Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Sampling Design and Sampling
2.3. Measurement of Morphological and Physiological Traits of Leaf, Stem, and Root
2.3.1. Leaf Traits
2.3.2. Stem Traits
2.3.3. Root Traits
2.4. Measurement of C-N-P Ecological Stoichiometry in Leaf, Stem, and Root
2.5. Analyses of Phosphorus Fractions
2.6. Data Analysis
3. Results
3.1. Variation in C-N-P Ecological Stoichiometry Between Rock-Epiphytic and Trunk-Epiphytic Habitats
3.2. Variation in P Fractions and Proportions Between Rock-Epiphytic and Trunk-Epiphytic Habitats
3.3. Variation in Morphological and Physiological Traits Between Rock-Epiphytic and Trunk-Epiphytic Habitats
3.4. Correlations of Plant Traits and Hub Traits
4. Discussion
4.1. The Impact of Epiphytic Habitat on P Limitation
4.2. The Impact of Epiphytic Habitat on Relative P Allocations in P Fractions
4.3. The Impact of Epiphytic Habitat on Morphological and Physiological Traits
4.4. The Importance of P in PTN
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Zhao, H.; Wan, R.; Liu, Y.; Xu, Z.; Tian, W.; Ruan, W.; Wang, F.; Deng, M.; Wang, J.; et al. Identification of vacuolar phosphate efflux transporters in land plants. Nat. Plants 2019, 5, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Suriyagoda, L.D.B.; Ryan, M.H.; Gille, C.E.; Dayrell, R.L.C.; Finnegan, P.M.; Ranathunge, K.; Nicol, D.; Lambers, H. Phosphorus fractions in leaves. New Phytol. 2023, 237, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.; Liao, Y.Y.; Chiou, T.J. The Impact of Phosphorus on Plant Immunity. Plant Cell Physiol. 2021, 62, 582–589. [Google Scholar] [CrossRef]
- Tsujii, Y.; Atwell, B.J.; Lambers, H.; Wright, I.J. Leaf phosphorus fractions vary with leaf economic traits among 35 Australian woody species. New Phytol. 2024, 241, 1985–1997. [Google Scholar] [CrossRef]
- Liu, S.T.; Gille, C.E.; Bird, T.; Ranathunge, K.; Finnegan, P.M.; Lambers, H. Leaf phosphorus allocation to chemical fractions and its seasonal variation in south-western Australia is a species-dependent trait. Sci. Total Environ. 2023, 901, 166395. [Google Scholar] [CrossRef]
- Lambers, H.; Finnegan, P.M.; Laliberté, E.; Pearse, S.J.; Ryan, M.H.; Shane, M.W.; Veneklaas, E.J. Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To Be Learned for Future Crops? Plant Physiol. 2011, 156, 1058–1066. [Google Scholar] [CrossRef]
- Yu, Q.; Ni, X.; Cheng, X.; Ma, S.; Tian, D.; Zhu, B.; Zhu, J.; Ji, C.; Tang, Z.; Fang, J. Foliar phosphorus allocation and photosynthesis reveal plants’ adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Sci. Total Environ. 2022, 846, 157456. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Cunha, H.F.V.; Andersen, K.M.; Lugli, L.F.; Santana, F.D.; Aleixo, I.F.; Moraes, A.M.; Garcia, S.; Di Ponzio, R.; Mendoza, E.O.; Brum, B.; et al. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 2022, 608, 558–562. [Google Scholar] [CrossRef]
- Zotz, G.; Hietz, P.; Einzmann, H.J.R. Functional ecology of vascular epiphytes. Annu. Plant Rev. Online 2021, 4, 869–906. [Google Scholar] [CrossRef]
- Zhang, T.T.; Liu, W.Y.; Hu, T.; Tang, D.D.; Mo, Y.X.; Wu, Y. Divergent Adaptation Strategies of Vascular Facultative Epiphytes to Bark and Soil Habitats: Insights from Stoichiometry. Forests 2021, 12, 16. [Google Scholar] [CrossRef]
- Abril, A.B.; Bucher, E.H. A comparison of nutrient sources of the epiphyte Tillandsia capillaris attached to trees and cables in Cordoba, Argentina. J. Arid Environ. 2009, 73, 393. [Google Scholar] [CrossRef]
- Liu, J.; Fang, X.; Tang, X.; Wang, W.; Zhou, G.; Xu, S.; Huang, W.; Wang, G.; Yan, J.; Ma, K.; et al. Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China’s forests. Biogeochemistry 2019, 143, 191–205. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef]
- Su, T.H.; Zhou, C.Y.; Sun, W.; Jia, T.; Hu, T.; Li, Z.F.; Pu, X.Y.; Lu, Z.Y.; Li, S. Greater differentiation in nitrogen sources is essential for co-occurring epiphytes under low-nitrogen canopy conditions. Environ. Exp. Bot. 2023, 215, 105509. [Google Scholar] [CrossRef]
- Costa, D.S.; Zotz, G.; Hemp, A.; Kleyer, M. Trait patterns of epiphytes compared to other plant life-forms along a tropical elevation gradient. Funct. Ecol. 2018, 32, 2073–2084. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Jia, T.; Su, T.H.; Wu, S.S.; Zhou, C.Y.; Mo, Y.X.; Qi, J.H.; Lu, Z.Y.; Li, S. Leaf Nutrient Resorption of Vascular Epiphytes Is Regulated by Stoichiometry and Nutrient Limitation Control Strategies. Plant Cell Environ. 2025, 48, 4550–4563. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, X.; Han, Z.; Pang, J.; Lambers, H.; Finnegan, P.M. Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. New Phytol. 2019, 223, 1621–1633. [Google Scholar] [CrossRef]
- Han, Z.; Shi, J.; Pang, J.; Yan, L.; Finnegan, P.M.; Lambers, H. Foliar nutrient allocation patterns in Banksia attenuata and Banksia sessilis differing in growth rate and adaptation to low-phosphorus habitats. Ann. Bot. 2021, 128, 419–430. [Google Scholar] [CrossRef]
- Fan, Y.; Lambers, H.; Sayer, E.J.; Li, Y.; Li, Y.; Zhang, J.; Li, Z.; Hu, Z.; Li, H.; Wang, J.; et al. Variation in leaf phosphorus fractions reflects plant adaptations and distribution in low-phosphorus tropical forests. Funct. Ecol. 2025, 39, 621–634. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Sack, L.; Xu, L.; Li, M.; Zhang, J.; He, N. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecol. Lett. 2022, 25, 1442–1457. [Google Scholar] [CrossRef]
- He, N.; Li, Y.; Liu, C.; Xu, L.; Li, M.; Zhang, J.; He, J.; Tang, Z.; Han, X.; Ye, Q.; et al. Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends Ecol. Evol. 2020, 35, 908–918. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, D.; Wang, G.; Liu, Y.; Li, Q.; Zheng, Z.; Yang, G.; Peng, Y.; Niu, K.; Yang, Y. Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem. New Phytol. 2023, 240, 1802–1816. [Google Scholar] [CrossRef]
- Medeiros, C.D.; Trueba, S.; Henry, C.; Fletcher, L.R.; Lutz, J.A.; Alonzo, R.M.; Kraft, N.J.B.; Sack, L. Simplification of woody plant trait networks among communities along a climatic aridity gradient. J. Ecol. 2025, 113, 896–912. [Google Scholar] [CrossRef]
- Li, Y.; Mo, Y.-X.; Cui, H.-L.; Zhang, Y.-J.; Dossa, G.G.O.; Tan, Z.-H.; Song, L. Intraspecific plasticity and co-variation of leaf traits facilitate Ficus tinctoria to acclimate hemiepiphytic and terrestrial habitats. Tree Physiol. 2024, 44, tpae007. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Xu, Z.; Lu, Z.; Fan, Z.; Chen, Y.; Zhang, S. Leaf trait networks shift toward high modularity during the succession of a subtropical forest, in southwest China. Ecol. Indic. 2024, 166, 112490. [Google Scholar] [CrossRef]
- Lei, Z.; Li, Z.; Wright, I.J.; Chhajed, S.; Zhang, W.; He, D.; Zhang, Y. Network Architecture of Leaf Trait Correlations Has Shifted Following Crop Domestication. Plant Cell Environ. 2025, 48, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, E.C.; Sax, D.F. Experimental evidence of climate change extinction risk in Neotropical montane epiphytes. Nat. Commun. 2024, 15, 6045. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, H.-Z.; Liu, W.-Y.; Wu, Y.; Song, L.; Li, S. Obligate to facultative shift of two epiphytic Lepisorus species during subtropical forest degradation: Insights from functional traits. For. Ecol. Manag. 2019, 435, 66–76. [Google Scholar] [CrossRef]
- Schroth, G.; Elias, M.E.A.; Uguen, K.; Seixas, R.; Zech, W. Nutrient fluxes in rainfall, throughfall and stemflow in tree-based land use systems and spontaneous tree vegetation of central Amazonia. Agric. Ecosyst. Environ. 2001, 87, 37–49. [Google Scholar] [CrossRef]
- Eaton, J.S.; Likens, G.E.; Bormann, F.H. Throughfall and Stemflow Chemistry in a Northern Hardwood Forest. J. Ecol. 1973, 61, 495–508. [Google Scholar] [CrossRef]
- Cui, E.; Lu, R.; Xu, X.; Sun, H.; Qiao, Y.; Ping, J.; Qiu, S.; Lin, Y.; Bao, J.; Yong, Y.; et al. Soil phosphorus drives plant trait variations in a mature subtropical forest. Glob. Change Biol. 2022, 28, 3310–3320. [Google Scholar] [CrossRef]
- Bai, X.-L.; Feng, T.; Zou, S.; He, B.; Chen, Y.; Li, W.-J. Differences in Leaf Functional Traits of Quercus rehderiana Hand.-Mazz. in Forests with Rocky and Non-Rocky Desertification in Southwest China. Forests 2024, 15, 1439. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Steege, H.T.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Ye, Z.; Mu, Y.; Van Duzen, S.; Ryser, P. Root and shoot phenology, architecture, and organ properties: An integrated trait network among 44 herbaceous wetland species. New Phytol. 2024, 244, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Comas, L.H.; Reich, P.B.; McCormack, M.L.; Phillips, R.P.; Gu, J.; Sun, T. Variation of root resource acquisition and conservation strategies in a temperate forest is linked with plant growth forms. Tree Physiol. 2025, 45, tpaf027. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wanek, W.; Zotz, G. Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N:P stoichiometry with the tank bromeliad Vriesea sanguinolenta. New Phytol. 2011, 192, 462–470. [Google Scholar] [CrossRef]
- Petter, G.; Wagner, K.; Wanek, W.; Sánchez Delgado, E.J.; Zotz, G.; Cabral, J.S.; Kreft, H. Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct. Ecol. 2016, 30, 188–198. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Wagner, K.; Wanek, W.; Zotz, G. Functional Traits of a Rainforest Vascular Epiphyte Community: Trait Covariation and Indications for Host Specificity. Diversity 2021, 13, 97. [Google Scholar] [CrossRef]
- Fortunel, C.; Fine, P.V.A.; Baraloto, C. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct. Ecol. 2012, 26, 1153–1161. [Google Scholar] [CrossRef]
- Moore, A.F.P.; Antoine, J.; Bedoya, L.I.; Medina, A.; Buck, C.S.; Van Stan, J.T.; Gotsch, S.G. Drought decreases water storage capacity of two arboreal epiphytes with differing ecohydrological traits. Sci. Total Environ. 2023, 894, 164791. [Google Scholar] [CrossRef]
- Roumet, C.; Birouste, M.; Picon-Cochard, C.; Ghestem, M.; Osman, N.; Vrignon-Brenas, S.; Cao, K.F.; Stokes, A. Root structure–function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 2016, 210, 815–826. [Google Scholar] [CrossRef]
- de la Riva, E.G.; Querejeta, J.I.; Villar, R.; Pérez-Ramos, I.M.; Marañón, T.; Galán Díaz, J.; de Tomás Marín, S.; Prieto, I. The Economics Spectrum Drives Root Trait Strategies in Mediterranean Vegetation. Front. Plant Sci. 2021, 12, 773118. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, J.; Wu, H.; Valverde-Barrantes, O.J.; Wang, R.; Zeng, H.; Kardol, P.; Zhang, H.; Feng, Y. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 2019, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Hietz, P.; Wagner, K.; Nunes Ramos, F.; Cabral, J.S.; Agudelo, C.; Benavides, A.M.; Cach-Pérez, M.J.; Cardelús, C.L.; Chilpa Galván, N.; Erickson Nascimento da Costa, L.; et al. Putting vascular epiphytes on the traits map. J. Ecol. 2022, 110, 340–358. [Google Scholar] [CrossRef]
- Li, X.L.; Zhou, J.; Du, H.Q.; Peng, F.; Zhong, H.; Wu, Y.; Luo, J.; Sun, S.; Ming, Y.X.; Sun, H.; et al. Plant nutrient-acquisition strategies contribute to species replacement during primary succession. J. Ecol. 2025, 113, 988–1003. [Google Scholar] [CrossRef]
- He, K.; Fan, L.-L.; Wu, T.-T.; Du, J. A new xanthone glycoside from Pyrrosia sheareri. Nat. Prod. Res. 2019, 33, 2982–2987. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, H.; Liu, L.; Zhang, Y.; Xin, X.; Gao, D. Chemical Components and Antibacterial Activity of the Essential Oil of Six Pyrrosia Species. Chem. Biodivers. 2020, 17, e2000526. [Google Scholar] [CrossRef]
Order | Category | Abbreviation | Plant Trait | Unit | Order | Category | Abbreviation | Plant Trait | Unit |
---|---|---|---|---|---|---|---|---|---|
1 | morphological and physiological traits | Pn | net photosynthetic rate | μmol m−2 s−1 | 33 | phosphorus fractions | L-Pi | leaf orthophosphate phosphorus | mg g−1 |
2 | Tr | transpiration rate | mmol m−2 s−1 | 34 | L-PN | leaf nucleic acid phosphorus | mg g−1 | ||
3 | WUE | water use efficiency | μmol mmol−1 | 35 | L-PL | leaf lipid phosphorus | mg g−1 | ||
4 | LT | leaf thickness | μm | 36 | L-PM | leaf low-molecular-weight metabolites phosphorus | mg g−1 | ||
5 | LDMC | leaf dry matter content | % | 37 | L-PR | leaf residual phosphorus | mg g−1 | ||
6 | SLA | specific leaf area | cm2 g−1 | 38 | L-PPi | the percentage of L-Pi relative to L-TP | % | ||
7 | SDMC | stem dry matter content | % | 39 | L-PPN | the percentage of L-PN relative to L-TP | % | ||
8 | STD | stem tissue density | g cm−3 | 40 | L-PPL | the percentage of L-PL relative to L-TP | % | ||
9 | SRL | specific root length | cm g−1 | 41 | L-PPM | the percentage of L-PM relative to L-TP | % | ||
10 | SRA | specific root surface area | cm2 g−1 | 42 | L-PPR | the percentage of L-PR relative to L-TP | % | ||
11 | RTD | root tissue density | g cm−3 | 43 | S-Pi | stem orthophosphate phosphorus | mg g−1 | ||
12 | RD | mean root diameter | mm | 44 | S-PN | stem nucleic acid phosphorus | mg g−1 | ||
13 | NRT | number of root tips per unit mass | no. g−1 | 45 | S-PL | stem lipid phosphorus | mg g−1 | ||
14 | NRB | number of root branches per unit mass | no. g−1 | 46 | S-PM | stem low-molecular-weight metabolites phosphorus | mg g−1 | ||
15 | ecological stoichiometry | L-TC | leaf carbon concentration | g kg−1 | 47 | S-PR | stem residual phosphorus | mg g−1 | |
16 | L-TN | leaf nitrogen concentration | g kg−1 | 48 | S-PPi | the percentage of S-Pi relative to S-TP | % | ||
17 | L-TP | leaf phosphorus concentration | g kg−1 | 49 | S-PPN | the percentage of S-PN relative to S-TP | % | ||
18 | L-C/N | leaf C-to-N ratio | 50 | S-PPL | the percentage of S-PL relative to S-TP | % | |||
19 | L-C/P | leaf C-to-P ratio | 51 | S-PPM | the percentage of S-PM relative to S-TP | % | |||
20 | L-N/P | leaf N-to-P ratio | 52 | S-PPR | the percentage of S-PR relative to S-TP | % | |||
21 | S-TC | stem carbon concentration | g kg−1 | 53 | R-Pi | root orthophosphate phosphorus | mg g−1 | ||
22 | S-TN | stem nitrogen concentration | g kg−1 | 54 | R-PN | root nucleic acid phosphorus | mg g−1 | ||
23 | S-TP | stem phosphorus concentration | g kg−1 | 55 | R-PL | root lipid phosphorus | mg g−1 | ||
24 | S-C/N | stem C-to-N ratio | 56 | R-PM | root low-molecular-weight metabolites phosphorus | mg g−1 | |||
25 | S-C/P | stem C-to-P ratio | 57 | R-PR | root residual phosphorus | mg g−1 | |||
26 | S-N/P | stem N-to-P ratio | 58 | R-PPi | the percentage of R-Pi relative to R-TP | % | |||
27 | R-TC | stem carbon concentration | g kg−1 | 59 | R-PPN | the percentage of R-PN relative to R-TP | % | ||
28 | R-TN | stem nitrogen concentration | g kg−1 | 60 | R-PPL | the percentage of R-PL relative to R-TP | % | ||
29 | R-TP | stem phosphorus concentration | g kg−1 | 61 | R-PPM | the percentage of R-PM relative to R-TP | % | ||
30 | R-C/N | stem C-to-N ratio | 62 | R-PPR | the percentage of R-PR relative to R-TP | % | |||
31 | R-C/P | stem C-to-P ratio | |||||||
32 | R-N/P | stem N-to-P ratio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, S.; Huang, C.; Feng, T.; Chen, Y.; Bai, X.; Li, W.; He, B. Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest. Forests 2025, 16, 903. https://doi.org/10.3390/f16060903
Zou S, Huang C, Feng T, Chen Y, Bai X, Li W, He B. Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest. Forests. 2025; 16(6):903. https://doi.org/10.3390/f16060903
Chicago/Turabian StyleZou, Shun, Chumin Huang, Tu Feng, Yang Chen, Xiaolong Bai, Wangjun Li, and Bin He. 2025. "Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest" Forests 16, no. 6: 903. https://doi.org/10.3390/f16060903
APA StyleZou, S., Huang, C., Feng, T., Chen, Y., Bai, X., Li, W., & He, B. (2025). Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest. Forests, 16(6), 903. https://doi.org/10.3390/f16060903