Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Whole-Genome RNA-Sequencing
2.3. DIA-Seq and Analysis
2.4. Generating cDNA and Quantitative PCR
2.5. CsrA Recombinant Protein Construction and Purification
2.6. RNA Electrophoretic Mobility Shift Assays
3. Results
3.1. Transcriptome and Proteomics Analysis of Wildtype and CsrA Mutant
3.2. Profiles of CsrA Regulatory Mode
3.2.1. The Role of CsrA in Central Carbon and Energy Metabolism
Glycogen Biosynthesis, Glycolysis, and Gluconeogenesis
Pyruvate and TCA Cycles
Oxidative Phosphorylation
3.2.2. The Role of CsrA in Amino Acid Metabolism and ABC Transporters
Amino Acid Metabolism
ABC Transporters
3.2.3. The Role of CsrA in Virulence
Bacterial Secretion Systems
Outer Membrane Proteins
Quorum Sensing
3.2.4. CsrA: A Regulator of Regulators
3.3. CsrA Represses the Translation of Rraa by Direct Binding
3.4. RNA EMSA Identified RNA Targets That Interact with Csra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstock, M.T.; Hesek, E.D.; Wilson, C.M.; Gibson, D.G. Vibrio natriegens as a fast-growing host for molecular biology. Nat. Methods 2016, 13, 849–851. [Google Scholar] [CrossRef]
- Ulitzur, S. Vibrio parahaemolyticus and Vibrio alginolyticus: Short generation-time marine bacteria. Microb. Ecol. 1974, 1, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Gripenland, J.; Netterling, S.; Loh, E.; Tiensuu, T.; Toledo-Arana, A.; Johansson, J. RNAs: Regulators of bacterial virulence. Nat. Rev. Microbiol. 2010, 8, 857–866. [Google Scholar] [CrossRef]
- Liu, J.M.; Camilli, A. A broadening world of bacterial small RNAs. Curr. Opin. Microbiol. 2010, 13, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Pourciau, C.; Lai, Y.-J.; Gorelik, M.; Babitzke, P.; Romeo, T. Diverse Mechanisms and Circuitry for Global Regulation by the RNA-Binding Protein CsrA. Front. Microbiol. 2020, 11, 601352. [Google Scholar] [CrossRef]
- Romeo, T.; Gong, M.; Liu, M.Y.; Brunzinkernagel, A.M. Identification and molecular characterization of csrA a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell-size, and surface-properties. J. Bacteriol. 1993, 175, 4744–4755. [Google Scholar] [CrossRef] [PubMed]
- Sabnis, N.A.; Yang, H.H.; Romeo, T. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J. Biol. Chem. 1995, 270, 29096–29104. [Google Scholar] [CrossRef]
- Mukherjee, A.; Cui, Y.Y.; Liu, Y.; Dumenyo, C.K.; Chatterjee, A.K. Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: Repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology 1996, 142, 427–434. [Google Scholar] [CrossRef]
- Yang, H.H.; Liu, M.Y.; Romeo, T. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J. Bacteriol. 1996, 178, 1012–1017. [Google Scholar] [CrossRef]
- Altier, C.; Suyemoto, M.; Lawhon, S.D. Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infect. Immun. 2000, 68, 6790–6797. [Google Scholar] [CrossRef]
- Wei, B.D.L.; Brun-Zinkernagel, A.M.; Simecka, J.W.; Pruss, B.M.; Babitzke, P.; Romeo, T. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 2001, 40, 245–256. [Google Scholar] [CrossRef]
- Jackson, D.W.; Suzuki, K.; Oakford, L.; Simecka, J.W.; Hart, M.E.; Romeo, T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 2002, 184, 290–301. [Google Scholar] [CrossRef]
- Vakulskas, C.A.; Potts, A.H.; Babitzke, P.; Ahmer, B.M.M.; Romeo, T. Regulation of Bacterial Virulence by Csr (Rsm) Systems. Microbiol. Mol. Biol. Rev. 2015, 79, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Pourciau, C.; Pannuri, A.; Potts, A.; Yakhnin, H.; Babitzke, P.; Romeo, T. Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. Mbio 2019, 10, e01034-19. [Google Scholar] [CrossRef] [PubMed]
- Romeo, T.; Babitzke, P. Global Regulation by CsrA and Its RNA Antagonists. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Edwards, A.N.; Patterson-Fortin, L.M.; Vakulskas, C.A.; Mercante, J.W.; Potrykus, K.; Vinella, D.; Camacho, M.I.; Fields, J.A.; Thompson, S.A.; Georgellis, D.; et al. Circuitry linking the Csr and stringent response global regulatory systems. Mol. Microbiol. 2011, 80, 1561–1580. [Google Scholar] [CrossRef] [PubMed]
- Potts, A.H.; Vakulskas, C.A.; Pannuri, A.; Yakhnin, H.; Babitzke, P.; Romeo, T. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat. Commun. 2017, 8, 1596. [Google Scholar] [CrossRef]
- Sowa, S.W.; Gelderman, G.; Leistra, A.N.; Buvanendiran, A.; Lipp, S.; Pitaktong, A.; Vakulskas, C.A.; Romeo, T.; Baldea, M.; Contreras, L.M. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Res. 2017, 45, 1673–1686. [Google Scholar] [CrossRef]
- Schubert, M.; Lapouge, K.; Duss, O.; Oberstrass, F.C.; Jelesarov, I.; Haas, D.; Allain, F.H.T. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat. Struct. Mol. Biol. 2007, 14, 807–813. [Google Scholar] [CrossRef]
- Mercante, J.; Edwards, A.N.; Dubey, A.K.; Babitzke, P.; Romeo, T. Molecular Geometry of CsrA (RsmA) Binding to RNA and Its Implications for Regulated Expression. J. Mol. Biol. 2009, 392, 511–528. [Google Scholar] [CrossRef]
- Dubey, A.K.; Baker, C.S.; Romeo, T.; Babitzke, P. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. Rna 2005, 11, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Gui, G.J.; Wei, B.D.; Preston, J.F.; Oakford, L.; Yuksel, U.; Giedroc, D.P.; Romeo, T. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 1997, 272, 17502–17510. [Google Scholar] [CrossRef] [PubMed]
- Romeo, T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 1998, 29, 1321–1330. [Google Scholar] [CrossRef]
- Weilbacher, T.; Suzuki, K.; Dubey, A.K.; Wang, X.; Gudapaty, S.; Morozov, I.; Baker, C.S.; Georgellis, D.; Babitzke, P.; Romeo, T. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol. 2003, 48, 657–670. [Google Scholar] [CrossRef]
- Sobrero, P.M.; Valverde, C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the GenusPseudomonas. Front. Mol. Biosci. 2020, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Butz, H.A.; Mey, A.R.; Ciosek, A.L.; Crofts, A.A.; Davies, B.W.; Payne, S.M. Regulatory Effects of CsrA in Vibrio cholerae. Mbio 2021, 12, e03380-20. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Q.; Zhang, X.; Chen, H.; Zhang, Y.; Sun, Y.; Yang, S.; Chen, C. CsrA Regulates Swarming Motility and Carbohydrate and Amino Acid Metabolism in Vibrio alginolyticus. Microorganisms 2021, 9, 2383. [Google Scholar] [CrossRef]
- Chen, C.; Xie, J.; Hu, C.Q. Phenotypic and genetic differences between opaque and translucent colonies of Vibrio alginolyticus. Biofouling 2009, 25, 525–531. [Google Scholar] [CrossRef]
- Liu, B.; Fang, J.; Chen, H.; Sun, Y.; Yang, S.; Gao, Q.; Zhang, Y.; Chen, C. GcvB Regulon Revealed by Transcriptomic and Proteomic Analysis in Vibrio alginolyticus. Int. J. Mol. Sci. 2022, 23, 9399. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ye, F.; Yang, F.; Yu, R.; Lin, X.; Qi, J.; Chen, Z.; Cao, Y.; Wei, Y.; Gao, G.F.; Lu, G. Molecular basis of binding between the global post-transcriptional regulator CsrA and the T3SS chaperone CesT. Nat. Commun. 2018, 9, 1196. [Google Scholar] [CrossRef] [PubMed]
- Revelles, O.; Millard, P.; Nougayrede, J.-P.; Dobrindt, U.; Oswald, E.; Letisse, F.; Portais, J.-C. The Carbon Storage Regulator (Csr) System Exerts a Nutrient-Specific Control over Central Metabolism in Escherichia coli Strain Nissle 1917. PLoS ONE 2013, 8, e66386. [Google Scholar] [CrossRef]
- Khalfaoui-Hassani, B.; Verissimo, A.F.; Shroff, N.P.; Ekici, S.; Trasnea, P.I.; Utz, M.; Koch, H.G.; Daldal, F. Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. In Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling; Cramer, W.A., Kallas, T., Eds.; Advances in Photosynthesis and Respiration; Springer: Cham, Switzerland, 2016; Volume 41, pp. 527–554. [Google Scholar]
- Lawther, R.P.; Wek, R.C.; Lopes, J.M.; Pereira, R.; Taillon, B.E.; Hatfield, G.W. The complete nucleotide-sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res. 1987, 15, 2137–2155. [Google Scholar] [CrossRef]
- Lopes, J.M.; Soliman, N.; Smith, P.K.; Lawther, R.P. Transcriptional polarity enhances the contribution of the internal promoter, ilvEp, in the expression of the ilvGMEDA operon in wild-type Escherichia coli K12. Mol. Microbiol. 1989, 3, 1039–1051. [Google Scholar] [CrossRef]
- Wek, R.C.; Hauser, C.A.; Hatfield, G.W. The nucleotide sequence of the ilvBN operon of Escherichia coli: Sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Res. 1985, 13, 3995–4010. [Google Scholar] [CrossRef] [PubMed]
- Vartak, N.B.; Liu, L.; Wang, B.M.; Berg, C.M. A functional leuABCD operon is required for leucine synthesis by the tyrosine-repressible transaminase in Escherichia coli K-12. J. Bacteriol. 1991, 173, 3864–3871. [Google Scholar] [CrossRef]
- Ferguson, A.D.; Deisenhofer, J. TonB-dependent receptors—Structural perspectives. Biochim. Et. Biophys. Acta-Biomembr. 2002, 1565, 318–332. [Google Scholar] [CrossRef]
- Cascales, E. The type VI secretion toolkit. Embo Rep. 2008, 9, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Diepold, A.; Kudryashev, M.; Delalez, N.J.; Berry, R.M.; Armitage, J.P. Composition, Formation, and Regulation of the Cytosolic C-ring, a Dynamic Component of the Type III Secretion Injectisome. PLoS Biol. 2015, 13, e1002039. [Google Scholar] [CrossRef]
- Hood, R.D.; Singh, P.; Hsu, F.S.; Guvener, T.; Carl, M.A.; Trinidad, R.R.S.; Silverman, J.M.; Ohlson, B.B.; Hicks, K.G.; Plemel, R.L.; et al. A Type VI Secretion System of Pseudomonas aeruginosa Targets, a Toxin to Bacteria. Cell Host Microbe 2010, 7, 25–37. [Google Scholar] [CrossRef]
- Brooks, T.M.; Unterweger, D.; Bachmann, V.; Kostiuk, B.; Pukatzki, S. Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 Is Inhibited by the Antitoxin TsaB. J. Biol. Chem. 2013, 288, 7618–7625. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.G.; Ho, B.T.; Yoder-Himes, D.R.; Mekalanos, J.J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2013, 110, 2623–2628. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.O.; Farah, C.S.; Wang, N. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5′ UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas. PLoS Pathog. 2014, 10, e1003945. [Google Scholar] [CrossRef]
- Ancona, V.; Lee, J.H.; Zhao, Y. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci. Rep. 2016, 6, 37195. [Google Scholar] [CrossRef] [PubMed]
- Fei, K.; Yan, H.; Zeng, X.; Huang, S.; Tang, W.; Francis, M.S.; Chen, S.; Hu, Y. LcrQ Coordinates with the YopD-LcrH Complex To Repress lcrF Expression and Control Type III Secretion by Yersinia pseudotuberculosis. mBio 2021, 12, e0145721. [Google Scholar] [CrossRef]
- Lelong, C.; Aguiluz, K.; Luche, S.; Kuhn, L.; Garin, J.; Rabilloud, T.; Geiselmann, J. The Crl-RpoS regulon of Escherichia coli. Mol. Cell. Proteom. MCP 2007, 6, 648–659. [Google Scholar] [CrossRef]
- Bae, W.H.; Xia, B.; Inouye, M.; Severinov, K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. USA 2000, 97, 7784–7789. [Google Scholar] [CrossRef]
- Giangrossi, M.; Brandi, A.; Giuliodori, A.M.; Gualerzi, C.O.; Pon, C.L. Cold-shock-induced de novo transcription and translation of infA and role of IF1 during cold adaptation. Mol. Microbiol. 2007, 64, 807–821. [Google Scholar] [CrossRef]
- Fasshauer, P.; Busche, T.; Kalinowski, J.; Mader, U.; Poehlein, A.; Daniel, R.; Stulke, J. Functional Redundancy and Specialization of the Conserved Cold Shock Proteins in Bacillus subtilis. Microorganisms 2021, 9, 1434. [Google Scholar] [CrossRef]
- Lee, K.S.; Zhan, X.M.; Gao, J.J.; Ji, Q.; Feng, Y.A.; Meganathan, R.; Cohen, S.N.; Georgiou, G. RraA: A protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 2003, 114, 623–634. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Q.; Liu, B.; Zhang, Y.; Fang, J.; Wang, S.; Chen, Y.; Chen, C. Identification of the global regulatory roles of RraA via the integrative transcriptome and proteome in Vibrio alginolyticus. mSphere 2024, 9, e0002024. [Google Scholar] [CrossRef] [PubMed]
- Morin, M.; Ropers, D.; Letisse, F.; Laguerre, S.; Portais, J.-C.; Cocaign-Bousquet, M.; Enjalbert, B. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli. Mol. Microbiol. 2016, 100, 686–700. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.D.; Shin, S.; LaPorte, D.; Wolfe, A.J.; Romeo, T. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J. Bacteriol. 2000, 182, 1632–1640. [Google Scholar] [CrossRef]
- Berndt, V.; Beckstette, M.; Volk, M.; Dersch, P.; Brönstrup, M. Metabolome and transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Escherichia coli. Sci. Rep. 2019, 9, 138. [Google Scholar] [CrossRef]
- Mey, A.R.; Butz, H.A.; Payne, S.M. Vibrio cholerae CsrA Regulates ToxR Levels in Response to Amino Acids and Is Essential for Virulence. mBio 2015, 6, e01064. [Google Scholar] [CrossRef]
- Hubloher, J.J.; Schabacker, K.; Müller, V.; Averhoff, B. CsrA Coordinates Compatible Solute Synthesis in Acinetobacter baumannii and Facilitates Growth in Human Urine. Microbiol. Spectr. 2021, 9, e0129621. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, C.; Hu, C.-Q.; Ren, C.-H.; Zhao, J.-J.; Zhang, L.-P.; Jiang, X.; Luo, P.; Wang, Q.-B. The type III secretion system of Vibrio alginolyticus induces rapid apoptosis, cell rounding and osmotic lysis of fish cells. Microbiology 2010, 156, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, L.; Ren, C.; Zhao, J.; Chen, C.; Jiang, X.; Luo, P.; Hu, C.-Q. Autophagy is induced by the type III secretion system of Vibrio alginolyticus in several mammalian cell lines. Arch. Microbiol. 2011, 193, 53–61. [Google Scholar] [CrossRef]
- Russell, A.B.; Peterson, S.B.; Mougous, J.D. Type VI secretion system effectors: Poisons with a purpose. Nat. reviews Microbiol. 2014, 12, 137–148. [Google Scholar] [CrossRef]
- Kroner, G.M.; Wolfe, M.B.; Freddolino, P.L. Escherichia coli Lrp Regulates One-Third of the Genome via Direct, Cooperative, and Indirect Routes. J. Bacteriol. 2019, 201, e00411-18. [Google Scholar] [CrossRef]
- Ziegler, C.A.; Freddolino, P.L. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: An ancient and complex class of transcriptional regulators in bacteria and archaea. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 373–400. [Google Scholar] [CrossRef]
Strains or Plasmids | Relevant Characteristics | Source |
---|---|---|
Vibrio alginolyticus | ||
ZJ-T | Apr (ampicillin-resistant), a translucent/smooth variant of the wild strain ZJT51; isolated from diseased Epinephelus coioides off the southern China coast | [28] |
ZJ-T-csrAR6H | Apr; ZJ-T carrying a point mutation that replaces the arginine residue at amino acid position 6 with a histidine (R6H) | [27] |
ZJ-T/over csrA-pSCT32 | Cmr; ZJ-T carrying the CsrA overexpression plasmid pSCT32-over-csrA | [27] |
E. coli | ||
CsrA-6 × his-pET28b/BL21 (DE3) | Kanr; E. coli BL21 (DE3) carrying the fusion expression plasmid CsrA-6 × his-pET28b | This study |
Plasmids | ||
pET28b | Kanr; an expression plasmid with a pBR322 origin, T7 promoter, and 6 × histag | Xiaoxue Wang |
CsrA-6 × his-pET28b | Kanr; the expression plasmid pET28b carrying the csrA open reading frame fusion | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Chen, H.; Sheng, K.; Fang, J.; Zhang, Y.; Chen, C. Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus. Microorganisms 2025, 13, 1516. https://doi.org/10.3390/microorganisms13071516
Liu B, Chen H, Sheng K, Fang J, Zhang Y, Chen C. Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus. Microorganisms. 2025; 13(7):1516. https://doi.org/10.3390/microorganisms13071516
Chicago/Turabian StyleLiu, Bing, Huizhen Chen, Kai Sheng, Jianxiang Fang, Ying Zhang, and Chang Chen. 2025. "Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus" Microorganisms 13, no. 7: 1516. https://doi.org/10.3390/microorganisms13071516
APA StyleLiu, B., Chen, H., Sheng, K., Fang, J., Zhang, Y., & Chen, C. (2025). Integrated Transcriptomic and Proteomic Analyses Reveal CsrA-Mediated Regulation of Virulence and Metabolism in Vibrio alginolyticus. Microorganisms, 13(7), 1516. https://doi.org/10.3390/microorganisms13071516