Results showed optimal condition was identified at 4 mA/cm2 across all electrode combinations and better degradation using BDD anodes and SS cathodes, with total organic carbon (TOC) removed up to 500 mg/L (98% removal). Adopting the 3-electrode configuration, mass transfer coefficients ranged from 4.15 to 5.18 × 10−6 m/s. Energy consumption evaluation suggested MMO as a more cost-effective option, while BDD remained preferable for highly recalcitrant waste. Higher currents show diminishing returns due to mass transfer and parasitic reactions. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

30 pages, 1515 KB  
Review
Carbon-Based Catalysts in Ozonation of Aqueous Organic Pollutants
by Petr Leinweber, Jonáš Malý and Tomáš Weidlich
Catalysts 2026, 16(1), 41; https://doi.org/10.3390/catal16010041 - 1 Jan 2026
Viewed by 510
Abstract
This review summarizes recent applications of carbon-based materials as catalysts in the ozonation of wastewater contaminated with persistent organic pollutants. Methods available for production of commonly used inexpensive carbonaceous materials such as biochar and hydrochar are presented. Differences between production methods of active [...] Read more.
This review summarizes recent applications of carbon-based materials as catalysts in the ozonation of wastewater contaminated with persistent organic pollutants. Methods available for production of commonly used inexpensive carbonaceous materials such as biochar and hydrochar are presented. Differences between production methods of active carbon and biochar or hydrochar are discussed. Interestingly, biochar, in a role of rather simple and cheap charcoal, is catalytically active and increases the rate of oxidative degradation of nonbiodegradable aqueous contaminants such as drugs or textile dyestuffs. This review documents that even the addition of biochar to the ozonized wastewater increases the rate of removal of persistent organic pollutants. Cheap bio-based carbonaceous materials such as biochar work as adsorbent of dissolved pollutants and catalysts for ozone-based degradation of organic compounds via the formation of reactive oxygen species (ROS). Low-molecular-weight degradation products produced by ozonation of pharmaceuticals and textile dyes are presented. The combination of air-based ozone generation, together with application of biochar, represents a sustainable AOP-based wastewater treatment method. Full article
(This article belongs to the Collection Catalytic Conversion and Utilization of Carbon-Based Energy)
Show Figures

Scheme 1

14 pages, 1184 KB  
Article
Highly Efficient Electrochemical Degradation of Dyes via Oxygen Reduction Reaction Intermediates on N-Doped Carbon-Based Composites Derived from ZIF-67
by Maja Ranković, Nemanja Gavrilov, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandra Rakić, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Processes 2026, 14(1), 130; https://doi.org/10.3390/pr14010130 - 30 Dec 2025
Viewed by 262
Abstract
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was [...] Read more.
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was studied. Higher temperature and prolonged thermal treatment resulted in more uniform particle size distribution (as determined by nanoparticle tracking analysis, NTA) and surface charge lowering (as determined by zeta potential measurements). Surface-governed environmental applications of prepared cZIFs were tested using physical (adsorption) and electrochemical methods for dye degradation. Targeted dyes were methylene blue (MB) and methyl orange (MO), chosen as model compounds to establish the specificity of selected remediation procedures. Electrodegradation was initiated via an intermediate reactive oxygen species formed during oxygen reduction reaction (ORR) on cZIFs serving as electrocatalysts. The adsorption test showed relatively uniform adsorption sites at the surface of cZIFs, reaching a removal of over 70 mg/g for both dyes while governed by pseudo-first-order kinetics favored by higher mesoporosity. In the electro-assisted degradation process, cZIF samples demonstrated impressive efficiency, achieving almost complete degradation of MB and MO within 4.5 h. Detailed analysis of energy consumption in the degradation process enabled the calculation of the current conversion efficiency index and the amount of charge associated with O2•−/OH generation, normalized by the quantity of removed dye, for tested materials. Here, the proposed method will assist similar research studies on the removal of organic water pollutants to discriminate among electrode materials and procedures based on energy efficiency. Full article
Show Figures

Figure 1

Back to TopTop