Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = carbon storage metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4914 KiB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

23 pages, 3221 KiB  
Article
Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants
by Yuanyuan Chen, Shishi Feng, Qianmin Liu, Di Kang and Shuzhen Zou
Plants 2025, 14(15), 2413; https://doi.org/10.3390/plants14152413 - 4 Aug 2025
Viewed by 147
Abstract
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still [...] Read more.
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still know little about this phenomenon. In this context, nine typical wetlands with three different moisture statuses were selected from the eastern Tibetan Plateau in this study to analyze the relationships among herbaceous plant root traits and microbial communities and functions. The results revealed that drought significantly inhibited the accumulation of root biomass and surface area as well as the development of root volumes and diameters. Similarly, drought significantly reduced the diversity of ectorhizosphere soil microbial communities and the relative abundances of key phyla of archaea and bacteria. Redundancy analysis revealed that plant root traits and ectorhizosphere soil microbes were equally regulated by soil physicochemical properties. Functional genes related to carbohydrate metabolism were significantly associated with functional traits related to plant root elongation and nutrient uptake. Functional genes related to carbon and energy metabolism were significantly associated with traits related to plant root support and storage. Key genes such as CS,gltA, and G6PD,zwf help to improve the drought resistance and barrenness resistance of plant roots. This study helps to elucidate the synergistic mechanism of plant and soil microbial functions in plateau wetlands under drought stress, and provides a basis for evolutionary research and conservation of wetland ecosystems in the context of global change. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth: 2nd Edition)
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 - 2 Aug 2025
Viewed by 185
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 - 2 Aug 2025
Viewed by 255
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
Molecular Responses of Saccharomyces cerevisiae to Growth Under Conditions of Increasing Corn Syrup and Decreasing Molasses
by Binbin Chen, Yu Chyuan Heng, Sharifah Nora Ahmad Almunawar, Elvy Riani Wanjaya, Untzizu Elejalde and Sandra Kittelmann
Fermentation 2025, 11(8), 432; https://doi.org/10.3390/fermentation11080432 - 28 Jul 2025
Viewed by 256
Abstract
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made [...] Read more.
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made to replace molasses with cheaper and more readily available substrates such as corn syrup. However, the quality of dry yeast drops following the replacement of molasses with corn syrup, despite the same amount of total sugar being provided. Our understanding of how molasses replacement affects yeast physiology, especially during the dehydration step, is limited. Here, we examined changes in gene expression of a strain of baker’s yeast during fermentation with increasing corn syrup to molasses ratios at the transcriptomic level. Our findings revealed that the limited availability of the key metal ions copper, iron, and zinc, as well as sulfur from corn syrup (i) reduced their intracellular storage, (ii) impaired the synthesis of unsaturated fatty acids and ergosterol, as evidenced by the decreasing proportions of these important membrane components with higher proportions of corn syrup, and (iii) inactivated oxidative stress response enzymes. Taken together, the molecular and metabolic changes observed suggest a potential reduction in nutrient reserves for fermentation and a possible compromise in cell viability during the drying process, which may ultimately impact the quality of the final dry yeast product. These findings emphasize the importance of precise nutrient supplementation when substituting molasses with cheaper substrates. Full article
(This article belongs to the Section Yeast)
Show Figures

Figure 1

14 pages, 911 KiB  
Article
Physiological Response of Tribolium castaneum to CO2 Controlled Atmosphere Stress Under Trehalose Feeding
by Yuya Zhang, Shangrong Hu, Min Zhou, Xinyi Zhang, Liwen Guan, Yanfei Zhou, Jun Lv and Bin Tang
Insects 2025, 16(8), 768; https://doi.org/10.3390/insects16080768 - 26 Jul 2025
Viewed by 455
Abstract
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the [...] Read more.
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the activities of key detoxification enzymes (e.g., carboxylesterase and cytochrome P450) and the levels of carbohydrate substances (e.g., glycogen, glucose, and trehalose). The results demonstrated that trehalose feeding significantly alleviated CO2 induced mortality in T. castaneum and prolonged their survival time. In terms of detoxification metabolism, a trehalose-rich diet significantly reduced the activities of cytochrome P450 and carboxylesterase, while the glucose content in the beetles decreased markedly. These findings indicate that trehalose accumulation mitigates physiological damage caused by high-CO2 stress in T. castaneum. Furthermore, exogenous trehalose intake did not disrupt carbohydrate metabolic homeostasis in the beetles, as trehalase activity and the levels of various carbohydrates remained relatively stable. This study elucidates the role of trehalose metabolism in T. castaneum’s adaptation to high-CO2 environments, providing a theoretical foundation for optimizing controlled atmosphere grain storage technology and developing novel pest control strategies. Full article
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation
by Hong Tham Dong, Yujuan Li, Philip Brown, Delwar Akbar and Cheng-Yuan Xu
Horticulturae 2025, 11(7), 837; https://doi.org/10.3390/horticulturae11070837 - 15 Jul 2025
Viewed by 252
Abstract
Nitrogen is an essential element for plant growth, and both insufficient and excessive use of nitrogen have been shown to negatively affect sweet potato production. Nitrogen supply can affect carbon metabolism in plant storage organs; however, limited studies have examined its effects on [...] Read more.
Nitrogen is an essential element for plant growth, and both insufficient and excessive use of nitrogen have been shown to negatively affect sweet potato production. Nitrogen supply can affect carbon metabolism in plant storage organs; however, limited studies have examined its effects on the accumulation of non-structural carbohydrates (soluble sugar and starch) during the formation of sweet potato storage roots. Two pot trials were conducted to evaluate the effects of different nitrogen application levels and timings on the accumulation of non-structural carbohydrates during the formation of sweet potato storage roots. In the first experiment, plants were supplied with 0, 50, 100, or 200 mg/L of nitrogen. In the second experiment, the optimum nitrogen rate (100 mg/L) for storage root formation from the previous experiment was applied at five different times: nil N supply and nitrogen applied at planting or 3, 7, or 14 days after planting. A significant highest starch accumulation in roots during the first 35 days after transplanting was recorded in the 100 mg/L treatment. However, sweet potato required more nitrogen after storage root formation, as indicated by higher non-structural carbohydrate accumulation in roots (1905 mg/plant) in the 200 mg/L treatment at 49 days after planting. Earlier nitrogen applications promoted soluble sugar and starch accumulation in plants during storage root formation, with up to 5697 mg of non-structural carbohydrate accumulated in a plant. The study provided agronomic indicators that moderate nitrogen should be available in soil before or on planting day. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

14 pages, 1278 KiB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Viewed by 430
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

19 pages, 7987 KiB  
Article
Nitrogen-Induced Soil Acidification Reduces Soil Carbon Persistence by Shifting Microbial Keystone Taxa and Increasing Calcium Leaching
by Ding Wang, Jie Wang, Yuting Zhang, Xinping Chen, Ji Chen and Xiaojun Shi
Agronomy 2025, 15(7), 1586; https://doi.org/10.3390/agronomy15071586 - 29 Jun 2025
Viewed by 757
Abstract
Anthropogenic nitrogen (N) enrichment alters soil biotic (e.g., microbial metabolism) and abiotic (e.g., pH and mineralogy) properties, substantially affecting the persistence and storage of soil organic carbon (SOC). However, the response of relatively persistent mineral-associated organic carbon (MAOC) to N enrichment and the [...] Read more.
Anthropogenic nitrogen (N) enrichment alters soil biotic (e.g., microbial metabolism) and abiotic (e.g., pH and mineralogy) properties, substantially affecting the persistence and storage of soil organic carbon (SOC). However, the response of relatively persistent mineral-associated organic carbon (MAOC) to N enrichment and the underlying mechanisms are not well understood, leading to significant uncertainties regarding SOC stability under continuous N input. Based on a 15-year field N fertilisation experiment (0, 28.5, 60.0, 72.0 g N m−2 yr−1), we studied the responses of MAOC to N input and the associated changes in soil mineralogy and microbiology. N fertilisation significantly reduced MAOC content by 16.0%. The loss of MAOC was primarily attributed to soil acidification (pH decreased from 6.4 to 4.2), leading to exchangeable calcium (Ca) leaching and loss of Ca-bound organic carbon by 37.9% on average. Furthermore, N-induced shifts in dominant microbial keystone taxa from K-strategists (e.g., Actinobacteriota and Sordariomycetes) to r-strategists (e.g., Subgroups 4 and 6 Acidobacteriota) impeded the formation of MAOC through the reduction of microbial carbon use efficiency and oxidase activity (e.g., phenol oxidases and peroxidases). These results suggest that keystone taxa play crucial roles in regulating carbon metabolism and are responsible for MAOC reduction. Moreover, our data pinpoint the importance of Ca leaching for SOC destabilisation, particularly in near-neutral and neutral soils. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

24 pages, 3042 KiB  
Article
Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus
by Bing Liu, Huizhen Chen, Kai Sheng, Jianxiang Fang, Ying Zhang and Chang Chen
Microorganisms 2025, 13(7), 1516; https://doi.org/10.3390/microorganisms13071516 - 28 Jun 2025
Viewed by 421
Abstract
Vibrio alginolyticus, a common Gram-negative opportunistic pathogen of marine animals and humans, is known for its rapid growth in organic-matter-rich environments. However, it remains unclear how it incorporates metabolic pathways in response to diverse carbon and nitrogen sources and rapidly alters gene [...] Read more.
Vibrio alginolyticus, a common Gram-negative opportunistic pathogen of marine animals and humans, is known for its rapid growth in organic-matter-rich environments. However, it remains unclear how it incorporates metabolic pathways in response to diverse carbon and nitrogen sources and rapidly alters gene expression. Increasing evidence suggests that post-transcriptional regulation by RNA-binding proteins and small RNAs (sRNAs) plays a crucial role in bacterial adaptation and metabolism. CsrA (carbon storage regulator A), a conserved post-transcriptional regulator in Gammaproteobacteria, is poorly characterized in Vibrio species. Using integrated transcriptomic and proteomic analyses, we found that CsrA alters the expression of 661 transcripts and 765 protein transcripts in V. alginolyticus, influencing key pathways including central carbon metabolism, amino acid metabolism and transport, quorum sensing, and bacterial secretion systems. Through directed CsrA-RNA EMSAs, we identified several direct mRNA targets of CsrA, including gltB, gcvP, aceE, and tdh, as well as secretion system components (tagH, tssL, yopD, and sctC). Notably, CsrA also directly regulates rraA, a key modulator of ribonuclease activity, suggesting a broader role in RNA metabolism. Our findings establish CsrA as a global regulator in V. alginolyticus, expanding the known targets of CsrA and providing new insights into its regulatory roles. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Bacteria, 2nd Edition)
Show Figures

Figure 1

17 pages, 2039 KiB  
Article
Long-Term Conservation Tillage Increases Soil Organic Carbon Stability by Modulating Microbial Nutrient Limitations and Aggregate Protection
by Zixuan Han, Xueping Wu, Huizhou Gao, Angyuan Jia and Qiqi Gao
Agronomy 2025, 15(7), 1571; https://doi.org/10.3390/agronomy15071571 - 27 Jun 2025
Viewed by 473
Abstract
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly [...] Read more.
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly added carbon under different tillage regimes remains unclear. To address this gap, a 13C-glucose labelling incubation experiment was conducted to assess SOC mineralization and priming effects under long-term tillage practices, including subsoiling with straw mulching (ST), no tillage with straw mulching (NT), and conventional tillage with straw removal (CT). The results demonstrated that conservation tillage (NT and ST) significantly reduced total SOC mineralization and glucose-derived CO2 release compared to CT. Notably, the priming effect under CT was 19.5% and 24.7% higher than under NT and ST, respectively. In the early incubation stage, positive priming was primarily driven by microbial co-metabolism, while during days 1–31, microbial stoichiometric decomposition dominated the process. In addition, NT and ST treatments significantly increased the proportion of >250 μm aggregates and their associated carbon and nitrogen contents, thereby enhancing aggregate stability and physical protection of SOC. The priming effect observed under conservation tillage was strongly negatively related to aggregate stability and aggregate associated carbon content, whereas it was positively related to the β-glucosidase/Peroxidase ratio (BG/PER) and the subtraction value between carbon/nitrogen (RC:N) and the carbon–nitrogen imbalance of the available resources (TERC:N). Overall, our findings highlight that conservation tillage enhances SOC stability not only by improving soil physical structure but also by alleviating microbial stoichiometric constraints, offering a synergistic pathway for carbon retention and climate-resilient soil management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 6810 KiB  
Article
Transcriptomic Analysis on Developing Seed Uncovers Candidate Genes Associated with Seed Storage Protein in Soybean
by Li Hu, Huibin Huang, Wenjun Li, Runqing Duan, Dongyan Li and Xianzhi Wang
Agronomy 2025, 15(7), 1531; https://doi.org/10.3390/agronomy15071531 - 24 Jun 2025
Viewed by 389
Abstract
Soybean [Glycine max (L.) Merr.] is a globally significant crop that provides essential meal protein and vegetable oil for human consumption. The protein content in soybean seeds is a critical factor that affects nutrition regarding human dietary needs as well as livestock [...] Read more.
Soybean [Glycine max (L.) Merr.] is a globally significant crop that provides essential meal protein and vegetable oil for human consumption. The protein content in soybean seeds is a critical factor that affects nutrition regarding human dietary needs as well as livestock feed. Therefore, identifying the key genes that affect the soybean seed protein content is one of the major goals in soybean research. To identify candidate genes and related pathways involved in soybean seed storage protein during seed development, an RNA-seq analysis was conducted in two soybean varieties that differ in protein content. A series of pathways related to seed protein metabolism, including “Photosynthesis”, “TCA cycle”, and “Starch and sucrose metabolism” pathways, were identified through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Seven candidate genes exhibiting two different gene regulation patterns were identified, six of which are directly related to the seed storage protein pathway, and one of which is related to the carbon binding pathway. An integrated analysis of transcriptomic and candidate gene expression trend suggested that 40 days after flowering (DAF) might be a crucial period for seed protein accumulation in soybean. Through a Weighted Gene Co-expression Network Analysis (WGCNA), two modules and two novel hub genes were found, which may be highly correlated with seed protein development. These findings might be valuable for a complete understanding of the genetic basis of seed protein content and lay a theoretical foundation for future gene functional identification and breeding efforts in soybean. Full article
Show Figures

Figure 1

19 pages, 5664 KiB  
Review
6PPD and 6PPD-Quinone in the Urban Environment: Assessing Exposure Pathways and Human Health Risks
by Stanley Chukwuemeka Ihenetu, Qiao Xu, Li Fang, Muhamed Azeem, Gang Li and Christian Ebere Enyoh
Urban Sci. 2025, 9(6), 228; https://doi.org/10.3390/urbansci9060228 - 16 Jun 2025
Viewed by 848
Abstract
In recent years, tires have become a prominent concern for researchers and environmentalists in regard to their potential threat of tire-derived pollutants (TDPs) to human health. Among these pollutants, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidized form, 6PPD-quinone (6PPD-Q), have been of primary interest due [...] Read more.
In recent years, tires have become a prominent concern for researchers and environmentalists in regard to their potential threat of tire-derived pollutants (TDPs) to human health. Among these pollutants, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidized form, 6PPD-quinone (6PPD-Q), have been of primary interest due their ubiquity in urban environments, and their potential negative effects on human health. This review provides a summary of human health implications of TDPs, including 6PPD and 6PPD-Q. For the methodology, datasets were collected from the literature sources, including sources, formations and ecological effects of these pollutants, and pathways of human exposure and public health significance. Urban soils are key for services including carbon storage, water filtration, and nutrient cycling, underpinning urban ecosystem resilience. Soil degradation through compaction, sealing, and pollution, particularly by pollutants from tire wear, destroys these functions, however. These pollutants disturb the soil microbial communities, leading to a loss of diversity, an increase in pathogenic species, and changes in metabolism, which in turn can impact human health by increasing disease transmission and diseases of the respiratory systems. Incorporating green-infrastructure practices can enhance the ecosystem service potentials of urban soils and contribute to sustainable, climate-resilient urban city development. These findings underscore the pressing need for a coordinated international campaign to study chronic health effects and science informed policy frameworks to address this ubiquitous environmental health concern—an issue that crosses urban water quality, environmental justice, and global management of tire pollution. Full article
Show Figures

Figure 1

19 pages, 2773 KiB  
Article
Spatiotemporal Variations in Soil Organic Carbon and Microbial Drivers in the Yellow River Delta Wetland, China
by Xinghua Wang, Jun Li, Luzhen Li, Yanke Guo, Beibei Guo and Changsheng Zhao
Sustainability 2025, 17(11), 5188; https://doi.org/10.3390/su17115188 - 4 Jun 2025
Cited by 1 | Viewed by 519
Abstract
This study explores the spatiotemporal dynamics of SOC and microbial-mediated mechanisms in the Yellow River Delta wetlands. Using redundancy analysis and microbial community profiling, we show that vegetation drives distinct SOC storage patterns: Phragmites australis ecosystems exhibit the highest SOC sequestration, followed by [...] Read more.
This study explores the spatiotemporal dynamics of SOC and microbial-mediated mechanisms in the Yellow River Delta wetlands. Using redundancy analysis and microbial community profiling, we show that vegetation drives distinct SOC storage patterns: Phragmites australis ecosystems exhibit the highest SOC sequestration, followed by Suaeda salsa and Tamarix chinensis habitats, where salt-tolerant taxa like Desulfobacterota and Halobacteriaota promote short-term carbon storage via anaerobic metabolism. The microbial community structure is shaped by both vegetation-induced microhabitats and environmental gradients: SOC and total nitrogen dominate community assembly, while electrical conductivity, pH, and sulfur/nitrogen nutrients regulate spatiotemporal differentiation. Seasonal turnover drives the reorganization of microbial community structures, shaping the dynamic equilibrium of carbon pools. Seasonal DOC dynamics, linked to tidal fluctuations and exogenous carbon inputs, highlight hydrology’s role in modulating active carbon pools. These findings reveal tight linkages among vegetation, microbial functional guilds, and soil biogeochemistry, critical for wetland carbon sequestration. Full article
(This article belongs to the Special Issue Sustainable Management: Plant, Biodiversity and Ecosystem)
Show Figures

Figure 1

19 pages, 2507 KiB  
Article
Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest
by Shun Zou, Chumin Huang, Tu Feng, Yang Chen, Xiaolong Bai, Wangjun Li and Bin He
Forests 2025, 16(6), 903; https://doi.org/10.3390/f16060903 - 28 May 2025
Viewed by 329
Abstract
Phosphorus (P) is a pivotal element in plant energy metabolism and growth, and P limitation is widespread among plants in nature. However, our understanding of how epiphytes allocate P and adapt to P-deficient environments remains limited. We selected an obligate epiphyte Pyrrosia sheareri [...] Read more.
Phosphorus (P) is a pivotal element in plant energy metabolism and growth, and P limitation is widespread among plants in nature. However, our understanding of how epiphytes allocate P and adapt to P-deficient environments remains limited. We selected an obligate epiphyte Pyrrosia sheareri from a subtropical forest as our research subject. We compared its carbon (C)–nitrogen (N)–P ecological stoichiometry, P fractions, and morphological and physiological traits under the two habitats (trunk-epiphytic and rock-epiphytic). We also constructed a plant trait network method (PTN) that includes 62 traits to explore the co-variation characteristics of plant traits across the whole plant and identify the hub traits. We found that the following: (1) Habitat type significantly affects plant P concentration, with trunk-epiphytic plants having higher P concentration than rock-epiphytic plants. Pyrrosia sheareri may be more strongly limited by P according to the results of C-N-P ecological stoichiometry. (2) Epiphytic habitats significantly affect plant P fractions but do not influence the relative allocation of P fractions. (3) Compared with rock-epiphytic plants, trunk-epiphytic plants adopt a root resource-acquisition strategy rather than relying on leaves. (4) P-related indicators link ecological stoichiometry with morphological and physiological traits and are hub traits in PTN. Overall, P. plays a key functional role in the environmental acclimatization of Pyrrosia sheareri, highlighting the morphological and physiological adaptability of epiphytes to various habitats in terms of P availability, allocation, and storage. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop