Transcriptomic Analysis on Developing Seed Uncovers Candidate Genes Associated with Seed Storage Protein in Soybean
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Transcriptome Sequencing and Data Analysis
2.3. Analysis of Differentially Expressed Genes (DEGs)
2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Verification
2.5. Gene Expression Trends Cluster Analysis
2.6. WGCNA
3. Results
3.1. Comparison of Protein Content Between HP and LP
3.2. Analysis of RNA-Seq Data
3.3. Identification of DEGs and Gene Enrichment Analysis
3.4. Gene Cluster Analysis
3.5. WGCNA and Visualization
3.6. Validation of DEGs by qRT_PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patil, G.; Mian, R.; Vuong, T.; Pantalone, V.; Song, Q.; Chen, P.; Shannon, G.J.; Carter, T.C.; Nguyen, H.T. Molecular mapping and genomics of soybean seed protein: A review and perspective for the future. Theor. Appl. Genet. 2017, 130, 1975–1991. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, H.B.; Jez, J.M. Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Sci. 2018, 272, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.F.; Napier, J.A.; Clemente, T.E.; Cahoon, E.B. New frontiers in oilseed biotechnology: Meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotech. 2011, 22, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Clemente, T.E.; Cahoon, E.B. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef]
- Cober, E.R.; Voldeng, H.D. Developing high-protein, high-yield soybean populations and lines. Crop Sci. 2000, 40, 39–42. [Google Scholar] [CrossRef]
- Kambhampati, S.; Aznar-Moreno, J.A.; Hostetler, C.; Caso, T.; Bailey, S.R.; Hubbard, A.H.; Durrett, T.P.; Allen, D.K. On the Inverse Correlation of Protein and Oil: Examining the Effects of Altered Central Carbon Metabolism on Seed Composition Using Soybean Fast Neutron Mutants. Metabolites 2020, 10, 10018. [Google Scholar] [CrossRef]
- Kambhampati, S.; Aznar-Moreno, J.A.; Bailey, S.R.; Arp, J.J.; Chu, K.L.; Bilyeu, K.D.; Durrett, T.P.; Allen, D.K. Temporal changes in metabolism late in seed development affect biomass composition. Plant Physiol. 2021, 186, 874–890. [Google Scholar] [CrossRef]
- Derbyshire, E.; Wright, D.J.; Boulter, D. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 1976, 15, 3–24. [Google Scholar] [CrossRef]
- Singh, A.; Meena, M.; Kumar, D.; Dubey, A.K.; Hassan, M.I. Structural and Functional Analysis of Various Globulin Proteins from Soy Seed. Crit. Rev. Food Sci. 2015, 55, 1491–1502. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Goettel, W.; Song, Q.J.; Jiang, H.; Hu, Z.B.; Wang, M.L.; An, Y.Q.C. Dual use and selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet. 2020, 16, e1009114. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.Y.; Hu, Z.B.; Chu, S.S.; Yu, K.Y.; Lv, L.L.; Yang, Y.M.; Zhang, X.Q.; Chen, X.; Kan, G.Z.; et al. Artificial selection on contributes to the increase in seed oil during soybean domestication. PLoS Genet. 2019, 15, 1008267. [Google Scholar] [CrossRef] [PubMed]
- Fliege, C.E.; Ward, R.A.; Vogel, P.; Nguyen, H.; Quach, T.; Guo, M.; Viana, J.P.G.; Santos, L.B.; Specht, J.E.; Clemente, T.E.; et al. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20. Plant J. 2022, 110, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Baud, S.; Dubreucq, B.; Miquel, M.; Rochat, C.; Lepiniec, L.C. Storage Reserve Accumulation in Arabidopsis: Metabolic and Developmental Control of Seed Filling. Arab. Book 2008, 6, e0113. [Google Scholar] [CrossRef]
- Duan, Z.B.A.; Zhang, M.; Zhang, Z.F.; Liang, S.; Fan, L.; Yang, X.; Yuan, Y.Q.; Pan, Y.; Zhou, G.A.; Liu, S.L.; et al. Natural allelic variation of controlling seed size and quality in soybean. Plant Biotechnol. J. 2022, 20, 1807–1818. [Google Scholar] [CrossRef]
- Goettel, W.; Zhang, H.Y.; Li, Y.; Qiao, Z.Z.; Jiang, H.; Hou, D.Y.; Song, Q.J.; Pantalone, V.R.; Song, B.H.; Yu, D.Y.; et al. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nat. Commun. 2022, 13, 3051–3061. [Google Scholar] [CrossRef]
- Miao, L.; Yang, S.N.; Zhang, K.; He, J.B.; Wu, C.H.; Ren, Y.H.; Gai, J.Y.; Li, Y. Natural variation and selection in affect soybean seed oil content. New Phytol. 2020, 225, 1651–1666. [Google Scholar] [CrossRef]
- Wang, S.D.; Liu, S.L.; Wang, J.; Yokosho, K.; Zhou, B.; Yu, Y.C.; Liu, Z.; Frommer, W.B.; Ma, J.F.; Chen, L.Q.; et al. Simultaneous changes in seed size, oil content and protein content driven by selection of homologues during soybean domestication. Natl. Sci. Rev. 2020, 7, 1776–1786. [Google Scholar] [CrossRef]
- Li, S.; Guo, C.; Feng, X.; Wang, J.; Pan, W.; Xu, C.; Wei, S.; Han, X.; Yang, M.; Chen, Q.; et al. Development and Validation of Kompetitive Allele-Specific Polymerase Chain Reaction Markers for Seed Protein Content in Soybean. Plants 2024, 13, 3485. [Google Scholar] [CrossRef]
- Lu, X.; Li, Q.T.; Xiong, Q.; Li, W.; Bi, Y.D.; Lai, Y.C.; Liu, X.L.; Man, W.Q.; Zhang, W.K.; Ma, B.; et al. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J. 2016, 86, 530–544. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.W.; Dong, Y.Y.; Wang, N.; Sun, Y.P.; Li, X.Y.; Liu, L.; Fan, X.D.; Yin, H.L.; Jing, Y.Y.; et al. Sequence mining and transcript profiling to explore differentially expressed genes associated with lipid biosynthesis during soybean seed development. BMC Plant Biol. 2012, 12, 122–135. [Google Scholar] [CrossRef]
- Yang, S.N.; Miao, L.; He, J.B.; Zhang, K.; Li, Y.; Gai, J.Y. Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds. Int. J. Mol. Sci. 2019, 20, 2202. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.N.; Wang, S.H.; Li, J.W.; Yang, M.L.; Liu, C.Y.; Qi, Z.M.; Xu, C.; Wu, X.X.; Chen, Q.S.; Zhao, Y. Transcriptional and Metabolomic Analyses Reveal That GmESR1 Increases Soybean Seed Protein Content Through the Phenylpropanoid Biosynthesis Pathway. Plant Cell Environ. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Landmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Florea, L.; Song, L.; Salzberg, S.L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000 Res. 2013, 2, 188. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Fehr, W.; Caviness, C. Stages of Soybeans Development; Iowa State University: Ames, IA, USA, 1977. [Google Scholar]
- Zhang, H.Y.; Hu, Z.B.; Yang, Y.M.; Liu, X.Q.; Lv, H.Y.; Song, B.H.; An, Y.Q.C.; Li, Z.M.; Zhang, D. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genom. 2021, 22, 453–465. [Google Scholar] [CrossRef]
- Hill, J.E.; Breidenbach, R.W. Proteins of Soybean Seeds: II. Accumulation of the Major Protein Components during Seed Development and Maturation. Plant Physiol. 1974, 53, 747–751. [Google Scholar] [CrossRef]
- Du, J.; Wang, S.; He, C.; Zhou, B.; Ruan, Y.L.; Shou, H. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J. Exp. Bot. 2017, 68, 1955–1972. [Google Scholar] [CrossRef]
- Liu, J.; Dong, L.; Duan, R.; Hu, L.; Zhao, Y.; Zhang, L.; Wang, X. Transcriptomic Analysis Reveals the Regulatory Networks and Hub Genes Controlling the Unsaturated Fatty Acid Contents of Developing Seed in Soybean. Front. Plant Sci. 2022, 13, 876371. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.K.; Ohlrogge, J.B.; Shachar-Hill, Y. The role of light in soybean seed filling metabolism. Plant J. 2009, 58, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.C.; Li, K.Z.; Nelson, R.; Ulanov, A.; DeMuro, C.M.; Baxter, I. Canopy position has a profound effect on soybean seed composition. PeerJ 2016, 4, e2452. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Hoschek, G.; Vodkin, L.O. An insertion sequence blocks the expression of a soybean lectin gene. Cell 1983, 33, 465–475. [Google Scholar] [CrossRef]
- Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume lectin structure. Biochim. Biophys. Acta 1998, 1383, 9–36. [Google Scholar] [CrossRef]
- Lannoo, N.; Van Damme, E.J.M. Nucleocytoplasmic plant lectins. BBA-Gen. Subj. 2010, 1800, 190–201. [Google Scholar] [CrossRef]
- Van Holle, S.; Van Damme, E.J.M. Signaling through plant lectins: Modulation of plant immunity and beyond. Biochem. Soc. Trans. 2018, 46, 217–233. [Google Scholar] [CrossRef]
- Van Damme, E.J.M. 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconj. J. 2022, 39, 83–97. [Google Scholar] [CrossRef]
- Krishnan, H.B. Biochemistry and Molecular Biology of Soybean Seed Storage Proteins. J. New Seeds 2001, 2, 1–25. [Google Scholar] [CrossRef]
- Diers, B.W.; Beilinson, V.; Nielsen, N.C.; Shoemaker, R.C. Genetic mapping of the Gy4 and Gy5 glycinin genes in soybean and the analysis of a variant of Gy4. Theor. Appl. Genet. 1994, 89, 297–304. [Google Scholar] [CrossRef]
- McCarthy, N.A.; Kennedy, D.; Hogan, S.A.; Kelly, P.M.; Thapa, K.; Murphy, K.M.; Fenelon, M.A. Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication. Food Res. Int. 2016, 89 Pt 1, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Haiyan, L.Y.; Chu, S.S.; Zhang, H.R.; Zhang, H.Y.; Yang, Y.M.; Li, H.Y.; Yu, D.Y. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Sci. Rep. 2017, 7, 5053–5065. [Google Scholar] [CrossRef] [PubMed]
- Breiteneder, H.; Mills, E.N.C. Plant food allergens—Structural and functional aspects of allergenicity. Biotechnol. Adv. 2005, 23, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Dunwell, J.M.; Purvis, A.; Khuri, S. Cupins: The most functionally diverse protein superfamily? Phytochemistry 2004, 65, 7–17. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhang, H.W.; Gao, Y.L.; Sun, G.L.; Zhang, W.M.; Qiu, L.J. A Comprehensive Analysis of the Cupin Gene Family in Soybean. PLoS ONE 2014, 9, e110092. [Google Scholar] [CrossRef]
- Shamimuzzaman, M.; Vodkin, L. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development. PLoS ONE 2018, 13, e0194596. [Google Scholar] [CrossRef]
- Xu, Y.C.; Magwanga, R.O.; Yang, X.; Jin, D.S.; Cai, X.Y.; Hou, Y.Q.; Wei, Y.Y.; Zhou, Z.L.; Wang, K.B.; Liu, F. Genetic regulatory networks for salt-alkali stress in with differing morphological characteristics. BMC Genom. 2020, 21, 15–33. [Google Scholar] [CrossRef]
- Geng, M.F.; Wang, X.H.; Wang, M.X.; Cai, Z.; Meng, Q.L.; Wang, X.; Zhou, L.; Han, J.D.; Li, J.L.; Zhang, F.M.; et al. Genome-wide investigation on transcriptional responses to drought stress in wild and cultivated rice. Environ. Exp. Bot. 2021, 189, 104555. [Google Scholar] [CrossRef]
- Xiao, D.; Li, X.; Zhou, Y.Y.; Wei, L.; Keovongkod, C.; He, H.Y.; Zhan, J.; Wang, A.Q.; He, L.F. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress. Gene 2021, 781, 145535. [Google Scholar] [CrossRef]
- Meiri, D.; Breiman, A. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J. 2009, 59, 387–399. [Google Scholar] [CrossRef]
- Wolf, R.B.; Cavins, J.F.; Kleiman, R.; Black, L.T. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 1982, 59, 230–232. [Google Scholar] [CrossRef]
- Dornbos, D.L.J.; Mullen, R.E. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 1992, 69, 228–231. [Google Scholar] [CrossRef]
- Ren, C.; Bilyeu, K.D.; Beuselinck, P.R. Composition, Vigor, and Proteome of Mature Soybean Seeds Developed under High Temperature. Crop Sci. 2009, 49, 1010–1022. [Google Scholar] [CrossRef]
- Song, W.W.; Yang, R.P.; Wu, T.T.; Wu, C.X.; Sun, S.; Zhang, S.W.; Jiang, B.J.; Tian, S.Y.; Liu, X.B.; Han, T.F. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China. J. Agr. Food Chem. 2016, 64, 4121–4130. [Google Scholar] [CrossRef] [PubMed]
- Zeevaart, J.A.D.; Creelman, R.A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Biol. 1988, 39, 439–473. [Google Scholar] [CrossRef]
Gene_ID | Function Annotation | GO Term | Annotation Description | Log2FC_20 | p-Value |
---|---|---|---|---|---|
Glyma.02g012600 | Legume lectin domain | GO:0030246 | carbohydrate binding | 4.5041315 | 4.57 × 10−2 |
Glyma.10g246300 | Beta-conglycinin alpha prime subunit 1 protein | GO:0045735 | nutrient reservoir activity | 8.6359036 | 3.81 × 10−2 |
Glyma.13g123500 | Glycine protein | GO:0045735 | nutrient reservoir activity | 10.936369 | 3.30 × 10−2 |
Glyma.13g194400 | Albumin I protein | GO:0045735 | nutrient reservoir activity | 6.9725067 | 1.26 × 10−3 |
Glyma.20g148200 | Beta-conglycinin, beta chain-like protein | GO:0045735 | nutrient reservoir activity | 4.784346 | 3.21 × 10−15 |
Glyma.20g148300 | RmlC-like cupins superfamily protein | GO:0045735 | nutrient reservoir activity | 5.4897572 | 2.56 × 10−2 |
Glyma.20g148400 | Beta-conglycinin alpha prime subunit 2 protein | GO:0045735 | nutrient reservoir activity | 5.4796174 | 2.60 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Huang, H.; Li, W.; Duan, R.; Li, D.; Wang, X. Transcriptomic Analysis on Developing Seed Uncovers Candidate Genes Associated with Seed Storage Protein in Soybean. Agronomy 2025, 15, 1531. https://doi.org/10.3390/agronomy15071531
Hu L, Huang H, Li W, Duan R, Li D, Wang X. Transcriptomic Analysis on Developing Seed Uncovers Candidate Genes Associated with Seed Storage Protein in Soybean. Agronomy. 2025; 15(7):1531. https://doi.org/10.3390/agronomy15071531
Chicago/Turabian StyleHu, Li, Huibin Huang, Wenjun Li, Runqing Duan, Dongyan Li, and Xianzhi Wang. 2025. "Transcriptomic Analysis on Developing Seed Uncovers Candidate Genes Associated with Seed Storage Protein in Soybean" Agronomy 15, no. 7: 1531. https://doi.org/10.3390/agronomy15071531
APA StyleHu, L., Huang, H., Li, W., Duan, R., Li, D., & Wang, X. (2025). Transcriptomic Analysis on Developing Seed Uncovers Candidate Genes Associated with Seed Storage Protein in Soybean. Agronomy, 15(7), 1531. https://doi.org/10.3390/agronomy15071531