Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,167)

Search Parameters:
Keywords = carbon nanotubes-graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4449 KiB  
Review
Recent Progress in Electrocatalysts for Hydroquinone Electrochemical Sensing Application
by Mohammad Aslam, Khursheed Ahmad, Saood Ali, Khaled Hamdy and Danishuddin
Biosensors 2025, 15(8), 488; https://doi.org/10.3390/bios15080488 - 28 Jul 2025
Viewed by 386
Abstract
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials [...] Read more.
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials such as reduced graphene oxide (rGO), carbon nanotubes (CNTs), layered double hydroxides (LDH), metal sulfides, and hybrid composites were extensively utilized in the fabrication of HQ sensors. The electrochemical performance, including limit of detection, linearity, sensitivity, selectivity, stability, reproducibility, repeatability, and recovery for real-time sensing of the HQ sensors have been discussed. The limitations, challenges, and future directions are also discussed in the conclusion section. It is believed that the present review article may benefit researchers who are involved in the development of HQ sensors and catalyst preparation for electrochemical sensing of other toxic substances. Full article
Show Figures

Figure 1

29 pages, 6921 KiB  
Review
The Advances in Polymer-Based Electrothermal Composites: A Review
by Xiaoli Wu, Ting Yin, Wenyan Liu, Libo Wan and Yijun Liao
Polymers 2025, 17(15), 2047; https://doi.org/10.3390/polym17152047 - 27 Jul 2025
Viewed by 318
Abstract
Polymer-based electrothermal composites (PECs) have been increasingly attracting attention in recent years owing to their flexibility, low density, and high electrothermal efficiency. However, although a large number of reviews have focused on flexible and transparent film heaters as well as polymer-based conductive composites, [...] Read more.
Polymer-based electrothermal composites (PECs) have been increasingly attracting attention in recent years owing to their flexibility, low density, and high electrothermal efficiency. However, although a large number of reviews have focused on flexible and transparent film heaters as well as polymer-based conductive composites, comprehensive reviews of polymer-based electrothermal composites remain limited. Herein, we provide a comprehensive review of recent advancements in polymer-based electrothermal materials. This review begins with an introduction to the electrothermal theoretical basis and the research progress of PECs incorporating various conductive fillers, such as graphene, carbon nanotubes (CNTs), carbon black (CB), MXenes, and metal nanowires. Furthermore, a critical discussion is provided to emphasize the factors influencing the electrothermal conversion efficiency of these composites. Meanwhile, the development of multi-functional electrothermal materials has been also summarized. Finally, the application progress, future prospects, limitations, and potential directions for PEC are discussed. This review aims to serve as a practical guide for engineers and researchers engaged in the development of polymer-based electrothermal composites. Full article
Show Figures

Figure 1

34 pages, 5133 KiB  
Article
New Scalable Electrosynthesis of Distinct High Purity Graphene Nanoallotropes from CO2 Enabled by Transition Metal Nucleation
by Kyle Hofstetter, Gad Licht and Stuart Licht
Crystals 2025, 15(8), 680; https://doi.org/10.3390/cryst15080680 - 25 Jul 2025
Viewed by 188
Abstract
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO [...] Read more.
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO2 to Carbon Nano Technology) process. The C2CNT molten carbonate electrolysis technique enables the formation of Carbon NanoTubes (CNTs), Magnetic CNTs (MCNTs), Carbon Nano-Onions (CNOs), Carbon Nano-Scaffolds (CNSs), and Helical CNTs (HCNTs) directly from atmospheric or industrial CO2. We discuss the morphology control enabled through variations in electrolyte composition, temperature, current density, and nucleation additives. We present results from scaled operations reaching up to 1000 tons/year CO2 conversion and propose design approaches to reach megaton scales to support climate mitigation and GNC mass production. The products demonstrate high crystallinity, as evidenced by Raman, XRD, SEM, and TGA analyses, and offer promising applications in electronics, construction, catalysis, and medical sectors. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

24 pages, 4040 KiB  
Review
Progress in Electrode Materials for the Detection of Nitrofurazone and Nitrofurantoin
by Mohammad Aslam, Saood Ali, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(8), 482; https://doi.org/10.3390/bios15080482 - 24 Jul 2025
Viewed by 255
Abstract
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and [...] Read more.
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and human health. Thus, various advanced materials such as graphene, carbon nanotubes, metal oxides, MXenes, layered double hydroxides (LDHs), polymers, metal–organic frameworks (MOFs), metal-based composites, etc. are widely used for the development of nitrofurazone and nitrofurantoin sensors. This review article summarizes the progress in the fabrication of electrode materials for nitrofurazone and nitrofurantoin sensing applications. The performance of the various electrode materials for nitrofurazone and nitrofurantoin monitoring are discussed. Various electrochemical sensing techniques such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), amperometry (AMP), cyclic voltammetry (CV), and chronoamperometry (CA) are discussed for the determination of NFZ and NFT. It is observed that DPV, SWV, and AMP/CA are more sensitive techniques compared to LSV and CV. The challenges, future perspectives, and limitations of NFZ and NFT sensors are also discussed. It is believed that present article may be useful for electrochemists as well materials scientists who are working to design electrode materials for electrochemical sensing applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

36 pages, 7620 KiB  
Review
Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization
by Han Fu, Amin Mojiri, Junli Wang and Zhe Zhao
Energies 2025, 18(15), 3958; https://doi.org/10.3390/en18153958 - 24 Jul 2025
Viewed by 499
Abstract
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid [...] Read more.
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid hydrogen storage, face limitations, including high energy consumption, elevated cost, weight, and safety concerns. In contrast, solid-state hydrogen storage using carbon-based adsorbents has gained growing attention due to their chemical tunability, low cost, and potential for modular integration into energy systems. This review provides a comprehensive evaluation of hydrogen storage using carbon-based materials, covering fundamental adsorption mechanisms, classical materials, emerging architectures, and recent advances in computationally AI-guided material design. We first discuss the physicochemical principles driving hydrogen physisorption, chemisorption, Kubas interaction, and spillover effects on carbon surfaces. Classical adsorbents, such as activated carbon, carbon nanotubes, graphene, carbon dots, and biochar, are evaluated in terms of pore structure, dopant effects, and uptake capacity. The review then highlights recent progress in advanced carbon architectures, such as MXenes, three-dimensional architectures, and 3D-printed carbon platforms, with emphasis on their gravimetric and volumetric performance under practical conditions. Importantly, this review introduces a forward-looking perspective on the application of artificial intelligence and machine learning tools for data-driven sorbent design. These methods enable high-throughput screening of materials, prediction of performance metrics, and identification of structure–property relationships. By combining experimental insights with computational advances, carbon-based hydrogen storage platforms are expected to play a pivotal role in the next generation of energy storage systems. The paper concludes with a discussion on remaining challenges, utilization scenarios, and the need for interdisciplinary efforts to realize practical applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
Enhanced Mechanical and Electromagnetic Shielding Properties of Mg Matrix Layered Composites Reinforced with Hybrid Graphene Nanosheet (GNS)–Carbon Nanotube (CNT) Networks
by Hailong Shi, Jiancheng Zhao, Zhenming Sun, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3455; https://doi.org/10.3390/ma18153455 - 23 Jul 2025
Viewed by 308
Abstract
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of [...] Read more.
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs. The objective was to determine the benefits of hybrid reinforcements on the mechanical strength and EMI shielding capability of the composites. The results indicated that the GNS-CNT/Mg composite, at a nanocarbon content of 0.5 wt.% and a GNS-CNT ratio of 1:2, achieved optimal performance, with a 55% increase in tensile strength and an EMI shielding effectiveness of 70 dB. The observed enhancements can be attributed to several key mechanisms: effective load transfer, which promotes tensile twinning, along with improved impedance matching and multiple internal reflections within the GNS-CNT network, which enhance absorption loss. These significant improvements position the composite as a promising candidate for advanced applications requiring high strength, toughness, and efficient electromagnetic shielding, providing valuable insights into the design of high-performance lightweight materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

26 pages, 796 KiB  
Article
Developing an Integrated Circular Economy Framework for Nanomaterial-Enhanced Recycled PET (nrPET): Advancing Sustainable and Resilient Road Construction Practices
by Demiss A. Belachew and Walied A. Elsaigh
Recycling 2025, 10(4), 146; https://doi.org/10.3390/recycling10040146 - 22 Jul 2025
Viewed by 277
Abstract
The rapid growth in plastic consumption, particularly polyethylene terephthalate (PET), has led to a significant increase in plastic waste, posing a major environmental challenge. Developing an integrated circular economy framework for nanomaterial-enhanced recycled PET (nrPET) can be a promising approach to address this [...] Read more.
The rapid growth in plastic consumption, particularly polyethylene terephthalate (PET), has led to a significant increase in plastic waste, posing a major environmental challenge. Developing an integrated circular economy framework for nanomaterial-enhanced recycled PET (nrPET) can be a promising approach to address this issue and advance sustainable and resilient road construction practices. This comprehensive review examines the current use of rPET in road construction, its existing limitations, and the role of nanomaterials in enhancing the performance of these materials. The review explores the mechanisms by which nanomaterials, such as carbon nanotubes, graphene, nanosilica, and clay nanoplatelets, can improve the properties of rPET, leading to more durable, weather-resistant, and cost-effective road materials. Furthermore, the review analyzes the environmental and sustainability benefits of using nrPET in road construction, focusing on carbon footprint reduction, conservation of natural resources, and alignment with circular economy principles. The potential for job creation, social benefits, and support for circular economy initiatives are also discussed. The review then delves into the challenges associated with the implementation of this framework, including technical barriers, economic and market barriers, regulatory and policy challenges, and environmental and safety considerations. Strategies to address these challenges, such as advancements in nanotechnology, scaling up circular economy models, and fostering collaborative research, are presented. Finally, the article proposes a framework and outlines future directions and research opportunities, emphasizing the exploration of emerging nanomaterials, scaling up circular economy models, and encouraging collaborations between researchers, industry stakeholders, policymakers, and communities. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Figure 1

19 pages, 4188 KiB  
Article
Enhanced Mechanical and Electrical Performance of Epoxy Nanocomposites Through Hybrid Reinforcement of Carbon Nanotubes and Graphene Nanoplatelets: A Synergistic Route to Balanced Strength, Stiffness, and Dispersion
by Saba Yaqoob, Zulfiqar Ali, Alberto D’Amore, Alessandro Lo Schiavo, Antonio Petraglia and Mauro Rubino
J. Compos. Sci. 2025, 9(7), 374; https://doi.org/10.3390/jcs9070374 - 17 Jul 2025
Viewed by 354
Abstract
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical [...] Read more.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical properties, substantially improving composite stiffness and tensile strength. In this study, epoxy nanocomposites were fabricated with 0.1 wt.% and 0.3 wt.% of CNTs and GNPs individually, and with 1:1 CNT:GNP hybrid fillers at equivalent total loadings. Scanning electron microscopy of fracture surfaces confirmed that the CNTGNP hybrids dispersed uniformly, forming an interconnected nanostructured network. Notably, the 0.3 wt.% CNTGNP hybrid system exhibited minimal agglomeration and voids, preventing crack initiation and propagation. Mechanical testing revealed that the 0.3 wt.% CNTGNP/Ep composite achieved the highest tensile strength of approximately 84.5 MPa while maintaining a well-balanced stiffness profile (elastic modulus ≈ 4.62 GPa). The hybrid composite outperformed both due to its synergistic reinforcement mechanisms and superior dispersion despite containing only half the concentration of each nanofiller relative to the individual 0.3 wt.% CNT or GNP systems. In addition to mechanical performance, electrical conductivity analysis revealed that the 0.3 wt.% CNTGNP hybrid composite exhibited the highest conductivity of 0.025 S/m, surpassing the 0.3 wt.% CNT-only system (0.022 S/m), owing to forming a well-connected three-dimensional conductive network. The 0.1 wt.% CNT-only composite also showed enhanced conductivity (0.0004 S/m) due to better dispersion at lower filler loadings. These results highlight the dominant role of CNTs in charge transport and the effectiveness of hybrid networks in minimizing agglomeration. These findings demonstrate that CNTGNP hybrid fillers can deliver optimally balanced mechanical enhancement in epoxy matrices, offering a promising route for designing lightweight, high-performance structural composites. Further optimization of nanofiller dispersion and interfacial chemistry may yield even greater improvements. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

32 pages, 2479 KiB  
Review
Fungal Biofilm: An Overview of the Latest Nano-Strategies
by Andrea Giammarino, Laura Verdolini, Giovanna Simonetti and Letizia Angiolella
Antibiotics 2025, 14(7), 718; https://doi.org/10.3390/antibiotics14070718 - 17 Jul 2025
Viewed by 589
Abstract
Background/Objectives: There is an increasing incidence of fungal infections in conjunction with the rise in resistance to medical treatment. Antimicrobial resistance is frequently associated with virulence factors such as adherence and the capacity of biofilm formation, which facilitates the evasion of the [...] Read more.
Background/Objectives: There is an increasing incidence of fungal infections in conjunction with the rise in resistance to medical treatment. Antimicrobial resistance is frequently associated with virulence factors such as adherence and the capacity of biofilm formation, which facilitates the evasion of the host immune response and resistance to drug action. Novel therapeutic strategies have been developed to overcome antimicrobial resistance, including the use of different type of nanomaterials: metallic (Au, Ag, Fe3O4 and ZnO), organic (e.g., chitosan, liposomes and lactic acid) or carbon-based (e.g., quantum dots, nanotubes and graphene) materials. The objective of this study was to evaluate the action of nanoparticles of different synthesis and with different coatings on fungi of medical interest. Methods: Literature research was conducted using PubMed and Google Scholar databases, and the following terms were employed in articles published up to June 2025: ‘nanoparticles’ in combination with ‘fungal biofilm’, ‘Candida biofilm’, ‘Aspergillus biofilm’, ‘Cryptococcus biofilm’, ‘Fusarium biofilm’ and ‘dermatophytes biofilm’. Results: The utilization of nanoparticles was found to exert a substantial impact on the reduction in fungal biofilm, despite the presence of substantial variability in minimum inhibitory concentration (MIC) values attributable to variations in nanoparticle type and the presence of capping agents. It was observed that the MIC values were lower for metallic nanoparticles, particularly silver, and for those synthesized with polylactic acid compared to the others. Conclusions: Despite the limited availability of data concerning the stability and biocompatibility of nanoparticles employed in the treatment of fungal biofilms, it can be posited that these results constitute a significant initial step. Full article
Show Figures

Figure 1

41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 444
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

27 pages, 690 KiB  
Review
Phthalocyanine-Modified Electrodes Used in the Electroanalysis of Monoamine Neurotransmitters
by Anton Alexandru Ciucu, Mihaela Buleandră, Dana Elena Popa and Dragoș Cristian Ștefănescu
Chemosensors 2025, 13(7), 243; https://doi.org/10.3390/chemosensors13070243 - 7 Jul 2025
Viewed by 543
Abstract
Metallo-phthalocyanines (MPcs) are versatile materials with applications in electroanalysis because of their superior catalytic properties. This review presents the electrochemical methods based on MPc-modified electrodes and reports some of their remarkable properties and applications in the electroanalysis of monoamine neurotransmitters and biomolecules that [...] Read more.
Metallo-phthalocyanines (MPcs) are versatile materials with applications in electroanalysis because of their superior catalytic properties. This review presents the electrochemical methods based on MPc-modified electrodes and reports some of their remarkable properties and applications in the electroanalysis of monoamine neurotransmitters and biomolecules that play a crucial role in vital functions of the human body. The development of electrocatalytic chemically modified electrodes is based on their ability to provide a selective and rapid response toward a specific analyte in complex media without the need for sample pretreatment. The explanation of several phenomena occurring at the MPc-modified electrode surface (e.g., MPc-mediated electrocatalysis), the advantages of promoting different electron transfer reactions, and the detection mechanism are also presented. The types of MPcs and different materials, such as carbon nanotubes and graphene, used as substrates for modified working electrodes are discussed. Modifying the properties of MPcs through various interactions, or combining MPcs with carbonaceous materials, creates a synergistic effect. Such hybrid materials present both extraordinary catalytic and increased conductivity properties. We conducted a compilation study based on recent works to demonstrate the efficacy of the developed sensors and methods in sensing monoamine neurotransmitters. We emphasize the analyte type, optimized experimental parameters, working range, limits of detection and quantification, and application to real samples. MPc–carbon hybrids have led to the development of sensors with superior sensitivity and improved selectivity, enabling the detection of analytes at lower concentrations. We highlight the main advantages and drawbacks of the discussed methods. This review summarizes recent progress in the development and application of metallo-phthalocyanine-modified electrodes in the electroanalysis of monoamine neurotransmitters. Some possible future trends are highlighted. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Figure 1

33 pages, 13987 KiB  
Review
Insights into Carbon-Based Aerogels Toward High-Performance Lithium–Sulfur Batteries: A Review of Strategies for Sulfur Incorporation Within Carbon Aerogel Frameworks
by Yue Gao, Dun Liu, Yi Zhao, Dongdi Yang, Lugang Zhang, Fei Sun and Xiaoxiao Wang
Gels 2025, 11(7), 516; https://doi.org/10.3390/gels11070516 - 2 Jul 2025
Viewed by 616
Abstract
Lithium–sulfur batteries (LSBs), possessing excellent theoretical capacities, advanced theoretical energy densities, low cost, and nontoxicity, are one of the most promising energy storage battery systems. However, some issues, including poor conductivity of elemental S, the “shuttle effect” of high-order lithium polysulfides (LiPSs), and [...] Read more.
Lithium–sulfur batteries (LSBs), possessing excellent theoretical capacities, advanced theoretical energy densities, low cost, and nontoxicity, are one of the most promising energy storage battery systems. However, some issues, including poor conductivity of elemental S, the “shuttle effect” of high-order lithium polysulfides (LiPSs), and sluggish reaction kinetics, hinder the commercialization of LSBs. To solve these problems, various carbon-based aerogels with developed surface morphology, tunable pores, and electrical conductivity have been examined for immobilizing sulfur, mitigating its volume variation and enhancing its electrochemical kinetics. In this paper, an extensive generalization about the effective preparation methods of carbon-based aerogels comprising the combined method of carbonization with the gelation of precursors and drying processes (ambient pressure drying, freeze-drying, and supercritical drying) is proposed. And we summarize various carbon carbon-based aerogels, mainly including graphene aerogels (Gas) and carbon nanofiber (CNF) and carbon nanotube (CNT) aerogels as cathodes, separators, and interlayers in LSBs. In addition, the mechanism of action of carbon-based aerogels in LSBs is described. Finally, we conclude with an outlook section to provide some insights into the application of carbon-based aerogels in electrochemical energy storage devices. Based on the discussion and proposed recommendations, we provide more approaches on nanomaterials in high-performance liquid or state LSBs with high electrochemical performance in the future. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

28 pages, 3287 KiB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Viewed by 722
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

17 pages, 3907 KiB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Viewed by 420
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

Back to TopTop