Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines
Abstract
1. Introduction
2. Research Review
2.1. Measurement Methods of Carbon Emission Efficiency
2.2. Research on Carbon Emission Efficiency and Its Influencing Factors
2.3. Theoretical Framework
2.3.1. Economic Benefit
2.3.2. Transport Benefit
2.3.3. Energy Consumption
3. Methods and Materials
3.1. Research Method
3.2. Data Source
3.3. Variables
3.3.1. Outcome Variable
3.3.2. Condition Variable
3.4. Research Steps
4. Research Results
4.1. Data Calibration and Descriptive Analysis
4.2. Necessity Analysis
4.3. Configurational Analysis
4.3.1. Load Factor Dominant (H1)
4.3.2. Scale Revenue Driven (H2)
4.3.3. High Fare + Technology Driven (H3)
4.3.4. Passenger–Cargo Synergy Mixed (H4)
4.4. Robustness Test
5. Conclusions
5.1. Discussion of Results
5.2. Theoretical Significance
5.3. Practical Significance
5.4. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheelhaase, J.; Maertens, S.; Grimme, W. Options for improving the EU Emissions Trading Scheme (EU ETS) for aviation. Transp. Res. Procedia 2021, 59, 193–202. [Google Scholar] [CrossRef]
- Mai, D.T.T. Revising the EU ETS and CORSIA in times of the COVID-19 pandemic: Challenges for reducing global aviation emissions. Clim. Policy 2021, 21, 1357–1367. [Google Scholar] [CrossRef]
- Schinas, O.; Bergmann, N. Emissions trading in the aviation and maritime sector: Findings from a revised taxonomy. Clean. Logist. Supply Chain 2021, 1, 100003. [Google Scholar] [CrossRef]
- Civil Aviation Administration of China. Statistical Bulletin on the Development of the Civil Aviation Industry in 2023; CAAC: Beijing, China, 2024. Available online: http://www.caac.gov.cn/ (accessed on 20 July 2025).
- Air China Limited. 2021 Environmental, Social and Governance Report; Air China Limited: Beijing, China, 2022; Available online: http://www.airchina.com.cn/ (accessed on 4 July 2025).
- Spring Airlines Co., Ltd. 2021 Corporate Social Responsibility Report; Spring Airlines Co., Ltd.: Shanghai, China, 2022; Available online: https://www.ch.com/ (accessed on 4 July 2025).
- Domagała, J.; Kadłubek, M. Economic, energy and environmental efficiency of road freight transportation sector in the EU. Energies 2022, 16, 461. [Google Scholar] [CrossRef]
- Ma, Q.; Jia, P.; Kuang, H. Spatial imbalance and factors influencing carbon emission efficiency in China’s transport industry. Front. Earth Sci. 2022, 10, 986467. [Google Scholar] [CrossRef]
- Cui, Q.; Hu, Y.; Yu, L. Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines. Energy 2022, 245, 123272. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Zhu, Y.; Gan, T. Evaluation of carbon emission efficiency in China’s airlines. J. Clean. Prod. 2020, 243, 118500. [Google Scholar] [CrossRef]
- Xu, L.; Yin, H.; Sun, M.; Wang, M.; Shen, K.; Ji, J. Carbon Abatement Technology Transformation and Correlated Risks in the Airline Industry. Sustainability 2025, 17, 1399. [Google Scholar] [CrossRef]
- Yu, J.; Lu, M.; Wang, K.; Ge, J.; Tao, Z.; Xu, Z.; Chen, L. Decomposing Carbon Intensity Trends in China’s Civil Aviation: A Comprehensive Analysis from 1998 to 2019. Aerospace 2024, 11, 480. [Google Scholar] [CrossRef]
- Tone, K.A. Slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. The Impact of the “Belt and Road” Initiative on Green Total Factor Productivity in Key Chinese Provinces Along the Route. China Popul. Resour. Environ. 2018, 28, 87–97. (In Chinese) [Google Scholar]
- Song, M.L.; Zhang, L.L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Lee, J.; Mo, J. Analysis of technological innovation and environmental performance improvement in aviation sector. Int. J. Environ. Res. Public Health 2011, 8, 3777–3795. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y.; Li, X. Carbon Emission Intensity and Its Abatement Choices: Evidence from China Eastern Airlines. Sustainability 2023, 15, 16383. [Google Scholar] [CrossRef]
- Ma, Q.; Song, H.; Zhu, W. Low-carbon airline fleet assignment: A compromise approach. J. Air Transp. Manag. 2018, 68, 86–102. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, A. An efficiency study of airlines and air cargo/passenger divisions: A DEA approach. World Rev. Intermodal Transp. Res. 2010, 3, 137–149. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, S.K. Fuel consumption optimization in air transport: A review, classification, critique, simple meta-analysis, and future research implications. Eur. Transp. Res. Rev. 2015, 7, 12. [Google Scholar] [CrossRef]
- International Civil Aviation Organization (ICAO). Environmental Report 2022: Innovation for a Green Transition; ICAO: Montréal, QC, Canada, 2023; Available online: https://www.icao.int/environmental-protection/Pages/envrep2022.aspx (accessed on 4 July 2025).
- International Air Transport Association (IATA). Annual Review 2024. IATA. Available online: https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2024.pdf (accessed on 4 July 2025).
- Brueckner, J.K.; Kahn, M.E.; Nickelsburg, J. How do airlines cut fuel usage, reducing their carbon emissions? Econ. Transp. 2024, 38, 100358. [Google Scholar] [CrossRef]
- Environmental and Energy Study Institute (EESI). The Growth in Greenhouse Gas Emissions from Commercial Aviation; EESI: Washington, DC, USA, 2021; Available online: https://www.eesi.org/files/FactSheet_Climate_Impacts_Aviation_2019rev2021.pdf (accessed on 4 July 2025).
- Yue, S.; Liao, W.; Ji, Q.; Wang, C. The effect of financial performance on aviation carbon emissions. J. Air Transp. Manag. 2025, 126, 102800. [Google Scholar] [CrossRef]
- International Council on Clean Transportation (ICCT). CO2 Emissions from Commercial Aviation, 2018. ICCT. Available online: https://theicct.org/wp-content/uploads/2021/06/ICCT_CO2-commercl-aviation-2018_20190918.pdf (accessed on 4 July 2025).
- Ishka Global. One Aircraft, Many Intensities: Comparing CO2/ASK of New-Tech Operators; Ishka Global: London, UK, 2022. [Google Scholar]
- ICCT (International Council on Clean Transportation). CO2 Emissions from Commercial Aviation: 2013, 2018, and 2019; ICCT: Washington, DC, USA, 2020; Available online: https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/ (accessed on 4 July 2025).
- ICCT (International Council on Clean Transportation). Fuel Burn of New Commercial Jet Aircraft: 1960 to 2019; ICCT: Washington, DC, USA, 2020; Available online: https://theicct.org/publication/fuel-burn-of-new-commercial-jet-aircraft-1960-to-2019/ (accessed on 4 July 2025).
- International Council on Clean Transportation (ICCT). Aviation Fuel Efficiency: ‘If You Can’t Measure It, You Can’t Improve It.’; ICCT: Washington, DC, USA, 2021. [Google Scholar]
- Wikipedia Contributors. (n.d.). Fuel Economy in Aircraft. Wikipedia. Available online: https://en.wikipedia.org/wiki/Fuel_economy_in_aircraft (accessed on 4 July 2025).
- Fiss, P.C. A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2010, 54, 393–420. [Google Scholar] [CrossRef]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Misangyi, V.F.; Greckhamer, T.; Furnari, S.; Fiss, P.C.; Crilly, D.; Aguilera, R. Embracing causal complexity: The emergence of a neo-configurational perspective. J. Manag. 2017, 43, 255–282. [Google Scholar] [CrossRef]
- Marx, A.; Rihoux, B.; Ragin, C. The origins, development, and application of Qualitative Comparative Analysis: The first 25 years. Eur. Political Sci. Rev. 2014, 6, 115–142. [Google Scholar] [CrossRef]
- Zschoch, M.A. Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques, Benoit Rihoux and Charles Ragin, eds., Thousand Oaks CA: Sage Publications, 2009, pp. xxv, 209. Can. J. Political Sci. Rev. Can. Sci. Polit. 2011, 44, 743–746. [Google Scholar] [CrossRef]
- Gan, T. An Empirical Study on Carbon Emission Efficiency of Air Transport Enterprises. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2019. (In Chinese). [Google Scholar] [CrossRef]
- Yang, Y.; Guo, G. Research on Carbon Emission Efficiency of Aviation Enterprises Based on Super-efficiency SBM Model. J. Environ. Eng. Technol. 2023, 13, 1779–1786. (In Chinese) [Google Scholar]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2009. [Google Scholar]
- Cui, Q.; Li, Y.; Yu, C.L.; Wei, Y.M. Evaluating energy efficiency for airlines: An application of virtual frontier dynamic slacks based measure. Energy 2016, 113, 1231–1240. [Google Scholar] [CrossRef]
- Broekhoff, D.; Gillenwater, M.; Colbert-Sangree, T.; Cage, P. Securing Climate Benefit: A Guide to Using Carbon Offsets; Stockholm Environment Institute & Greenhouse Gas Management Institute: Stockholm, Sweden, 2019; p. 60. [Google Scholar]
- Li, W.; Zhang, J.; Zhu, H.; Hao, T.; Mei, L.; Su, Y. Green Marketing and the Path to Realizing Local Sustainable Development---Joint Dynamic Analysis of Data Envelopment Analysis (DEA) and Fuzzy Set Qualitative Comparative Analysis (fs-QCA) Based on China’s Provincial Panel Data. Sustainability 2024, 16, 4644. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, L.; Song, Y. The impact of environmental regulatory instruments on agribusiness technology innovation—A study of configuration effects based on fs-QCA. PLoS ONE 2024, 19, e0294662. [Google Scholar] [CrossRef]
Category | Indicator | Variable | Measurement Unit |
---|---|---|---|
Inputs | Fleet Size | Active Aircraft | Number of Aircraft |
Labor | Employees | Number of Employees | |
Fuel Consumption | Jet Fuel Consumption | 100 million tons | |
Desirable Outputs | Operating Revenue | Total Operating Revenue | Billion CNY (¥) |
Traffic Turnover | Total Traffic Turnover | 10,000 ton-km | |
Undesirable Output | Carbon Emissions | CO2 Emissions | 100 million tons |
Set | Calibration Anchors | Descriptive Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Full Member | Crossover | Full Non-Member | Mean | Std. Dev. | Min | Max | Unit | |
CE Eff | 1.071 | 0.877 | 0.635 | 0.874 | 0.17 | 0.375 | 1.188 | / |
RFP | 25.634 | 10.642 | 5.411 | 13.44 | 7.807 | 2.799 | 34.579 | ¥10k/Flight |
TOR | 1144.794 | 160.81 | 17.643 | 360.424 | 435.701 | 5 | 1543.22 | ¥100 million |
ALF | 3.426 | 2.119 | 1.204 | 2.02 | 2.126 | 0.392 | 4.485 | 10k ton-km/Flight |
ASC | 201.852 | 164.4 | 126.971 | 166.233 | 134.435 | 76 | 244.736 | Seats/Aircraft |
ESTL | 5.202 | 2.503 | 1.874 | 3.25 | 2.504 | 0.978 | 6.734 | 10k tons/h |
CS | 0.298 | 0.097 | 0.032 | 0.13 | 0.099 | 0.012 | 0.458 | / |
Antecedent Condition | Consistency for High CE Eff | Coverage for High CE Eff |
---|---|---|
RFP | 0.691 | 0.742 |
~RFP | 0.544 | 0.56 |
TOR | 0.592 | 0.7 |
~TOR | 0.613 | 0.579 |
ALF | 0.717 | 0.767 |
~ALF | 0.512 | 0.53 |
ASC | 0.691 | 0.668 |
~ASC | 0.561 | 0.647 |
ESTL | 0.724 | 0.672 |
~ESTL | 0.531 | 0.643 |
CS | 0.578 | 0.663 |
~CS | 0.645 | 0.626 |
Antecedent Condition | High Airline Carbon Emissions | |||
---|---|---|---|---|
H1 | H2 | H3 | H4 | |
RFP | ⭙ | ⮾ | ● | ● |
TOR | ⮾ | ● | ⭙ | ● |
ALF | ● | ⮾ | ⭙ | ⭙ |
ASC | - | ⮾ | ⮾ | ⮾ |
ESTL | ⮾ | ⮾ | ● | ⭙ |
CS | ⭙ | ⭙ | ⭙ | ● |
Consistency | 0.938187 | 0.90889 | 0.948086 | 0.936534 |
Raw Coverage | 0.342541 | 0.245983 | 0.293843 | 0.200422 |
Unique Coverage | 0.083383 | 0.261233 | 0.0229885 | 0.0169258 |
Solution Coverage | 0.434275 | |||
Solution Consistency | 0.909016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhao, J. Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines. Sustainability 2025, 17, 6826. https://doi.org/10.3390/su17156826
Zhang L, Zhao J. Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines. Sustainability. 2025; 17(15):6826. https://doi.org/10.3390/su17156826
Chicago/Turabian StyleZhang, Liukun, and Jiani Zhao. 2025. "Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines" Sustainability 17, no. 15: 6826. https://doi.org/10.3390/su17156826
APA StyleZhang, L., & Zhao, J. (2025). Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines. Sustainability, 17(15), 6826. https://doi.org/10.3390/su17156826