Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = carbon dioxide recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 40159 KB  
Article
Hybrid-Energy-Powered Electrochemical Ocean Alkalinity Enhancement Model: Plant Operation, Cost, and Profitability
by James Salvador Niffenegger, Kaitlin Brunik, Katie Peterson, Andrew Simms, Tristen Myers Stewart, Jessica Cross and Michael Lawson
Clean Technol. 2026, 8(1), 12; https://doi.org/10.3390/cleantechnol8010012 - 9 Jan 2026
Viewed by 191
Abstract
Electrochemical ocean alkalinity enhancement is a form of marine carbon dioxide removal, a rapidly growing industry that is powered by efficient onshore or offshore energy sources. As more and larger deployments are being planned, it is important to consider how variable energy sources [...] Read more.
Electrochemical ocean alkalinity enhancement is a form of marine carbon dioxide removal, a rapidly growing industry that is powered by efficient onshore or offshore energy sources. As more and larger deployments are being planned, it is important to consider how variable energy sources like tidal energy can impact plant performance and costs. An open-source Python-based generalizable model for electrodialysis-based ocean alkalinity enhancement has been developed that can capture key system-level insights of the electrochemistry, ocean chemistry, acid disposal, and co-product creation of these plants under various conditions. The model additionally accounts for hybrid energy system performance profiles and costs via the National Laboratory of the Rockies’ H2Integrate tool. The model was used to analyze an example theoretical plant deployment in North Admiralty Inlet, including how the plant is impacted by the available energy sources in the region and the scale at which plant costs are covered by the co-products it generates, such as recycled concrete aggregates, without requiring carbon credits. The results show that the example plant could be profitable without carbon credits at commercial scales of 100,000 to 1 million tons of carbon dioxide removal per year, so long as it uses low-cost electricity sources and either sells acid or recovers recycled concrete aggregates with about 1 molar acid concentrations, though more research is needed to confirm these results. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy, 2nd Edition)
Show Figures

Figure 1

16 pages, 1904 KB  
Patent Summary
Screw-Type Shredder for Solid Photopolymer Resin in Microgravity Environments
by Iulian Vlăducă and Emilia Georgiana Prisăcariu
Inventions 2026, 11(1), 4; https://doi.org/10.3390/inventions11010004 - 2 Jan 2026
Viewed by 164
Abstract
The invention concerns a screw-driven shredder for solid photopolymer resin, designed for both terrestrial use and prospective deployment in microgravity environments. The system addresses the need for efficient recycling of cured photopolymer waste generated by stereolithography (SLA) 3D printing—a process not yet implemented [...] Read more.
The invention concerns a screw-driven shredder for solid photopolymer resin, designed for both terrestrial use and prospective deployment in microgravity environments. The system addresses the need for efficient recycling of cured photopolymer waste generated by stereolithography (SLA) 3D printing—a process not yet implemented in orbit, but envisioned as part of future closed-loop additive manufacturing systems aboard space stations or lunar habitats. The proposed device is a compact, hermetically sealed mechanical unit composed of ten subassemblies, featuring two counter-rotating screw shafts equipped with carbide milling inserts arranged helically to achieve uniform and controlled fragmentation of solid SLA residues. The shredding process is supported by a pressurized inert fluid circuit, utilizing carbon dioxide (CO2) as a cryogenic working medium to enhance cutting efficiency, reduce heat accumulation, and ensure particle evacuation under microgravity conditions. Studies indicate that CO2-assisted cooling can reduce tool-tip temperature by 10–30 °C, cutting forces by 5–15%, and electrical power consumption by 5–12% while extending tool life by up to 50%. This invention thus provides a key component for a future in situ photopolymer recycling loop in space while also offering a high-efficiency shredding solution for Earth-based photopolymer waste management in additive manufacturing. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase
by Huiling Lin, Jiaxin Li, Junzhao Xu, Baiyila Wu, Zongfu Hu and Huaxin Niu
Microorganisms 2025, 13(12), 2761; https://doi.org/10.3390/microorganisms13122761 - 4 Dec 2025
Viewed by 439
Abstract
Agricultural wastes such as sugar beet byproducts and corncobs face challenges including high fiber content and low microbe–substrate interaction efficiency during their storage and conversion into animal feed resources. This study evaluated the effects of Lentilactobacillus buchneri and cellulase supplementation on fermentation quality, [...] Read more.
Agricultural wastes such as sugar beet byproducts and corncobs face challenges including high fiber content and low microbe–substrate interaction efficiency during their storage and conversion into animal feed resources. This study evaluated the effects of Lentilactobacillus buchneri and cellulase supplementation on fermentation quality, microbial community structure, and the in vitro fermentation rate of mixed silage containing sugar beet tops and corncobs (air-dried). Sugar beet tops and corncobs were mixed at a fresh weight ratio of 9:1 and divided into three treatments—no additives (CK), Lentilactobacillus buchneri (LB, 1 × 106 CFU·g−1 Lentilactobacillus buchneri), Lentilactobacillus buchneri and cellulase (LBC, 1 × 106 CFU·g−1 Lentilactobacillus buchneri and 0.1 g kg−1 cellulase)—and subjected to anaerobic fermentation for 60 days. The results showed that LB and LBC treatments reduced the losses of crude protein (CP) and water-soluble carbohydrate (WSC) (p < 0.05) and decreased the contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF) (p < 0.05). Furthermore, LB and LBC treatments significantly increased the yields of lactic acid (by 31% and 46%, respectively) and acetic acid (by 60% and 78%, respectively) after anaerobic fermentation. Microbial community analysis revealed that Lactiplantibacillus (79~85%) was the dominant genus in both LB and LBC treatments, followed by Levilactobacillus (9~15%); however, principal coordinate analysis (PcoA) showed significant differences in bacterial communities between the LB and LBC treatment. The LBC treatment significantly enriched Levilactobacillus, which exhibited significant positive or negative correlations with multiple fermentation indicators. In addition, in vitro fermentation trial demonstrated that the silage treated with LBC showed higher in vitro dry matter digestibility (IVDMD) and better fermentation characteristics during in vitro fermentation (p < 0.05), with significantly increased total volatile fatty acids (TVFA) and butyric acid (BA) contents, and a decreased acetic acid content (p < 0.05). During in vitro fermentation, the LBC treatment had higher total gas production, as well as lower methane and carbon dioxide emissions (p < 0.05). Under the synergistic effect of Lentilactobacillus buchneri and cellulase, the fermentation quality and microbial community of sugar beet top–corncob silage are improved, thereby enhancing in vitro fermentation characteristics and providing insights for the recycling of agricultural wastes. Full article
(This article belongs to the Special Issue Microorganisms in Silage)
Show Figures

Figure 1

15 pages, 2807 KB  
Article
Syngas Production over Nanosized Multicomponent Co-Fe-Containing Catalysts
by Kuralay T. Tilegen, Sholpan S. Itkulova, Makpal A. Zhumash, Yerzhan A. Boleubayev and Arlan Z. Abilmagzhanov
Nanomaterials 2025, 15(23), 1814; https://doi.org/10.3390/nano15231814 - 30 Nov 2025
Viewed by 382
Abstract
Carbon dioxide reforming of methane is a promising technology to recycle and reduce greenhouse gases (CH4, CO2) into valuable chemicals and fuels. The Co-Fe catalysts modified with a small amount of Pt and supported on alumina were designed to [...] Read more.
Carbon dioxide reforming of methane is a promising technology to recycle and reduce greenhouse gases (CH4, CO2) into valuable chemicals and fuels. The Co-Fe catalysts modified with a small amount of Pt and supported on alumina were designed to be explored in dry reforming (DRM) and combined CO2-steam reforming (bireforming, BRM) of methane to produce syngas. The catalysts were characterized by physico-chemical methods (i.e., BET, XRD, TEM, SEM, and TPR-H2). The synthesized catalysts are the X-ray amorphous nanosized materials with particle sizes of less than 30 nm. The processes were carried out using a feed of CH4/CO2/H2O = 1/1/0–0.5 at varying temperature (400–800 °C) at atmospheric pressure and GHSV = 1000 h−1. The combination of Co and Fe in varying ratios with Pt allowed for high activity and selectivity to be maintained. Extents of methane and CO2 conversion are varied within a range of 79.5–97.5 and 64.2–85.2%, respectively, at 700–800 °C, while the H2/CO ratio in the resulting syngas ranged from 0.98 to 1.30, depending on the catalyst and feed composition. Stability tests conducted for up to 80 h on stream showed no loss of activity of the 10%Co-Fe-Pt/Al2O3 catalysts in BRM. We believe that high activity of the synthesized catalysts occurs due to synergy in the Co-Fe-Pt system. Full article
Show Figures

Figure 1

22 pages, 1854 KB  
Article
Plant and Soil Responses to Concrete and Basalt Amendments Under Elevated CO2: Implications for Plant Growth, Enhanced Weathering and Carbon Sequestration
by Haridian del Pilar León, Sara Martinez, María del Mar Delgado, José L. Gabriel and Sergio Alvarez
Agriculture 2025, 15(23), 2435; https://doi.org/10.3390/agriculture15232435 - 25 Nov 2025
Viewed by 609
Abstract
The rise in greenhouse gases underscores the urgency of carbon dioxide removal (CDR) as a complement to emission reductions. Enhanced rock weathering (ERW) holds promise by coupling geochemical carbon sequestration with agronomic benefits, although integrative experimental evidence remains limited. This study evaluated two [...] Read more.
The rise in greenhouse gases underscores the urgency of carbon dioxide removal (CDR) as a complement to emission reductions. Enhanced rock weathering (ERW) holds promise by coupling geochemical carbon sequestration with agronomic benefits, although integrative experimental evidence remains limited. This study evaluated two amendments (recycled concrete in wheat, C3, and basalt in maize, C4) under ambient and elevated CO2 conditions (~1000 ppm). Conducted in a greenhouse over 21 weeks using loam soils, the experiment evaluated four treatments comprising three different particle-size ranges (<2 mm, 2–6 mm, and 6–15 mm) and a control. Plant growth (height, total and partitioned biomass), grain quality (N and protein), and soil properties (pH, electrical conductivity, and carbonates) were measured. Elevated CO2 enhanced biomass, particularly vegetative biomass in wheat (+42.6%) and root biomass in maize (+55%), without significantly increasing yield. In wheat, particle size was decisive: intermediate fractions (2–6 mm) yielded the best results. In maize, basalt effects were less consistent. Concrete amendments increased soil pH and carbonate content, especially with coarse particles and elevated CO2, whereas basalt-induced responses were slower and more variable. These findings confirm the potential of ERW as a dual climate–agronomic strategy while highlighting the need for long-term, field-scale validation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 1963 KB  
Article
Design, Optimization, and Process Integration of a Methanol-to-Olefin Plant
by Nasser Saad Alosaimi, Abdulaziz Althabet, Irfan Wazeer, Mourad Boumaza and Mohamed K. Hadj-Kali
Processes 2025, 13(12), 3806; https://doi.org/10.3390/pr13123806 - 25 Nov 2025
Viewed by 770
Abstract
The methanol-to-olefins (MTO) process offers a viable alternative to traditional naphtha cracking for producing light olefins, providing flexibility in feedstock sources and the potential for reduced energy consumption. This study presents a detailed plant-wide design of an MTO process, developed and optimized to [...] Read more.
The methanol-to-olefins (MTO) process offers a viable alternative to traditional naphtha cracking for producing light olefins, providing flexibility in feedstock sources and the potential for reduced energy consumption. This study presents a detailed plant-wide design of an MTO process, developed and optimized to increase ethylene and propylene yields while reducing energy consumption. The methodology includes comprehensive reactor modeling of a fast fluidized-bed reactor–regenerator system, accounting for coke formation kinetics, along with rigorous process simulation for the subsequent separation and purification of products. A six-column distillation train has been designed and optimized for the recovery of polymer-grade ethylene and propylene, while dual-stage CO2 absorption units ensure complete removal of carbon dioxide. Pinch analysis is used to identify opportunities for heat integration, resulting in an optimized heat-exchanger network that significantly reduces the need for external heating and cooling utilities. The results show that the optimized MTO design achieves a methanol conversion rate of over 99.9% and produces a propylene-rich product stream with a propylene-to-ethylene ratio of approximately 1.8, while maintaining a high purity level exceeding 99.5%. By implementing heat integration and recycling by-products, including using off-gas methane as furnace fuel and repurposing waste heat for steam generation, the plant reduces utility requirements by more than 85%, significantly improving energy efficiency. An economic evaluation shows a favorable payback period of approximately 5.4 years and an internal rate of return of 15–16%, confirming the viability and industrial potential of the integrated MTO process for sustainable olefin production. Full article
Show Figures

Figure 1

27 pages, 1234 KB  
Article
Evaluating the Environmental Footprint of Steel-Based Bottle Closures: A Life Cycle Assessment Approach
by Irini Spyrolari, Alexandra Alexandropoulou, Eleni Didaskalou and Dimitrios Georgakellos
J. Exp. Theor. Anal. 2025, 3(4), 35; https://doi.org/10.3390/jeta3040035 - 7 Nov 2025
Viewed by 699
Abstract
This research presents a detailed Life Cycle Assessment (LCA) of 26 mm Crown cork metal closures used in glass bottle packaging, with the objective of quantifying and comparing their environmental impacts across all life cycle stages. This study adheres to ISO 14040 and [...] Read more.
This research presents a detailed Life Cycle Assessment (LCA) of 26 mm Crown cork metal closures used in glass bottle packaging, with the objective of quantifying and comparing their environmental impacts across all life cycle stages. This study adheres to ISO 14040 and ISO 14044 standards and utilizes Microsoft Excel for structuring and documenting input–output data across each phase. The LCA encompasses three primary stages: raw material production (covering iron ore extraction and steel manufacturing), manufacturing processes (including metal sheet printing, forming, and packaging of closures), and the transport phase (distribution to bottling facilities). During the Life Cycle Inventory (LCI), steel production emerged as the most environmentally burdensome phase. It accounted for the highest emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and sulphur oxides (SOx), while emissions of heavy metals and volatile organic compounds were found to be negligible. The Life Cycle Impact Assessment (LCIA) was carried out using the Eco-Indicator 99 methodology, which organizes emissions into impact categories related to human health, ecosystem quality, and resource depletion. Final weighting revealed that steel production is the dominant contributor to overall environmental impact, followed by the manufacturing stage. In contrast, transportation exhibited the lowest relative impact. The interpretation phase confirmed these findings and emphasized steel production as the critical stage for environmental optimization. This study highlights the potential for substantial environmental improvements through the adoption of low-emission steel production technologies, particularly Electric Arc Furnace (EAF) processes that incorporate high percentages of recycled steel. Implementing such technologies could reduce CO2 emissions by up to 68%, positioning steel production as a strategic focus for sustainability initiatives within the packaging sector. Full article
Show Figures

Figure 1

21 pages, 1669 KB  
Article
Comparison of the CO2 Balance in Electroslag Reduction of Cadmium with Pyrometallurgical and Hydrometallurgical Recovery Methods
by Ervīns Blumbergs, Michail Maiorov, Artūrs Brēķis, Ernests Platacis, Sergei Ivanov, Jekaterina Nikitina, Artur Bogachov and Vladimir Pankratov
Metals 2025, 15(11), 1197; https://doi.org/10.3390/met15111197 - 27 Oct 2025
Viewed by 553
Abstract
This study presents a carbon footprint assessment of a novel electroslag method for cadmium (Cd) recovery from spent nickel–cadmium (Ni-Cd) batteries in comparison with the carbon footprints of pyrometallurgical and hydrometallurgical cadmium recovery methods. A comparison of CO2 emissions in three types [...] Read more.
This study presents a carbon footprint assessment of a novel electroslag method for cadmium (Cd) recovery from spent nickel–cadmium (Ni-Cd) batteries in comparison with the carbon footprints of pyrometallurgical and hydrometallurgical cadmium recovery methods. A comparison of CO2 emissions in three types of technological processes during the recovery of 1 kg of cadmium is carried out. Energy inputs and CO2 emissions are calculated for the electroslag process and compared to conventional methods, such as pyrometallurgical and hydrometallurgical reduction methods. The electroslag process eliminates cadmium vaporization by using molten KCl–NaCl flux and carbon under electromagnetic stirring. Cadmium reduction occurs under a layer of flux, which prevents the contact of the reduced cadmium with the atmosphere. The electroslag process temperature is limited to 700 °C, which is lower than the boiling point of cadmium (767 °C). The electroslag remelting process uses molten KCl–NaCl flux and carbon as a reductant under electrovortex flow stirring. The pyrometallurgical method for extracting cadmium from nickel–cadmium batteries is based on the reduction of cadmium with carbon at high temperatures. In the pyrometallurgical process, coal (anthracite) is used as the carbonaceous material, which can extract 99.92% of cadmium at 900 °C. Cadmium is separated using a vacuum at temperatures ranging from 800 °C to 950 °C for several hours. Hydrometallurgy is a metal extraction process involving chemical reactions that occur in organic or aqueous solutions at low temperatures. The hydrometallurgical process involves a series of acid or alkaline leaches, followed by separation and purification methods such as absorption, cementation, ion exchange, and solvent extraction to separate and concentrate metals from leach solutions. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 1352 KB  
Article
Opportunities and Challenges in Reducing the Complexity of the Fischer–Tropsch Gas Loop of Smaller-Scale Facilities for the Production of Renewable Hydrocarbons
by Stefan Arlt, Theresa Köffler, Imanuel Wustinger, Christian Aichernig, Reinhard Rauch, Hermann Hofbauer and Gerald Weber
Energies 2025, 18(20), 5479; https://doi.org/10.3390/en18205479 - 17 Oct 2025
Viewed by 965
Abstract
When renewable resources such as biomass, waste, or carbon dioxide together with renewable electrical energy are used, Fischer–Tropsch (FT) synthesis is a promising option for the sustainable production of fuels and petrochemicals conventionally derived from crude oil. As such renewable resources generally do [...] Read more.
When renewable resources such as biomass, waste, or carbon dioxide together with renewable electrical energy are used, Fischer–Tropsch (FT) synthesis is a promising option for the sustainable production of fuels and petrochemicals conventionally derived from crude oil. As such renewable resources generally do not occur in large point sources like fossil fuels, future sustainable FT facilities will likely be substantially smaller in scale than their fossil counterparts, which will have a significant impact on their design. A core topic in the reimagination of such smaller-scale facilities will be the reduction in complexity of the FT gas loop. To this end, three simple gas loop designs for the conversion of syngas from biomass gasification were conceived, simulated in DWSIM, and compared regarding their performance. Concepts only employing an internal recycle were found to be inherently limited in terms of efficiency. To achieve high efficiencies, an external recycle with a tail gas reformer and high tail gas recycling ratios (>3) were required. Thereby, the carbon dioxide content of the syngas had a considerable influence on the required syngas H2/CO ratio, making the separation efficiency of the carbon dioxide removal unit a suitable control parameter in this respect. Full article
Show Figures

Figure 1

17 pages, 2716 KB  
Article
Enhancing Flare Gas Treatment: A Systematic Evaluation of Dual-Stage (Amine, CO2 Supercritical) and Hybrid Approaches Using HYSYS
by Sulafa Abdalmageed Saadaldeen Mohammed, Khaled Elraies, M. Basheer Alameen and Mohammed Awad
ChemEngineering 2025, 9(5), 110; https://doi.org/10.3390/chemengineering9050110 - 11 Oct 2025
Cited by 2 | Viewed by 1245
Abstract
The flaring of associated gas in oil and gas operations contributes significantly to greenhouse gas emissions and represents a loss of valuable hydrocarbon resources. While amine absorption is widely applied for acid gas removal, the use of supercritical carbon dioxide (sc-CO2) [...] Read more.
The flaring of associated gas in oil and gas operations contributes significantly to greenhouse gas emissions and represents a loss of valuable hydrocarbon resources. While amine absorption is widely applied for acid gas removal, the use of supercritical carbon dioxide (sc-CO2) for flare gas treatment remains largely unexplored, despite its proven selectivity for hydrocarbons in other industries such as natural product extraction and polymer processing. Conventional flare gas treatment methods face trade-offs: amine absorption achieves high acid gas removal efficiency but offers limited selectivity for heavier hydrocarbons, whereas sc-CO2 extraction enables efficient recovery of higher hydrocarbons but does not fully remove acid gases. This study addresses these gaps by evaluating three two-stage flare gas treatment configurations—dual-stage amine absorption, dual-stage sc-CO2 absorption, and a hybrid of sc-CO2 followed by amine absorption—using Aspen HYSYS V12.1 simulations, with recycling processes considered in each case. The dual-stage sc-CO2 process achieved nearly complete hydrocarbon recovery (100%) and complete H2S removal, but CO2 remained at elevated concentrations in the treated gas. The dual-stage amine process completely removed CO2 and H2S, though with higher energy demand for solvent regeneration. The hybrid configuration combined the advantages of both approaches, achieving complete H2S removal, 100% hexane recovery, 95.02% methane recovery, and a drastic reduction in CO2 concentration (to 0.0012 mole fraction). These results demonstrate that integrating sc-CO2 with amine absorption resolves the trade-off between hydrocarbon selectivity and acid gas removal, establishing a technically viable pathway for flare gas utilization with potential application in gas-to-liquids (GTL) and carbon management strategies Full article
Show Figures

Figure 1

26 pages, 4670 KB  
Article
Modernization of a Tube Furnace as Part of Zero-Waste Practice
by Beata Brzychczyk, Jakub Styks, Michał Hajos, Jacek Kostiuczuk, Wiktor Nadkański, Rafał Smolec and Łukasz Sikora
Sustainability 2025, 17(19), 8940; https://doi.org/10.3390/su17198940 - 9 Oct 2025
Viewed by 578
Abstract
Modern research laboratories are constantly evolving to meet the growing demands for precision, quality, and flexibility in scientific work. The modernization of existing experimental test benches plays a crucial role in improving efficiency, optimizing processes, and ensuring operational safety. This requires updates to [...] Read more.
Modern research laboratories are constantly evolving to meet the growing demands for precision, quality, and flexibility in scientific work. The modernization of existing experimental test benches plays a crucial role in improving efficiency, optimizing processes, and ensuring operational safety. This requires updates to their design, experimental methods, data collection, and results recording—all of which provide the foundation for developing new research concepts. An increasing number of innovations are now guided by the principle of minimizing environmental impact. In line with this approach, an innovative modernization of a tube furnace research station was carried out, based on the concepts of sustainable development and the zero-waste philosophy. To enable thermogravimetric analyses of coffee waste, a previously incomplete tube furnace was refurbished using recycled components. The primary objective was to expand the research capabilities of the existing workstation. As part of the modernization, three indicators of reuse efficiency were calculated: the quantitative indicator Wre-use, the mass indicator Wre-usemass, and the cost indicator Wre-usevalue. A quantitative index of 78% and a mass index of approximately 76% were achieved, while the economic value of the recovered components accounted for 11% of the total value of the revitalized research station. This strategy significantly reduced waste generation, carbon dioxide emissions, and the consumption of primary raw materials. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

18 pages, 2630 KB  
Article
Synergistic Integration of TiO2 Nanorods with Carbon Cloth for Enhanced Photocatalytic Hydrogen Evolution and Wastewater Remediation
by Shakeelur Raheman AR, Khursheed B. Ansari, Sang Joon Lee and Nilesh Salunke
Catalysts 2025, 15(10), 961; https://doi.org/10.3390/catal15100961 - 7 Oct 2025
Cited by 1 | Viewed by 882
Abstract
The immobilization of titanium dioxide (TiO2) nanostructures on conductive supports offers a promising strategy to overcome the intrinsic limitations of a wide band gap, poor visible-light absorption, and rapid charge recombination in photocatalysis. Herein, a rutile TiO2 nanorods (TiO2 [...] Read more.
The immobilization of titanium dioxide (TiO2) nanostructures on conductive supports offers a promising strategy to overcome the intrinsic limitations of a wide band gap, poor visible-light absorption, and rapid charge recombination in photocatalysis. Herein, a rutile TiO2 nanorods (TiO2NRs) array was directly grown on carbon cloth (CC) via a hydrothermal method by using titanium tetrachloride (TiCl4) seed solutions of 0.1, 0.3, and 0.5 M, designated as TiO2NR0.1/CC, TiO2NR0.3/CC, and TiO2NR0.5/CC, respectively. Structural analysis confirmed that the TiO2 NRs array is vertically aligned, and phase=pure rutile NRs strongly adhered to CC. The optical characterization revealed broadened absorption in the visible wavelength region and progressive band gap narrowing with the increasing seeding concentration. Photoluminescence (PL) spectra showed pronounced quenching in the fabricated TiO2NRs/CC samples, especially with TiO2NR0.3/CC exhibiting the lowest PL intensity, indicating suppressed charge recombination. Electrochemical impedance spectroscopy further demonstrated reduced charge transfer resistance, and TiO2NR0.3/CC achieved the most efficient electron transport kinetics. Photocatalytic tests at λ ≥ 400 nm irradiation confirmed the enhanced hydrogen evolution performance of TiO2NR0.3/CC. The hydrogen yield of 2.66 mmol h−1 g−1 of TiO2NR0.3/CC was 4.03-fold higher than that of TiO2NRs (0.66 mmol h−1 g−1), along with excellent cyclic stability across three runs. Additionally, TiO2NR0.3/CC achieved 90.2% degradation of methylene blue within 60 min, with a kinetic constant of 0.0332 min−1 and minimal activity loss after three cycles. These results highlight the synergistic integration of TiO2 NRs with CC in achieving a durable, recyclable, and efficient photocatalytic platform for sustainable hydrogen generation and wastewater remediation. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Graphical abstract

27 pages, 4263 KB  
Article
A Prudent Approach to Reduce CO2 Emissions While Enhancing Oil Recovery
by Mohammad Al-Ghnemi, Erdal Ozkan and Hossein Kazemi
Fuels 2025, 6(4), 75; https://doi.org/10.3390/fuels6040075 - 2 Oct 2025
Viewed by 1147
Abstract
Emissions of carbon dioxide (CO2) resulting from steam-driven enhanced oil recovery (EOR) operations present an environmental challenge as well as an opportunity to further enhance oil recovery. Using numerical simulations with realistic input data from field and laboratory measurements, we demonstrate [...] Read more.
Emissions of carbon dioxide (CO2) resulting from steam-driven enhanced oil recovery (EOR) operations present an environmental challenge as well as an opportunity to further enhance oil recovery. Using numerical simulations with realistic input data from field and laboratory measurements, we demonstrate a prudent approach to reduce CO2 emissions by capturing CO2 from steam generators of a steam-driven enhanced oil recovery (EOR) project and injecting it in a nearby oil field to improve oil recovery in this neighboring field. The proposed use of CO2 as a water-alternating-CO2 (WAG-CO2) EOR project in a small, 144-acre, sector of a target limestone reservoir would yield 42% incremental EOR oil while sequestering CO2 with a net utilization ratio (NUR) of 3100 standard cubic feet CO2 per stock tank barrel (SCF/STB) of EOR oil in a single five-spot pattern consisting of a central producer and four surrounding injectors. This EOR application sequesters 135,000, 165,000, and 213,000 metric tons of CO2 in five, ten, and twenty years in the single five spot pattern (i.e., our sector target), respectively. As a related matter, the CO2 emissions from nearby steam oil recovery project consisting of ten 58-ton steam/hr boilers amounts to 119,000 metric tons of CO2 per year with an estimated social cost of USD 440 million over 20 years. Upscaling the results from the single five-spot pattern to a four-pattern field scale increases the sequestered amount of CO2 by a factor of 4 without recycling and to 11 with recycling produced CO2 from the EOR project. Furthermore, the numerical model indicates that initiating CO2 injection earlier at higher residual oil saturations improves EOR efficiency while somewhat decreases sequestration per incremental EOR barrel. The most significant conclusion is that the proposed venture is an economically viable EOR idea in addition to being an effective sequestration project. Other sources of CO2 emissions in oil fields and nearby refineries or power generators may also be considered for similar projects. Full article
Show Figures

Figure 1

16 pages, 3518 KB  
Article
Transparent Polyurethane Elastomers with Excellent Foamability and Self-Healing Property via Molecular Design and Dynamic Covalent Bond Regulation
by Rongli Zhu, Mingxi Linghu, Xueliang Liu, Liang Lei, Qi Yang, Pengjian Gong and Guangxian Li
Polymers 2025, 17(19), 2639; https://doi.org/10.3390/polym17192639 - 30 Sep 2025
Viewed by 1172
Abstract
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable [...] Read more.
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable materials (named as PU-S) with high light transmittance possessing two dynamic covalent bonds (oxime bond and disulfide bond) in different ratios were fabricated by the one-pot method, and then the prepared PU-S were foamed utilizing the green and efficient supercritical carbon dioxide (scCO2) foaming technology. The PU-S foams possess multiple dynamic covalent bonds as well as porous structures, and the effect of the dynamic covalent bonds endows the materials with excellent self-healing properties and recyclability. Owing to the tailored design of dynamic covalent bonding synergies and micron-sized porous structures, PU-S5 exhibits hydrophobicity (97.5° water contact angle), low temperature flexibility (Tg = −30.1 °C), high light transmission (70.6%), and light weight (density of 0.12 g/cm3) together with high expansion ratio (~10 folds) after scCO2 foaming. Furthermore, PU-S5 achieves damage recovery under mild thermal conditions (60 °C). Accordingly, self-healing PU-S based on multiple dynamic covalent bonds will realize a wide range of potential applications in biomedical, new energy automotive, and wearable devices. Full article
(This article belongs to the Special Issue Advances in Cellular Polymeric Materials)
Show Figures

Figure 1

28 pages, 3081 KB  
Review
Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review
by Rong Zhang, Yihe Zhang, Guoxing Sun and Hongqiang Wei
Sustainability 2025, 17(17), 7908; https://doi.org/10.3390/su17177908 - 2 Sep 2025
Cited by 2 | Viewed by 2409
Abstract
Infrastructure construction is a major contributor to carbon emissions, primarily due to the extensive use of mineral materials such as cement and aggregates, which release significant amounts of carbon dioxide during production and use. While existing research has predominantly centered on the applications [...] Read more.
Infrastructure construction is a major contributor to carbon emissions, primarily due to the extensive use of mineral materials such as cement and aggregates, which release significant amounts of carbon dioxide during production and use. While existing research has predominantly centered on the applications of concrete, the present study extends the investigation to encompass inorganic–organic composites, alloy materials, and wastewater treatment systems, with particular attention to bridging the gap between theoretical potential and practical implementation. This study identifies China, the USA, and India as leaders in this field, attributing their progress to abundant material resources and sustained policy support. Key findings reveal that while geopolymers can fully replace cement, substitution rates of less than 50% are optimal for high-performance concrete to maintain structural integrity and decarbonization benefits. Aggregate replacements using materials such as air-cooled blast furnace slag show 50–100% feasibility. This review further highlights the multifunctional potential of red mud, rice husk ash, fly ash, and blast furnace slag as cement replacements, aggregates, reinforcers, catalysts, adsorbents, and composite fillers. However, challenges such as unstable raw material supply, lack of standardization, and insufficient international collaboration persist; these issues have often been overlooked in prior research and viable solutions have not been proposed. To address these barriers, a triple-objective framework is introduced in this study, integrating sustainable infrastructure, resource recycling, and environmental remediation, supported by optimized production processes and policy models from leading nations. Future research directions emphasize comprehensive life cycle assessments and enhanced global cooperation to bridge the divide between resource-rich and resource-scarce regions. By synthesizing cross-disciplinary applications and actionable solutions, this work advances the transition toward sustainable infrastructure systems. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop