Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = carbon emission efficiency of the construction industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 269
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 425 KiB  
Article
Can Technological Innovation in Renewable Energy Promote Carbon Emission Efficiency in China? A U-Shaped Relationship
by Ruichen Yin, Haiying Pan and Yuqing Lu
Sustainability 2025, 17(15), 6940; https://doi.org/10.3390/su17156940 - 30 Jul 2025
Viewed by 195
Abstract
In the context of growing global climate change awareness and intensifying environmental degradation, technological innovation in renewable energy has become a key realization method for sustainable development. This paper uses data samples from 30 provinces, municipalities, and autonomous regions in China (excluding Tibet, [...] Read more.
In the context of growing global climate change awareness and intensifying environmental degradation, technological innovation in renewable energy has become a key realization method for sustainable development. This paper uses data samples from 30 provinces, municipalities, and autonomous regions in China (excluding Tibet, Hong Kong, Macao, and Taiwan due to data availability) from 2007–2022, constructs an SFA model to measure carbon emission efficiency, and innovatively investigates the U-shaped impact of technological innovation in renewable energy on carbon emission efficiency along with the moderating effects of informatization level and fiscal decentralization. The empirical findings reveal the following: (1) Technological innovation in renewable energy demonstrates a U-shaped impact on carbon emission efficiency, with a negative impact before inflection point 2.596605 and a positive impact after the inflection point. (2) The informatization level plays a positive regulating role in the impact of technological innovation in renewable energy toward carbon emission efficiency, while fiscal decentralization exerts a negative regulating effect. (3) The impact of technological innovation in renewable energy concerning carbon emission efficiency varies depending on regional differences, industrial structure levels, and technological innovation levels in renewable energy. The conclusions of this paper are helpful for promoting the development of technological innovation in renewable energy, improving carbon emission efficiency, and advancing sustainable socio-economic development. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 221
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

17 pages, 319 KiB  
Article
Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines
by Liukun Zhang and Jiani Zhao
Sustainability 2025, 17(15), 6826; https://doi.org/10.3390/su17156826 - 27 Jul 2025
Viewed by 282
Abstract
As an energy-intensive industry, the aviation sector’s carbon emissions have drawn significant attention. Against the backdrop of the “dual carbon” goals, how to enhance the carbon emission efficiency of airlines has become an urgent issue to be addressed for both industry development and [...] Read more.
As an energy-intensive industry, the aviation sector’s carbon emissions have drawn significant attention. Against the backdrop of the “dual carbon” goals, how to enhance the carbon emission efficiency of airlines has become an urgent issue to be addressed for both industry development and low-carbon targets. This paper constructs an evaluation system for the carbon emission efficiency of airlines and uses the SBM-DDF model under the global production possibility set, combined with the bootstrap-DEA method, to calculate the efficiency values. On this basis, the fuzzy-set qualitative comparative analysis method is employed to analyze the synergistic effects of multiple influencing factors in three dimensions: economic benefits, transportation benefits, and energy consumption on improving carbon emission efficiency. The research findings reveal that, first, a single influencing factor does not constitute a necessary condition for achieving high carbon emission efficiency; second, there are four combinations that enhance carbon emission efficiency: “load volume-driven type”, “scale revenue-driven type”, “high ticket price + technology-driven type”, and “passenger and cargo synergy mixed type”. These discoveries are of great significance for promoting the construction of a carbon emission efficiency system by Chinese airlines and achieving high-quality development in the aviation industry. Full article
Show Figures

Figure 1

32 pages, 1432 KiB  
Article
From Carbon to Capability: How Corporate Green and Low-Carbon Transitions Foster New Quality Productive Forces in China
by Lili Teng, Yukun Luo and Shuwen Wei
Sustainability 2025, 17(15), 6657; https://doi.org/10.3390/su17156657 - 22 Jul 2025
Viewed by 423
Abstract
China’s national strategies emphasize both achieving carbon peaking and neutrality (“dual carbon” objectives) and fostering high-quality economic development. This dual focus highlights the critical importance of the Green and Low-Carbon Transition (GLCT) of the economy and the development of New Quality Productive Forces [...] Read more.
China’s national strategies emphasize both achieving carbon peaking and neutrality (“dual carbon” objectives) and fostering high-quality economic development. This dual focus highlights the critical importance of the Green and Low-Carbon Transition (GLCT) of the economy and the development of New Quality Productive Forces (NQPF). Firms are central actors in this transformation, prompting the core research question: How does corporate engagement in GLCT contribute to the formation of NQPF? We investigate this relationship using panel data comprising 33,768 firm-year observations for A-share listed companies across diverse industries in China from 2012 to 2022. Corporate GLCT is measured via textual analysis of annual reports, while an NQPF index, incorporating both tangible and intangible dimensions, is constructed using the entropy method. Our empirical analysis relies primarily on fixed-effects regressions, supplemented by various robustness checks and alternative econometric specifications. The results demonstrate a significantly positive relationship: corporate GLCT robustly promotes the development of NQPF, with dynamic lag structures suggesting delayed productivity realization. Mechanism analysis reveals that this effect operates through three primary channels: improved access to financing, stimulated collaborative innovation and enhanced resource-allocation efficiency. Heterogeneity analysis indicates that the positive impact of GLCT on NQPF is more pronounced for state-owned enterprises (SOEs), firms operating in high-emission sectors, those in energy-efficient or environmentally friendly industries, technology-intensive sectors, non-heavily polluting industries and companies situated in China’s eastern regions. Overall, our findings suggest that corporate GLCT enhances NQPF by improving resource-utilization efficiency and fostering innovation, with these effects amplified by specific regional advantages and firm characteristics. This study offers implications for corporate strategy, highlighting how aligning GLCT initiatives with core business objectives can drive NQPF, and provides evidence relevant for policymakers aiming to optimize environmental governance and foster sustainable economic pathways. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

27 pages, 4254 KiB  
Review
Dynamic Skin: A Systematic Review of Energy-Saving Design for Building Facades
by Jian Wang, Shengcai Li and Peng Ye
Buildings 2025, 15(14), 2572; https://doi.org/10.3390/buildings15142572 - 21 Jul 2025
Viewed by 418
Abstract
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt [...] Read more.
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt its functions, characteristics, and methods based on constantly changing environmental conditions and performance requirements. It has great potential in adapting to the environment, reducing energy consumption, adjusting shading and natural ventilation, and improving human thermal and visual comfort. To comprehensively understand the key technologies of dynamic skin energy-saving design, previous research results were comprehensively compiled from relevant databases. The research results indicate that various types of dynamic skins, intelligent materials, multi-layer facades, dynamic shading, and biomimetic facades are commonly used core technologies for dynamic facades. Parametric modeling, computer simulation, and multi-objective algorithms are commonly used to optimize the performance of dynamic skin. In addition, integrated technology design, interaction design, and lifecycle design should be effective methods for improving dynamic skin energy efficiency, resident satisfaction, and economic benefits. Despite current challenges, dynamic skin energy-saving technology remains one of the most effective solutions for future sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 7197 KiB  
Article
Simulation of Water–Energy–Food–Carbon Nexus in the Agricultural Production Process in Liaocheng Based on the System Dynamics (SD)
by Wenshuang Yuan, Hao Wang, Yuyu Liu, Song Han, Xin Cong and Zhenghe Xu
Sustainability 2025, 17(14), 6607; https://doi.org/10.3390/su17146607 - 19 Jul 2025
Viewed by 384
Abstract
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes [...] Read more.
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes including crop cultivation, animal husbandry, and agricultural input. Additionally, a simulation model of the water–energy–food–carbon nexus (WEFC-Nexus) for Liaocheng’s agricultural production process was developed. Using Vensim PLE 10.0.0 software, this study constructed a WEFC-Nexus model encompassing four major subsystems: economic development, agricultural production, agricultural inputs, and water use. The model explored four policy scenarios: business-as-usual scenario (S1), ideal agricultural development (S2), strengthening agricultural investment (S3), and reducing agricultural input costs (S4). It also forecast the trends in carbon emissions and primary sector GDP under these different scenarios from 2023 to 2030. The conclusions were as follows: (1) Total agricultural carbon emissions exhibited a three-phase trajectory, namely, “rapid growth (2010–2014)–sharp decline (2015–2020)–gradual rebound (2021–2022)”, with sectoral contributions ranked as livestock farming (50%) > agricultural inputs (27%) > crop cultivation (23%). (2) The carbon emissions per unit of primary sector GDP (CEAG) for S2, S3, and S4 decreased by 8.86%, 5.79%, and 7.72%, respectively, compared to S1. The relationship between the carbon emissions under the four scenarios is S3 > S1 > S2 > S4. The relationship between the four scenarios in the primary sector GDP is S3 > S2 > S4 > S1. S2 can both control carbon emissions and achieve growth in primary industry output. Policy recommendations emphasize reducing chemical fertilizer use, optimizing livestock management, enhancing agricultural technology efficiency, and adjusting agricultural structures to balance economic development with environmental sustainability. Full article
Show Figures

Figure 1

17 pages, 678 KiB  
Article
The Influence Mechanisms of Carbon Emissions for Prefabricated Buildings in the Context of China’s Urban Renewal
by Shuyan Zhao, Xinru Qu, Xiaojing Zhao and Yongwei Zhang
Buildings 2025, 15(14), 2508; https://doi.org/10.3390/buildings15142508 - 17 Jul 2025
Viewed by 339
Abstract
Prefabricated buildings, known for their energy efficiency, environmental benefits, and industrial advantages, play a crucial role in urban renewal. Previous studies on the carbon emissions of prefabricated buildings mainly concentrate on the assessment and auditing of carbon emissions at the materialization and construction [...] Read more.
Prefabricated buildings, known for their energy efficiency, environmental benefits, and industrial advantages, play a crucial role in urban renewal. Previous studies on the carbon emissions of prefabricated buildings mainly concentrate on the assessment and auditing of carbon emissions at the materialization and construction phase. Few of them have analyzed the carbon emissions at the operational phase or the influence mechanisms of prefabricated buildings on carbon emissions in urban renewal. Thus, this paper explored the factors and mechanisms that influence carbon emissions in prefabricated buildings in China’s urban renewal. Firstly, the factors that influence the carbon emissions of prefabricated buildings in China’s urban renewal were identified through meta-analysis. Secondly, the theoretical model was developed to illustrate the influence paths of prefabricated buildings on the carbon emissions of urban renewal. Finally, the structural equation model (SEM) was used to test the hypotheses in the theoretical model using data collected from questionnaires. The results show that the carbon emission reduction potential of prefabricated buildings is influenced by four aspects, namely, socioeconomic factors, policy regulations, building operation, and materialization. Policy regulations have the greatest impact on the carbon emissions of prefabricated buildings. They not only directly affect the carbon emissions of urban renewal but also influence carbon emissions indirectly through the social economy aspect. The direct impact of social economy on the carbon emissions of prefabricated buildings is insignificant, while it can indirectly affect the carbon emission reduction in prefabricated buildings by influencing building operations and the materialization stage. The findings could help provide strategies for prefabrication and enhance the reduction potential of urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 6730 KiB  
Article
Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm
by Dongjie Guan, Yitong Shi, Lilei Zhou, Xusen Zhu, Demei Zhao, Guochuan Peng and Xiujuan He
Remote Sens. 2025, 17(14), 2383; https://doi.org/10.3390/rs17142383 - 10 Jul 2025
Viewed by 365
Abstract
Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. [...] Read more.
Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency. Full article
Show Figures

Figure 1

17 pages, 3867 KiB  
Article
A Case-Study-Based Comparative Analysis of Using Prefabricated Structures in Industrial Buildings
by Abdelhadi Salih, Cynthia Changxin Wang, Rui Tian and Mohammad Mojtahedi
Buildings 2025, 15(14), 2416; https://doi.org/10.3390/buildings15142416 - 10 Jul 2025
Viewed by 398
Abstract
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. [...] Read more.
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. The prefabrication system has been used for years in industrial construction, resulting in better performance in regard to structure stability, the control of wastage, and the optimisation of construction time and cost. In addition, prefabrication has had a positive contribution on resource utilisation in the construction industry. There are various types of prefabricated wall systems. However, the majority of comparative studies have focused on comparing each prefabrication wall system against the conventional construction system, while limited research has been conducted to compare different prefabrication structures. This study examined four prominent prefabricated wall systems, i.e., precast walls, tilt-up walls, prefabricated steel-frame walls, and on-site-cut steel-frame walls, to determine which one is more suitable for the construction of industrial buildings to minimise cost, time delay, and labourer utilisation on construction sites, as well as to enhance structure durability, construction efficiency, and sustainability. One primary case project and five additional projects were included in this study. For the primary case project, data were collected and analysed; for example, a subcontractor cost comparison for supply and installation was conducted, and shop drawings, construction procedures, timelines, and site photos were collected. For the additional five projects, the overall cost data were compared. The main research finding of this study is that factory-made precast walls and tilt-up wall panels require similar construction time. However, on average, tilt-up prefabrication construction can reduce the cost by around 23.55%. It was also found that prefabricated frame walls provide cost and time savings of around 39% and 10.5%, respectively. These findings can provide architects, developers, builders, suppliers, regulators, and other stakeholders with a comprehensive insight into selecting a method of wall construction that can achieve greater efficiency, cost savings, and environmental sustainability in the construction of industrial and commercial buildings. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

25 pages, 11157 KiB  
Review
Reuse of Retired Wind Turbine Blades in Civil Engineering
by Xuemei Yu, Changbao Zhang, Jing Li, Xue Bai, Lilin Yang, Jihao Han and Guoxiang Zhou
Buildings 2025, 15(14), 2414; https://doi.org/10.3390/buildings15142414 - 9 Jul 2025
Viewed by 390
Abstract
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant [...] Read more.
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant negative impact on resource conservation and the environment. Conventional disposal methods, such as landfilling and incineration, raise environmental concerns due to the non-recyclable composite material used in blade manufacturing. This study explores the upcycling potential of RWTBs as innovative construction materials, addressing both waste reduction and resource efficiency in the construction industry. By exploring recent advancements in recycling techniques, this research highlights applications such as structural components, lightweight aggregates for concrete, and reinforcement elements in asphalt pavements. The key findings demonstrate that repurposing blade-derived materials not only reduces landfill dependency but also lowers carbon emissions associated with conventional construction practices. However, challenges including material compatibility, economic feasibility, and standardization require further investigation. This study concludes that upcycling wind turbine blades into construction materials offers a promising pathway toward circular economy goals. To improve technical methods and policy support for large-scale implementation, it recommends collaboration among different fields, such as those related to cementitious and asphalt materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 1758 KiB  
Article
Time-Varying Dynamics and Socioeconomic Determinants of Energy Consumption and Truck Emissions in Cold Regions
by Ge Zhou, Wenhui Zhang, Xiaotian Qiao, Wenjie Lv and Ziwen Song
Energies 2025, 18(13), 3527; https://doi.org/10.3390/en18133527 - 3 Jul 2025
Viewed by 294
Abstract
Facing the increasingly severe challenges of global climate change, China has established clear “dual carbon” goals, with the core objective of achieving carbon peak by 2030 or earlier. However, carbon emissions from the road freight industry have remained higher for many years; understanding [...] Read more.
Facing the increasingly severe challenges of global climate change, China has established clear “dual carbon” goals, with the core objective of achieving carbon peak by 2030 or earlier. However, carbon emissions from the road freight industry have remained higher for many years; understanding and estimating the characteristics of truck carbon emissions are critical for developing a low-carbon transportation system. This study takes Heilongjiang Province, a typically cold region, as a case study. By employing the growth curve method, we predicted the time for achieving carbon peak and constructed an improved STIRPAT model to identify key drivers and pathways for emission reduction in the road freight system. The research results show that only by committing to using the economy to reduce carbon emissions and improve energy intensity can the overall carbon emissions of Heilongjiang Province’s cargo transportation system achieve the “dual carbon” goals as soon as possible. If we develop according to the optimistic scenario proposed in this article, by 2030, the total quantity of trucks will reach about 933,720, and the carbon emissions per vehicle will reach about 178.14 t. If we actively increase the proportion of new energy trucks in the overall quantity of trucks, the peak time is expected to be achieved around 2030. The improvement of technological efficiency (e.g., lowering energy intensity) and the advancement of economic development have been identified as effective pathways for carbon emission reduction. Empirical studies indicate that these measures can achieve emission reduction impacts that are approximately 60 times and 10 times greater, respectively, in terms of efficiency, compared to baseline scenarios. Furthermore, energy intensity improvements and structural shifts toward low-carbon vehicles are critical to expediting peak attainment. This study provides a methodological framework for cold-region emission projections and offers actionable insights for policymakers to design tailored emission reduction pathways in the road freight transportation industry. Full article
Show Figures

Figure 1

20 pages, 6082 KiB  
Article
A Two-Stage Site Selection Model for Wood-Processing Plants in Heilongjiang Province Based on GIS and NSGA-II Integration
by Chenglin Ma, Xinran Wang, Yilong Wang, Yuxin Liu and Wenchao Kang
Forests 2025, 16(7), 1086; https://doi.org/10.3390/f16071086 - 30 Jun 2025
Viewed by 358
Abstract
Heilongjiang Province, as China’s principal gateway for Russian timber imports, faces structural inefficiencies in the localization of wood-processing enterprises—characterized by ecological sensitivity, resource–industry mismatches, and uneven spatial distribution. To address these challenges, this study proposes a two-stage site selection framework that integrates Geographic [...] Read more.
Heilongjiang Province, as China’s principal gateway for Russian timber imports, faces structural inefficiencies in the localization of wood-processing enterprises—characterized by ecological sensitivity, resource–industry mismatches, and uneven spatial distribution. To address these challenges, this study proposes a two-stage site selection framework that integrates Geographic Information Systems (GIS) with an enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II). The model aims to reconcile ecological protection with industrial efficiency by identifying optimal facility locations that minimize environmental impact, reduce construction and logistics costs, and enhance service coverage. Using spatially resolved multi-source datasets—including forest resource distribution, transportation networks, ecological redlines, and socioeconomic indicators—the GIS-based suitability analysis (Stage I) identified 16 candidate zones. Subsequently, a multi-objective optimization model (Stage II) was applied to minimize carbon intensity and cost while maximizing service accessibility. The improved NSGA-II algorithm achieved convergence within 700 iterations, generating 124 Pareto-optimal solutions and enabling a 23.7% reduction in transport-related CO2 emissions. Beyond carbon mitigation, the model spatializes policy constraints and economic trade-offs into actionable infrastructure plans, contributing to regional sustainability goals and transboundary industrial coordination with Russia. It further demonstrates methodological generalizability for siting logistics-intensive and policy-sensitive facilities in other forestry-based economies. While the model does not yet account for temporal dynamics or agent behaviors, it provides a robust foundation for informed planning under China’s dual-carbon strategy and offers replicable insights for the global forest products supply chain. Full article
Show Figures

Figure 1

23 pages, 2502 KiB  
Review
Bridging Sustainability and Performance: Conceptualizing Net-Zero Integration in Construction Supply Chain Evaluations
by Isuru Hettiarachchi, James Olabode Bamidele Rotimi, Wajiha Mohsin Shahzad and Ravindu Kahandawa
Sustainability 2025, 17(13), 5814; https://doi.org/10.3390/su17135814 - 24 Jun 2025
Viewed by 555
Abstract
The construction industry is a major contributor to global carbon emissions, highlighting the need to align material supply chains with net-zero targets. Evaluating supply chain performance is essential for reducing emissions, enhancing resource efficiency, and supporting sustainable decision-making. However, there is a lack [...] Read more.
The construction industry is a major contributor to global carbon emissions, highlighting the need to align material supply chains with net-zero targets. Evaluating supply chain performance is essential for reducing emissions, enhancing resource efficiency, and supporting sustainable decision-making. However, there is a lack of comprehensive frameworks that integrate net-zero objectives into construction material supply chain evaluation. This study aims to develop a conceptual framework that embeds net-zero principles into supply chain performance evaluation within the construction sector. A systematic literature review was conducted using PRISMA guidelines, covering 54 peer-reviewed articles published between 2016 and 2025. The review identifies key supply chain decarbonization performance indicators, tools, challenges, enablers, and improvement opportunities. The findings reveal the growing use of life cycle thinking, carbon accounting, and digitalization, shaped by policy, data access, technological readiness, and stakeholder coordination. The resulting framework integrates these factors to guide a structured, net-zero-aligned supply chain. This study contributes a novel and practical framework that addresses a critical gap by bridging digital tools, decarbonization metrics, and policy or organizational considerations. It offers theoretical insights and actionable guidance for researchers, practitioners, and policymakers pursuing climate-aligned construction supply chains. Full article
Show Figures

Figure 1

Back to TopTop