Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = carbon compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3167 KiB  
Article
A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance
by Daniel D. Akerele and Federico Aguayo
Buildings 2025, 15(15), 2759; https://doi.org/10.3390/buildings15152759 - 5 Aug 2025
Abstract
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and [...] Read more.
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and CSA-LLP (liquid polymer admixture)—against a traditional Type III Portland cement (OPC) control under both laboratory and realistic outdoor conditions. Laboratory specimens were tested for fresh properties, early-age and later-age compressive, flexural, and splitting tensile strengths, as well as drying shrinkage according to ASTM standards. Outdoor 5 × 4 × 12-inch slabs mimicking typical jointed plain concrete panels (JPCPs), instrumented with vibrating wire strain gauges and thermocouples, recorded the strain and temperature at 5 min intervals over 16 weeks, with 24 h wet-burlap curing to replicate field practices. Laboratory findings show that CSA mixes exceeded 3200 psi of compressive strength at 4 h, but cold outdoor casting (~48 °F) delayed the early-age strength development. The CSA-LLP exhibited the lowest drying shrinkage (0.036% at 16 weeks), and outdoor CSA slabs captured the initial ettringite-driven expansion, resulting in a net expansion (+200 µε) rather than contraction. Approximately 80% of the total strain evolved within the first 48 h, driven by autogenous and plastic effects. CSA mixes generated lower peak internal temperatures and reduced thermal strain amplitudes compared to the OPC, improving dimensional stability and mitigating restraint-induced cracking. These results underscore the necessity of field validation for shrinkage compensation mechanisms and highlight the critical roles of the polymer type and curing protocol in optimizing CSA-based repairs for durable, low-carbon pavement rehabilitation. Full article
(This article belongs to the Special Issue Study on Concrete Structures—2nd Edition)
Show Figures

Figure 1

14 pages, 3666 KiB  
Review
Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites
by Ping Li, Ziyu Cui, Mengshuang Wang, Junxian Yang, Mingli Hu, Qiqing Cheng and Shi Wang
Electrochem 2025, 6(3), 28; https://doi.org/10.3390/electrochem6030028 - 4 Aug 2025
Viewed by 45
Abstract
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with [...] Read more.
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with conductive materials can compensate for these deficiencies. For MOF/metal nanoparticle composites (e.g., composites with gold, silver, platinum, and bimetallic nanoparticles), the high electrical conductivity and catalytic activity of metal nanoparticles are utilized, and MOFs can inhibit the agglomeration of nanoparticles. MOF/carbon-based material composites integrate the high electrical conductivity and large specific surface area of carbon-based materials. MOF/conductive polymer composites offer good flexibility and tunability. MOF/multiple conductive material composites exhibit synergistic effects. Although MOF composites provide an ideal platform for electrocatalytic reactions, current research still suffers from several issues, including a lack of comparative studies, insufficient research on structure–property correlations, limited practical applications, and high synthesis costs. In the future, it is necessary to explore new synthetic pathways and seek; inexpensive alternative raw materials. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 - 1 Aug 2025
Viewed by 142
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

24 pages, 1386 KiB  
Article
Assessing Sustainable Growth: Evolution and Convergence of Green Total Factor Productivity in Tibetan Plateau Agriculture
by Mengmeng Zhang and Chengqun Yu
Sustainability 2025, 17(15), 6963; https://doi.org/10.3390/su17156963 - 31 Jul 2025
Viewed by 152
Abstract
Accurate assessment of green productivity is essential for advancing sustainable agriculture in ecologically fragile regions. This study examined the evolution of agricultural green total factor productivity (AGTFP) in Tibet over the period 2002–2021 by applying a super-efficiency SBM-GML model that accounts for undesirable [...] Read more.
Accurate assessment of green productivity is essential for advancing sustainable agriculture in ecologically fragile regions. This study examined the evolution of agricultural green total factor productivity (AGTFP) in Tibet over the period 2002–2021 by applying a super-efficiency SBM-GML model that accounts for undesirable outputs. We decompose AGTFP into technical change and efficiency change, conduct redundancy analysis to identify sources of inefficiency and explore its spatiotemporal dynamics through kernel density estimation and convergence analysis. Results show that (1) AGTFP in Tibet grew at an average annual rate of 0.78%, slower than the national average of 1.6%; (2) labor input, livestock scale, and agricultural carbon emissions are major sources of redundancy, especially in pastoral regions; (3) technological progress is the main driver of AGTFP growth, while efficiency gains have a limited impact, reflecting a technology-led growth pattern; (4) AGTFP follows a “convergence-divergence-reconvergence” trend, with signs of conditional β convergence after controlling for regional heterogeneity. These findings highlight the need for region-specific green agricultural policies. Priority should be given to improving green technology diffusion and input allocation in high-altitude pastoral areas, alongside strengthening ecological compensation and interregional coordination to enhance green efficiency and promote high-quality development across Tibet. Full article
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 410
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

29 pages, 21087 KiB  
Article
Multi-Scale Ecosystem Service Supply–Demand Dynamics and Driving Mechanisms in Mainland China During the Last Two Decades: Implications for Sustainable Development
by Menghao Qi, Mingcan Sun, Qinping Liu, Hongzhen Tian, Yanchao Sun, Mengmeng Yang and Hui Zhang
Sustainability 2025, 17(15), 6782; https://doi.org/10.3390/su17156782 - 25 Jul 2025
Viewed by 291
Abstract
The growing mismatch between ecosystem service (ES) supply and demand underscores the importance of thoroughly understanding their spatiotemporal patterns and key drivers to promote ecological civilization and sustainable development at the regional level in China. This study investigates six key ES indicators across [...] Read more.
The growing mismatch between ecosystem service (ES) supply and demand underscores the importance of thoroughly understanding their spatiotemporal patterns and key drivers to promote ecological civilization and sustainable development at the regional level in China. This study investigates six key ES indicators across mainland China—habitat quality (HQ), carbon sequestration (CS), water yield (WY), sediment delivery ratio (SDR), food production (FP), and nutrient delivery ratio (NDR)—by integrating a suite of analytical approaches. These include a spatiotemporal analysis of trade-offs and synergies in supply, demand, and their ratios; self-organizing maps (SOM) for bundle identification; and interpretable machine learning models. While prior research studies have typically examined ES at a single spatial scale, focusing on supply-side bundles or associated drivers, they have often overlooked demand dynamics and cross-scale interactions. In contrast, this study integrates SOM and SHAP-based machine learning into a dual-scale framework (grid and city levels), enabling more precise identification of scale-dependent drivers and a deeper understanding of the complex interrelationships between ES supply, demand, and their spatial mismatches. The results reveal pronounced spatiotemporal heterogeneity in ES supply and demand at both grid and city scales. Overall, the supply services display a spatial pattern of higher values in the east and south, and lower values in the west and north. High-value areas for multiple demand services are concentrated in the densely populated eastern regions. The grid scale better captures spatial clustering, enhancing the detection of trade-offs and synergies. For instance, the correlation between HQ and NDR supply increased from 0.62 (grid scale) to 0.92 (city scale), while the correlation between HQ and SDR demand decreased from −0.03 to −0.58, indicating that upscaling may highlight broader synergistic or conflicting trends missed at finer resolutions. In the spatiotemporal interaction network of supply–demand ratios, CS, WY, FP, and NDR persistently show low values (below −0.5) in western and northern regions, indicating ongoing mismatches and uneven development. Driver analysis demonstrates scale-dependent effects: at the grid scale, HQ and FP are predominantly influenced by socioeconomic factors, SDR and WY by ecological variables, and CS and NDR by climatic conditions. At the city level, socioeconomic drivers dominate most services. Based on these findings, nine distinct supply–demand bundles were identified at both scales. The largest bundle at the grid scale (B3) occupies 29.1% of the study area, while the largest city-scale bundle (B8) covers 26.5%. This study deepens the understanding of trade-offs, synergies, and driving mechanisms of ecosystem services across multiple spatial scales; reveals scale-sensitive patterns of spatial mismatch; and provides scientific support for tiered ecological compensation, integrated regional planning, and sustainable development strategies. Full article
Show Figures

Figure 1

23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Viewed by 593
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

22 pages, 11876 KiB  
Article
Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China
by Wenfeng Ji, Siyuan Liu, Yi Yang, Mengxue Liu, Hejie Wei and Ling Li
Land 2025, 14(8), 1522; https://doi.org/10.3390/land14081522 - 24 Jul 2025
Viewed by 249
Abstract
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies [...] Read more.
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies have examined intra- and inter-regional ecosystem carbon sequestration flows, making regional ecosystem carbon sequestration flows less comprehensive. Against this background, the research objectives of this paper are as follows. The flow of carbon sequestration services between Henan Province and out-of-province regions is studied. In addition, this study clarifies the beneficiary and supply areas of carbon sink services in Henan Province and the neighboring regions at the prefecture-level city scale to obtain a more systematic, comprehensive, and actual flow of carbon sequestration services for scientific and effective eco-compensation and to promote regional synergistic emission reductions. The research methodologies used in this paper are as follows. First, this study adopts a meta-coupling framework, designating Henan Province as the focal system, the Central Urban Agglomeration as the adjacent system, and eight surrounding provinces as remote systems. Regional carbon sequestration was assessed using net primary productivity (NEP), while carbon emissions were evaluated based on per capita carbon emissions and population density. A carbon balance analysis integrated carbon sequestration and emissions. Hotspot analysis identified areas of carbon sequestration service supply and associated benefits. Ecological radiation force formulas were used to quantify service flows, and compensation values were estimated considering the government’s payment capacity and willingness. A three-dimensional evaluation system—incorporating technology, talent, and fiscal capacity—was developed to propose a diversified ecological compensation scheme by comparing supply and beneficiary areas. By modeling the ecosystem carbon sequestration service flow, the main results of this paper are as follows: (1) Within Henan Province, Luoyang and Nanyang provided 521,300 tons and 515,600 tons of carbon sinks to eight cities (e.g., Jiaozuo, Zhengzhou, and Kaifeng), warranting an ecological compensation of CNY 262.817 million and CNY 263.259 million, respectively. (2) Henan exported 3.0739 million tons of carbon sinks to external provinces, corresponding to a compensation value of CNY 1756.079 million. Conversely, regions such as Changzhi, Xiangyang, and Jinzhong contributed 657,200 tons of carbon sinks to Henan, requiring a compensation of CNY 189.921 million. (3) Henan thus achieved a net ecological compensation of CNY 1566.158 million through carbon sink flows. (4) In addition to monetary compensation, beneficiary areas may also contribute through technology transfer, financial investment, and talent support. The findings support the following conclusions: (1) it is necessary to consider the externalities of ecosystem services, and (2) the meta-coupling framework enables a comprehensive assessment of carbon sequestration service flows, providing actionable insights for improving ecosystem governance in Henan Province and comparable regions. Full article
(This article belongs to the Special Issue Land Resource Assessment (Second Edition))
Show Figures

Figure 1

22 pages, 4017 KiB  
Article
Mapping and Estimating Blue Carbon in Mangrove Forests Using Drone and Field-Based Tree Height Data: A Cost-Effective Tool for Conservation and Management
by Ali Karimi, Behrooz Abtahi and Keivan Kabiri
Forests 2025, 16(7), 1196; https://doi.org/10.3390/f16071196 - 20 Jul 2025
Viewed by 475
Abstract
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of [...] Read more.
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of drones, also known as unmanned aerial vehicles (UAVs), for estimating above-ground biomass (AGB) and BC in Avicennia marina stands by integrating drone-based canopy measurements with field-measured tree heights. Using structure-from-motion (SfM) photogrammetry and a consumer-grade drone, we generated a canopy height model and extracted structural parameters from individual trees in the Melgonze mangrove patch, southern Iran. Field-measured tree heights served to validate drone-derived estimates and calibrate an allometric model tailored for A. marina. While drone-based heights differed significantly from field measurements (p < 0.001), the resulting AGB and BC estimates showed no significant difference (p > 0.05), demonstrating that crown area (CA) and model formulation effectively compensate for height inaccuracies. This study confirms that drones can provide reliable estimates of BC through non-invasive means—eliminating the need to harvest, cut, or physically disturb individual trees—supporting their application in mangrove monitoring and ecosystem service assessments, even under challenging field conditions. Full article
Show Figures

Figure 1

17 pages, 2066 KiB  
Article
A Mid-Term Scheduling Method for Cascade Hydropower Stations to Safeguard Against Continuous Extreme New Energy Fluctuations
by Huaying Su, Yupeng Li, Yan Zhang, Yujian Wang, Gang Li and Chuntian Cheng
Energies 2025, 18(14), 3745; https://doi.org/10.3390/en18143745 - 15 Jul 2025
Viewed by 195
Abstract
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility [...] Read more.
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility resource to safeguard against continuous extreme new energy fluctuations. This paper proposes a mid-term scheduling method for reservoir hydropower to enhance our ability to regulate continuous extreme new energy fluctuations. First, a data-driven scenario generation method is proposed to characterize the continuous extreme new energy output by combining kernel density estimation, Monte Carlo sampling, and the synchronized backward reduction method. Second, a two-stage stochastic hydropower–new energy complementary optimization scheduling model is constructed with the reservoir water level as the decision variable, ensuring that reservoirs have a sufficient water buffering capacity to free up transmission channels for continuous extremely high new energy outputs and sufficient water energy storage to compensate for continuous extremely low new energy outputs. Third, the mathematical model is transformed into a tractable mixed-integer linear programming (MILP) problem by using piecewise linear and triangular interpolation techniques on the solution, reducing the solution complexity. Finally, a case study of a hydropower–PV station in a river basin is conducted to demonstrate that the proposed model can effectively enhance hydropower’s regulation ability, to mitigate continuous extreme PV outputs, thereby improving power supply reliability in this hybrid renewable energy system. Full article
(This article belongs to the Special Issue Optimal Schedule of Hydropower and New Energy Power Systems)
Show Figures

Figure 1

27 pages, 7623 KiB  
Article
A Ladder-Type Carbon Trading-Based Low-Carbon Economic Dispatch Model for Integrated Energy Systems with Flexible Load and Hybrid Energy Storage Optimization
by Liping Huang, Fanxin Zhong, Chun Sing Lai, Bang Zhong, Qijun Xiao and Weitai Hsu
Energies 2025, 18(14), 3679; https://doi.org/10.3390/en18143679 - 11 Jul 2025
Viewed by 279
Abstract
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the [...] Read more.
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the carbon trading cost increases progressively with emission levels, thereby providing stronger incentives for emission reduction. Second, flexible loads are categorized and modeled as shiftable, transferable, and reducible types, each with distinct operational constraints and compensation mechanisms. Third, both battery and thermal energy storage systems are considered to improve system flexibility by storing excess energy and supplying it when needed. Finally, a unified optimization framework is developed to coordinate the dispatch of renewable generation, gas turbines, waste heat recovery units, and multi-energy storage devices while integrating flexible load flexibility. The objective is to minimize the total system cost, which includes energy procurement, carbon trading expenditures, and demand response compensation. Three comparative case studies are conducted to evaluate system performance under different operational configurations: the proposed comprehensive model, a carbon trading-only approach, and a conventional baseline scenario. Results demonstrate that the proposed framework effectively balances economic and environmental objectives through coordinated demand-side management, hybrid storage utilization, and the ladder-type carbon trading market mechanism. It reshapes the system load profile via peak shaving and valley filling, improves renewable energy integration, and enhances overall system efficiency. Full article
(This article belongs to the Special Issue Hybrid Battery Energy Storage System)
Show Figures

Figure 1

26 pages, 1501 KiB  
Article
How Can Forestry Carbon Sink Projects Increase Farmers’ Willingness to Produce Forestry Carbon Sequestration?
by Yi Hou, Anni He, Hongxiao Zhang, Chen Hu and Yunji Li
Forests 2025, 16(7), 1135; https://doi.org/10.3390/f16071135 - 10 Jul 2025
Viewed by 320
Abstract
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective [...] Read more.
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective forests, whether farmers are willing to produce forestry carbon sinks is directly related to the implementation effect of the project. In this paper, a partial equilibrium model of farmers’ forestry production behavior was established based on production function and utility function, and the path to enhance farmers’ willingness to produce forestry carbon sink through forestry carbon sink projects was analyzed in combination with forest ecological management theory. In terms of empirical analysis, the PSM-DID econometric model was established based on the survey data of LY in Zhejiang Province, China, and the following conclusions were drawn: (1) With the receipt of revenues from forestry carbon sequestration projects and partial cost-sharing by the government, farmers’ participation in forestry carbon sink projects can save investment in forest land management. (2) The saved forestry production costs and forestry carbon sink project subsidies can make up for the loss of farmers’ timber income, so that the net income of forestry will not be significantly reduced. (3) The forestry production factors saved by farmers can be transferred to non-agricultural sectors and increase non-agricultural net income, so that the net income of rural households participating in forestry carbon sink projects will increase. The forestry carbon sink project can improve the utility level of farmers and increase the willingness of farmers to produce forestry carbon sinks by delivering income to farmers and saving forestry production factors. This study demonstrates that a well-designed forestry carbon sink compensation mechanism, combined with an optimized allocation of production factors, can effectively enhance farmers’ willingness to participate. This insight is also applicable to countries or regions that rely on small-scale forestry operations. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

13 pages, 1363 KiB  
Article
Improving Anaerobic Digestion Process of Sewage Sludge in Terms of Energy Efficiency and Carbon Emission: Pre- or Post-Thermal Hydrolysis?
by Yawen Ye, Azizi Selemani Msuya, Xiaohu Dai, Xiaoli Chai and Boran Wu
Sustainability 2025, 17(13), 6147; https://doi.org/10.3390/su17136147 - 4 Jul 2025
Viewed by 353
Abstract
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. [...] Read more.
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. To address these issues, thermal hydrolysis (TH) has been explored as a pretreatment or post-treatment method. This study systematically analyzes the typical sludge treatment pathways incorporating TH either as a pretreatment step to AD or as a post-treatment step, combined with incineration or land application for the final disposal. The mass balance algorithm was applied to evaluate the chemical consumption, and energy input/output calculations were conducted to assess the potential effects of TH on energy recovery. Carbon emissions were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology, considering direct, indirect, and compensated carbon emissions. The results indicate that applying TH as a post-treatment significantly reduces the carbon emissions by 65.94% compared to conventional AD, primarily due to the enhanced dewaterability and reduced chemical flocculant usage. In contrast, TH as a pretreatment step only moderates the emission reduction. The combination of post-TH with land application results in the lowest carbon emissions among the evaluated pathways, highlighting the environmental benefits of this approach. All the findings here are expected to provide insights into optimizing the technical combination mode of sludge processing pathways in terms of minimizing carbon emission. Full article
(This article belongs to the Collection Environmental Assessment, Life Cycle Analysis and Sustainability)
Show Figures

Graphical abstract

18 pages, 4103 KiB  
Article
Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9
by Eduarda Rodrigues, Ana Xu, Rafael C. Castro, David S. M. Ribeiro, João L. M. Santos and Ana Margarida L. Piloto
Biomedicines 2025, 13(7), 1629; https://doi.org/10.3390/biomedicines13071629 - 3 Jul 2025
Viewed by 446
Abstract
Background/Objectives: Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker primarily used for monitoring disease progression and recurrence in pancreatic and gastrointestinal cancers. Accurate and continuous quantification of CA19-9 in patient samples is critical for effective clinical management. This study aimed to develop [...] Read more.
Background/Objectives: Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker primarily used for monitoring disease progression and recurrence in pancreatic and gastrointestinal cancers. Accurate and continuous quantification of CA19-9 in patient samples is critical for effective clinical management. This study aimed to develop dual-emitting molecularly imprinted nanopolymers (dual@nanoMIPs) for ratiometric and reliable detection of CA19-9 in serum. Methods: Dual-emitting nanoMIPs were synthesized via a one-step molecular imprinting process, incorporating both blue-emitting carbon dots (b-CDs) as internal reference fluorophores and yellow-emitting quantum dots (y-QDs) as responsive probes. The CA19-9 template was embedded into the polymer matrix to create specific recognition sites. Fluorescence measurements were carried out under 365 nm excitation in 1% human serum diluted in phosphate-buffered saline (PBS). Results: The dual@nanoMIPs exhibited a ratiometric fluorescence response upon CA19-9 binding, characterized by the emission quenching of the y-QDs at 575 nm, while the b-CDs emission remained stable at 467 nm. The fluorescence shift observed in the RGB coordinates from yellow to green in the concentration range of CA19-9 tested, improved quantification accuracy by compensating for matrix effects in serum. A linear detection range was achieved from 4.98 × 10−3 to 8.39 × 102 U mL−1 in serum samples, with high specificity and reproducibility. Conclusions: The dual@nanoMIPs developed in this work enable a stable, sensitive, and specific detection of CA19-9 in minimally processed serum, offering a promising tool for longitudinal monitoring of cancer patients. Its ratiometric fluorescence design enhances reliability, supporting clinical decision-making in the follow-up of pancreatic cancer. Full article
(This article belongs to the Special Issue Application of Biomedical Materials in Cancer Therapy)
Show Figures

Figure 1

20 pages, 5847 KiB  
Article
Quantifying Ecosystem Service Trade-Offs/Synergies and Their Drivers in Dongting Lake Region Using the InVEST Model
by Zheng Li, Jingfeng Hu, Silong Hou, Wenfei Zhao and Jianjun Li
Sustainability 2025, 17(13), 6072; https://doi.org/10.3390/su17136072 - 2 Jul 2025
Viewed by 331
Abstract
[Objective] To quantify key ecosystem services within the Dongting Lake region, clarify the trade-off/synergy relationships, and detect the driving factors in order to support the ecological sustainable development of the Dongting Lake region. [Methods] Using the InVEST model, taking the area around Dongting [...] Read more.
[Objective] To quantify key ecosystem services within the Dongting Lake region, clarify the trade-off/synergy relationships, and detect the driving factors in order to support the ecological sustainable development of the Dongting Lake region. [Methods] Using the InVEST model, taking the area around Dongting Lake as the study area, four ecosystem services including water yield, carbon storage, soil conservation, and habitat quality were quantitatively assessed. Interdependencies between ecosystem services were assessed using correlation analysis to quantify trade-offs/synergies, and the geodetector model was used to detect their driving factors. [Results] (1) From 2000 to 2020, the soil retention service and water yield service in the Dongting Lake area showed an increasing trend over time. The total water yield increased from 4.93 × 1010 m3 to 6.71 × 1010 m3, while the total soil retention increased from 4.46 × 109 t to 5.77 × 109 t; habitat quality and total carbon storage continued to decline, with habitat quality decreasing from 0.6906 to 0.6785 and carbon storage decreasing from 1.480 × 109 t to 1.476 × 109 t. (2) In the study area, significant synergistic effects existed between carbon storage and habitat quality, carbon storage and soil retention, carbon storage and water yield, habitat quality and soil retention, and soil retention and water yield. However, there was a significant trade-off relationship between habitat quality and water yield. (3) During the study period, ecosystem service trade-offs and synergy relationships in the Dongting Lake area were jointly influenced by natural factors and human activities. Ranked by the magnitude of driving factor influence, they were land use type, land use intensity, vegetation coverage, temperature, and nighttime light. [Conclusions] Synergies dominated the ecosystem services in the research region, and the influence of natural factors behind them was greater than that of human activities. These research conclusions offer a scientific foundation for the institutional construction of the ecological compensation mechanism in the Dongting Lake basin. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop