Syngas Production over Nanosized Multicomponent Co-Fe-Containing Catalysts
Abstract
1. Introduction
- Iron has been studied less extensively in DRM due to its relatively low catalytic performance. However, iron-based catalysts possess several advantages: they are resistant to coke formation at high temperatures, less expensive than other metals, and operate efficiently across a wide temperature range. In addition, the redox properties of iron compounds can enhance reducibility, further improving overall catalytic efficiency. That is why iron can be considered a promising and economically efficient promoter that positively influences coke resistance.
2. Materials and Methods
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Catalyst Testing
3.2.1. Dry Reforming of Methane
3.2.2. Bireforming of Methane
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BET | Brunauer–Emmett–Teller method to measure the specific surface area and porosity |
| BRM | Bireforming of Methane |
| CCUS | Carbon Capture, Utilization, And Storage |
| DRM | Dry Reforming of Methane |
| GHSV | Gas Hourly Space Velocity |
| H2-TPR | Hydrogen Temperature-Programmed Reduction |
| SEM | Scanning Electron Microscopy |
| TEM | Transmission Electron Microscopy |
| X(CH4) | Extent of conversion of methane |
| X(CO2) | Extent of conversion of carbon dioxide |
References
- Chen, S.; Zaffran, J.; Yang, B. Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation. Appl. Catal. B Environ. 2020, 270, 118859. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; He, D. Recent progress of catalyst design for carbon dioxide reforming of methane to syngas. Energy Technol. 2020, 8, 1900493. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S. A study on mono and mixed nano-supported Co-based catalysts for dry reforming of methane. Bull. Korean Chem. Soc. 2015, 36, 583–590. [Google Scholar] [CrossRef]
- Cunha, A.F.; Mata, T.M.; Caetano, N.S.; Martins, A.A.; Loureiro, J.M. Catalytic bi-reforming of methane for carbon dioxide ennoblement. Energy Rep. 2020, 6, 74–79. [Google Scholar] [CrossRef]
- Shah, M.; Ali, S.; Mahar, R.B.; Shah, A.H.; Memon, A.R. Smart designing of metal-support interface for imperishable dry reforming catalyst. Appl. Catal. A Gen. 2018, 556, 137–154. [Google Scholar] [CrossRef]
- Bhattar, S.; Abedin, M.A.; Kanitkar, S.; Spivey, J.J. A review on dry reforming of methane over perovskite-derived catalysts. Catal. Today 2021, 365, 2–23. [Google Scholar] [CrossRef]
- Tanios, C.; Labaki, M. Chapter 5—Catalytic reforming: A sustainable technology for hydrogen production. In Recent Advances in Renewable Energy Technologies; Jeguirim, M., Ed.; Academic Press: London, UK, 2022; pp. 199–247. [Google Scholar] [CrossRef]
- Ray, D.; Nepak, D.; Janampelli, S.; Goshal, P.; Challapalli, S. Dry reforming of Methane in DBD plasma over Ni-based catalysts: Influence of process conditions and support on performance and durability. Energy Technol. 2019, 7, 1801008. [Google Scholar] [CrossRef]
- de Medeiros, F.G.M.; Lopes, F.W.B.; Rego de Vasconcelos, B. Prospects and technical challenges in hydrogen production through dry reforming of methane. Catalysts 2022, 12, 363. [Google Scholar] [CrossRef]
- Agún, B.; Abánades, A. Comprehensive review on dry reforming of methane: Challenges and potential for greenhouse gas mitigation. Int. J. Hydrogen Energy 2025, 103, 395–414. [Google Scholar] [CrossRef]
- Wang, S.; Nabavi, S.A.; Clough, P.T. A review on bi/polymetallic catalysts for steam methane reforming. Int. J. Hydrogen Energy 2023, 48, 15879–15893. [Google Scholar] [CrossRef]
- Ray, K.; Sengupta, S.; Deo, G. Reforming and cracking of CH4 over Al2O3-supported Ni, Ni-Fe and Ni-Co catalysts. Fuel Process. Technol. 2017, 156, 195–203. [Google Scholar] [CrossRef]
- Le Phuong, D.H.; Alsaiari, M.; Pham, C.Q.; Hieu, N.H.; Pham, T.-P.T.; Rajamohan, N.; Pham, D.D.; Vo, D.-V.N.; Trinh, T.H.; Setiabudi, H.D.; et al. Carbon dioxide reforming of methane over modified iron–cobalt alumina catalyst: Role of promoter. J. Taiwan Inst. Chem. Eng. 2024, 155, 105253. [Google Scholar] [CrossRef]
- Kozonoe, C.E.; de Paiva Floro Bonfim, R.; Brito Alves, R.M.; Schmal, M. The Fe–Co–Cu supported on MWCNT as catalyst for the tri-reforming of methane—Investigating the structure changes of the catalysts. Fuel 2019, 256, 115917. [Google Scholar] [CrossRef]
- Rahmat, N.; Yaakob, Z.; Mat Hassan, N.S. Hydrogen-rich syngas from CO2 reforming of methane with steam catalyzed by facile fusion-impregnation of iron and cobalt loaded MgAl2O4 catalyst with minimal carbon deposits. J. Energy Inst. 2021, 96, 61–74. [Google Scholar] [CrossRef]
- Benrabaa, R.; Trentesaux, M.; Roussel, P.; Rubbens, A.; Vannier, R.-N.; Löfberg, A. NiAlxFe2−xO4 mixed oxide catalysts for methane reforming with CO2: Effect of Al vs Fe contents and precursor salts. J. CO2 Util. 2023, 67, 102319. [Google Scholar] [CrossRef]
- Fang, X.; Mao, L.; Xu, L.; Shen, J.; Xu, J.; Xu, X.; Wang, X. Ni-Fe/La2O3 bimetallic catalysts for methane dry reforming: Elucidating the role of Fe for improving Coke Resistance. Fuel 2024, 357, 129950. [Google Scholar] [CrossRef]
- Li, B.; Luo, Y.; Li, B.; Yuan, X.; Wang, X. Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane. Fuel Process. Technol. 2019, 193, 348–360. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Le Phuong, D.H.; Pham, T.-P.T.; Cao, A.N.; Nguyen, T.M. Designing efficient methane dry reforming catalysts: Insights into the influence of calcium, iron, and manganese on cobalt-based systems. J. Ind. Eng. Chem. 2025; in press. [Google Scholar] [CrossRef]
- Jawad, A.; Rezaei, F.; Rownaghi, A.A. Highly efficient Pt/Mo-Fe/Ni-based Al2O3-CeO2 catalysts for dry reforming of methane. Catal. Today 2020, 350, 80–90. [Google Scholar] [CrossRef]
- Dikwa, J.; Philémon, Z.B.; Allawadi, A. Simulation of dry reforming of methane catalyzed by iron hexagonal mesoporous silicates (Fe-HMS) using ASPEN HYSYS. SSRN Electron. J. 2022, 10, 559–574. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Patel, N.; Srivastava, V.K.; Osman, A.I.; Rooney, D.W.; Fakeeha, A.H.; Abasaeed, A.E.; Alotibi, M.F.; Kumar, R. Iron-promoted zirconia-alumina supported Ni catalyst for highly efficient and cost-effective hydrogen production via dry reforming of methane. J. Environ. Sci. 2025, 148, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, Z.; Zhu, Y.-A.; Liu, Z.; Sui, Z.; Zhu, K.; Zhou, X. Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics. Appl. Catal. B Environ. 2020, 264, 118497. [Google Scholar] [CrossRef]
- Itkulova, S.S.; Nurmakanov, Y.Y.; Kussanova, S.K.; Boleubayev, Y.A. Production of a hydrogen-enriched syngas by combined CO2-steam reforming of methane over Co-based catalysts supported on alumina modified with zirconia. Catal. Today 2018, 299, 272–279. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Soares, R.R.; Passos, F.B. A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru. Appl. Catal. A Gen. 2014, 473, 132–145. [Google Scholar] [CrossRef]
- Budiman, A.W.; Song, S.-H.; Chang, T.-S.; Shin, C.-H.; Choi, M.-J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development. Catal. Surv. Asia 2012, 16, 183–197. [Google Scholar] [CrossRef]
- Jang, W.-J.; Shim, J.-O.; Kim, H.-M.; Yoo, S.-Y.; Roh, H.-S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- de Araújo Moreira, T.G.; de Carvalho Filho, J.F.S.; Carvalho, Y.; de Almeida, J.M.A.R.; Nothaft Romano, P.; Falabella Sousa-Aguiar, E. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane. Fuel 2021, 287, 119536. [Google Scholar] [CrossRef]
- Jabbour, K.; El Hassan, N. Optimized conditions for reduction of iron (III) oxide into metallic form under hydrogen atmosphere: A thermodynamic approach. Chem. Eng. Sci. 2022, 252, 117297. [Google Scholar] [CrossRef]
- Nurmakanov, Y.Y.; McCue, A.J.; Anderson, J.A.; Itkulova, S.S.; Kussanova, S.K. Methane reforming by CO2 or CO2-H2O over Co-containing supported catalysts. News NAS RK. Ser. Chem. Technol. 2016, 5, 5–11. [Google Scholar]
- Jacobs, G.; Ji, Y.; Davis, B.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer-Tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl. Catal. A Gen. 2007, 333, 177–191. [Google Scholar] [CrossRef]
- Itkulova, S.S.; Valishevskiy, K.A.; Boleubayev, Y.A. Bimetallic Co-Rh Systems as a Prospective Base for Design of CH4 Reforming Catalysts to Produce Syngas with a Controllable Composition. Catalysts 2022, 12, 105. [Google Scholar] [CrossRef]
- Boleubayev, Y.A.; Xiao, T.; Itkulova, S.S.; Valishevskiy, K.A.; Zhubanysheva, G.K. Bimetallic Co-Pd catalysts for dry and bireforming of methane. News NAS RK. Ser. Chem. Techn. 2020, 4, 112–119. [Google Scholar] [CrossRef]
- Spreitzer, D.; Schenk, J. Reduction of Iron Oxides with Hydrogen—A Review. Steel Res. Int. 2019, 90, 1900108. [Google Scholar] [CrossRef]
- Alvarez, P.; Araya, P.; Rojas, R.; Guerrero, S.; Aguila, G. Activity of alumina supported Fe catalysts for N2O decomposition: Effects of the iron content and thermal treatment. J. Chilean Chem. Soc. 2017, 62, 3752–3759. [Google Scholar] [CrossRef]
- Fellenberg, A.K.; Addad, A.; Hong, J.; Simon, P.; Kosto, Y.; Šmíd, B.; Gang Jib, G.; Andrei, Y.; Khodakov, A.Y. Iron and Copper Nanoparticles Inside and Outside Carbon Nanotubes: Nanoconfinement, Migration, Interaction and Catalytic Performance in Fischer-Tropsch Synthesis. J. Catal. 2021, 404, 306–323. [Google Scholar] [CrossRef]
- Kumar, A.; Malvi, B. Iron oxide based catalysts: A temperature programmed reduction study. Res. J. Chem. Sci. 2021, 11, 39–45. [Google Scholar]
- Wan, H.-J.; Wu, B.-S.; Zhang, C.-H.; Xiang, H.-W.; Li, Y.-W.; Xu, B.-F.; Yi, F. Study on Fe–Al2O3 interaction over precipitated iron catalyst for Fischer–Tropsch synthesis. Catal. Commun. 2007, 8, 1538–1545. [Google Scholar] [CrossRef]
- He, J.; Li, K.; Zhang, J.; Conejo, A.N. Reduction Kinetics of Compact Hematite with Hydrogen from 600 to 1050 °C. Metals 2023, 13, 464. [Google Scholar] [CrossRef]
- Sun, X.; Arvanitis, A.; Damma, D.; Alvarez, N.T.; Shanov, V.; Smirniotis, P.G.; Dong, J. Carbon Nanotube Formation on Cr-Doped Ferrite Catalyst during Water Gas Shift Membrane Reaction: Mechanistic Implications and Extended Studies on Dry Gas Conversions. Catalysts 2020, 10, 927. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Marin, G.B. Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039. [Google Scholar] [CrossRef]
- Parente, M.; Soria, M.A.; Madeira, L.M. Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study. Renew. Energy 2020, 157, 1254–1264. [Google Scholar] [CrossRef]








| Catalyst | Reaction Conditions | X(CH4), % | X(CO2), % | H2/CO | Ref. |
|---|---|---|---|---|---|
| 75Ni-25Fe/Al2O3 | CH4:CO2:N2 = 1:1:3, 600 °C | 16 | 24 | 0.44 | [12] |
| 0.8Fe-5Co/Al2O3 | 700 °C | ~50 | ~83 | ~0.65 | [13] |
| Fe@MWCNT/Co | CH4:CO2:O2:He:H2O = 1:0.5:0.33:1.3:0.37, 800 °C, GHSV = 63,000 (mL/g.h) | 46 | 36 | 0.5 | [14] |
| Fe/MgAl2O4 | CH4:CO2(1.5:1), 700 °C, GHSV = 11,706 h−1 | 79 | 56 | - | [15] |
| NiAlFeO4 (Cl−) | CH4:CO2:He:Ar = 20:20:10:50, 750 °C | 92 | ~90 | ~0.8 | [16] |
| 6Ni-0.2Fe/La2O3 | CH4:CO2 = 1:1, WHSV = 18,000 mL h −1 gcat−1, 750 °C | ~70 | ~78 | ~0.92 | [17] |
| 0.5-FeNiAl | CH4:CO2 = 1:1, 700 °C | ~60 | ~67 | ~0.86 | [18] |
| 0.3Fe-8Co/Al2O3 | 700 °C, PCH4/PCO2 = 20/20 kPa/kPa, GHSV = 36 L gcat−1 h−1 | ~68 | ~94 | ~0.8 | [19] |
| Fe/MgAl2O4 | CH4:CO2 = 1.5:1, 700 °C, p = 1 atm, GHSV = 11,706 h−1, | 76.7 | 46.4 | - | [15] |
| FeMo/Ni/CeO2-Al2O3 | CH4:CO2 = 1:1, 700 °C, p = 1 bar, WHSV = 12,000 mL gcat−1 h−1 | 78 | 81 | 0.89 | [20] |
| Pt/FeMo/Ni/CeO2-Al2O3 | CH4:CO2 = 1:1, 700 °C, p = 1 bar, WHSV = 12,000 mL gcat−1 h−1 | 81 | 86 | 0.91 | [20] |
| Catalysts | Nominal Content, wt% | BET Surface Area, m2/g | Average Pore Diameter, nm | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Co | Fe | Pt | Fresh | Spent in DRM | Spent in BRM | Fresh | Spent in DRM | Spent in BRM | |
| 9.8%Co-Fe(7:3)-0.2%Pt/Al2O3 | 6.86 | 2.94 | 0.2 | 190.8 | 101.3 | 111.7 | 6.8 | 6.0 | 10.3 |
| 9.8%Co-Fe(5:5)-0.2%Pt/Al2O3 | 4.90 | 4.90 | 0.2 | 168.3 | 103.2 | 95.7 | 6.0 | 7.0 | 7.1 |
| 9.8%Co-Fe(3:7)-0.2%Pt/Al2O3 | 2.94 | 6.86 | 0.2 | 171.9 | 111.7 | 60.6 | 6.3 | 9.7 | 8.1 |
| Catalyst | Samples | Co (wt%) | Fe (wt%) | Pt (wt%) | Al (wt%) | O (wt%) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.8%Co-Fe(7:3)-0.2%Pt/Al2O3 | fresh | 7.73 | 3.39 | 0 | 45.07 | 43.81 | |||||
| spent | 9.13 a | 6.57 b | 3.74 a | 2.47 b | 0 a | 0 b | 51.83 a | 45.68 b | 35.30 a | 45.29 b | |
| 9.8%Co-Fe(5:5)-0.2%Pt/Al2O3 | fresh | 5.21 | 5.05 | 0 | 44.24 | 45.21 | |||||
| spent | 5.93 a | 5.90 b | 6.06 a | 5.03 b | 0 a | 0 b | 49.70 a | 46.33 b | 38.30 a | 42.64 b | |
| 9.8%Co-Fe(3:7)-0.2%Pt/Al2O3 | fresh | 3.37 | 7.04 | 0 | 45.09 | 44.33 | |||||
| spent | 3.69 a | 3.53 b | 7.65 a | 7.30 b | 0 a | 0 b | 49.58 a | 46.81 b | 39.08 a | 42.21 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilegen, K.T.; Itkulova, S.S.; Zhumash, M.A.; Boleubayev, Y.A.; Abilmagzhanov, A.Z. Syngas Production over Nanosized Multicomponent Co-Fe-Containing Catalysts. Nanomaterials 2025, 15, 1814. https://doi.org/10.3390/nano15231814
Tilegen KT, Itkulova SS, Zhumash MA, Boleubayev YA, Abilmagzhanov AZ. Syngas Production over Nanosized Multicomponent Co-Fe-Containing Catalysts. Nanomaterials. 2025; 15(23):1814. https://doi.org/10.3390/nano15231814
Chicago/Turabian StyleTilegen, Kuralay T., Sholpan S. Itkulova, Makpal A. Zhumash, Yerzhan A. Boleubayev, and Arlan Z. Abilmagzhanov. 2025. "Syngas Production over Nanosized Multicomponent Co-Fe-Containing Catalysts" Nanomaterials 15, no. 23: 1814. https://doi.org/10.3390/nano15231814
APA StyleTilegen, K. T., Itkulova, S. S., Zhumash, M. A., Boleubayev, Y. A., & Abilmagzhanov, A. Z. (2025). Syngas Production over Nanosized Multicomponent Co-Fe-Containing Catalysts. Nanomaterials, 15(23), 1814. https://doi.org/10.3390/nano15231814

