Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = carbon and phenolic composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1434 KiB  
Article
Integrated Analysis of Olive Mill Wastewaters: Physicochemical Profiling, Antifungal Activity, and Biocontrol Potential Against Botryosphaeriaceae
by Elena Petrović, Karolina Vrandečić, Alen Albreht, Igor Gruntar, Nikola Major, Jasenka Ćosić, Zoran Užila, Smiljana Goreta Ban and Sara Godena
Horticulturae 2025, 11(7), 819; https://doi.org/10.3390/horticulturae11070819 - 10 Jul 2025
Viewed by 339
Abstract
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and [...] Read more.
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and Rosinjola) and assess its antifungal potential against phytopathogenic fungi from the Botryosphaeriaceae family. OMWW samples were analyzed for their physicochemical properties, phenolic composition via LC-MS/MS, and antifungal activity against Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not., Diplodia mutila (Fr.) Fr., D. seriata De Not., Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves, Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque, and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Antifungal efficacy was tested at varying concentrations, alongside the phenolic compounds hydroxytyrosol and vanillic acid. Antifungal activity varied across fungal species and OMWW concentrations. Lower OMWW concentrations inhibited mycelial growth in some pathogens, while higher concentrations often had a stimulatory effect. Among the OMWW treatments, Leccino and Buža showed the most significant antifungal activity against species from the Botryosphaeriaceae family. The results demonstrated significant variability in OMWW composition, with Istarska bjelica exhibiting the highest concentrations of phenolic compounds, sugars, dry matter, and carbon and nitrogen content. The results also highlight the impact of acidification on the phenolic profile of OMWW. Treatment with HCl significantly altered the concentration of individual phenolic compounds, either enhancing their release or contributing to their degradation. Among the two compounds, vanillic acid showed greater efficacy than hydroxytyrosol. In addition, microorganisms isolated from OMWW, including Bacillus velezensis Ruiz-Garcia et al., Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, Nakazawaea molendiniolei (N. Cadez, B. Turchetti & G. Peter) C. P. Kurtzman & C. J. Robnett, and Penicillium crustosum Thom, demonstrated antagonistic potential against fungal pathogens, with B. velezensis showing the strongest inhibitory effect. The greatest antagonistic effect against fungi was observed with the species Do. Iberica. The findings highlight the potential of OMWW as a sustainable alternative to chemical fungicides, simultaneously contributing to the management of waste and protection of plants through circular economy principles. Full article
(This article belongs to the Special Issue Driving Sustainable Agriculture Through Scientific Innovation)
Show Figures

Figure 1

15 pages, 4009 KiB  
Article
Metabolomic Profiling and Anti-Helicobacter pylori Activity of Caulerpa lentillifera (Sea Grape) Extract
by Chananchida Thacharoen, Thisirak Inkaewwong, Watthanachai Jumpathong, Pornchai Kaewsapsak, Thiravat Rattanapot and Tippapha Pisithkul
Mar. Drugs 2025, 23(7), 282; https://doi.org/10.3390/md23070282 - 7 Jul 2025
Viewed by 681
Abstract
Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract [...] Read more.
Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract from Caulerpa lentillifera (sea grape), a farm-cultivated edible green seaweed collected from Krabi Province, Thailand. Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) revealed that the extract was enriched in bioactive nucleosides and phenolic compounds. In vitro assays demonstrated dose-dependent inhibition of H. pylori growth following exposure to sea grape extract. Furthermore, untargeted intracellular metabolomic profiling of H. pylori cells treated with the extract uncovered significant perturbations in central carbon and nitrogen metabolism, including pathways associated with the tricarboxylic acid (TCA) cycle, one-carbon metabolism, and alanine, aspartate, and glutamate metabolism. Pyrimidine biosynthesis was selectively upregulated, indicating a potential stress-induced shift toward nucleotide salvage and DNA repair. Of particular note, succinate levels were markedly reduced despite accumulation of other TCA intermediates, suggesting disruption of electron transport-linked respiration. These findings suggest that bioactive metabolites from C. lentillifera impair essential metabolic processes in H. pylori, highlighting its potential as a natural source of antimicrobial agents targeting bacterial physiology. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 7077 KiB  
Article
Manufacturing Process of Stealth Unmanned Aerial Vehicle Exhaust Nozzles Based on Carbon Fiber-Reinforced Silicon Carbide Matrix Composites
by Byeong-Joo Kim, Jae Won Kim, Man Young Lee, Jong Kyoo Park, Nam Choon Cho and Cheul Woo Baek
Aerospace 2025, 12(7), 600; https://doi.org/10.3390/aerospace12070600 - 1 Jul 2025
Viewed by 400
Abstract
This study presents the development of a manufacturing process for a double-serpentine (DS) exhaust nozzle for unmanned aerial vehicles (UAVs) based on carbon fiber-reinforced silicon carbide matrix composites (C/SiCs). The DS nozzle is designed to reduce infrared emissions from hot exhaust plumes, a [...] Read more.
This study presents the development of a manufacturing process for a double-serpentine (DS) exhaust nozzle for unmanned aerial vehicles (UAVs) based on carbon fiber-reinforced silicon carbide matrix composites (C/SiCs). The DS nozzle is designed to reduce infrared emissions from hot exhaust plumes, a critical factor in enhancing stealth performance during UAV operations. The proposed nozzle structure was fabricated using a multilayer configuration consisting of an inner C/SiC layer for thermal and oxidation resistance, a silica–phenolic insulation layer to suppress heat transfer, and an outer carbon fiber-reinforced polymer matrix composite (CFRPMC) for mechanical reinforcement. The C/SiC layer was produced by liquid silicon infiltration, preceded by pyrolysis and densification of a phenolic-based CFRPMC preform. The final nozzle was assembled through precision machining and bonding of segmented components, followed by lamination of the insulation and outer layers. Mechanical and thermal property tests confirmed the structural integrity and performance under high-temperature conditions. Additionally, oxidation and ablation tests demonstrated the excellent durability of the developed C/SiC. The results indicate that the developed process is suitable for producing large-scale, complex-shaped, high-temperature composite structures for stealth UAV applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

10 pages, 435 KiB  
Communication
Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves
by Fernanda Rengel dos Passos, Mônica Lady Fiorese, Edson Antonio da Silva, Oscar de Oliveira Santos Junior, Lúcio Cardozo-Filho and Camila da Silva
Plants 2025, 14(13), 1956; https://doi.org/10.3390/plants14131956 - 26 Jun 2025
Viewed by 401
Abstract
The aim of this study was to use high-pressure extraction methods to obtain compounds of different classes from the leaves of Pereskia aculeata Mill. For this purpose, Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) were used. SFE was performed with Pereskia [...] Read more.
The aim of this study was to use high-pressure extraction methods to obtain compounds of different classes from the leaves of Pereskia aculeata Mill. For this purpose, Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) were used. SFE was performed with Pereskia aculeata leaves to evaluate the application of propane and carbon dioxide as solvents, and the residual biomass from this stage was used in PLE with hydroethanolic solvent. The extracts were characterized in relation to the content of phenolic compounds, antioxidant potential and content of nonpolar compounds. In the first stage, despite the low yield (1.09–1.94%) compared to PLE (16.56–19.26%), the extracts presented a high content of lipophilic compounds (squalene, octacosanol, α-tocopherol and β-sitosterol) compared to the PLE technique. The sequential extraction process benefited the greater recovery of phenolic compounds and extracts with greater antioxidant potential. Caffeic and nicotinic acids were the major compounds identified in the phenolic profile. The processes applied did not influence the protein content of the final extraction residue, which was similar to that of the in natura leaf. The results and approach demonstrate that sequential extraction is an excellent alternative for the use of Pereskia aculeata, which allows for the production of extracts with varied composition and/or extracts with greater recovery of compounds available in the plant. Full article
Show Figures

Graphical abstract

18 pages, 4247 KiB  
Article
Synergistic Effects of Pressure, Temperature, CO2 Flow Rate and Co-Solvent on Bioactive Contents of Thai Fingerroot (Boesenbergia rotunda (L.) Mansf.) Extracts
by Fahmi Ilman Fahrudin, Suphat Phongthai, Tri Indrarini Wirjantoro and Pilairuk Intipunya
Foods 2025, 14(13), 2189; https://doi.org/10.3390/foods14132189 - 23 Jun 2025
Viewed by 775
Abstract
This study investigated the use of supercritical carbon dioxide (CO2) to extract bioactive compounds from Thai fingerroot (Boesenbergia rotunda), focusing on the effects of pressure, temperature, CO2 flow rate, and ethanol co-solvent concentration. A central composite design within [...] Read more.
This study investigated the use of supercritical carbon dioxide (CO2) to extract bioactive compounds from Thai fingerroot (Boesenbergia rotunda), focusing on the effects of pressure, temperature, CO2 flow rate, and ethanol co-solvent concentration. A central composite design within a response surface methodology framework was employed to optimize the total extraction yield, total phenolic content (TPC), and total flavonoid content (TFC). Conventional ethanol maceration was used as a benchmark. High-performance liquid chromatography identified the major compounds in the extracts, such as pinostrobin and pinocembrin. The results showed that the yield, TPC, and TFC increased with higher pressure, CO2 flow rate, and co-solvent levels, whereas higher temperatures had a negative effect (p ≤ 0.05). Interactions between pressure and temperature favored the yield and TPC but not TFC. The optimal conditions—250 bar, 45 °C, 3 L/min CO2 flow rate, and 100% ethanol—produced a yield of 28.67%, TPC of 354.578 mg GAE/g, and TFC of 273.479 mg QE/g. These values exceeded those obtained using conventional extraction (9.91% yield, 332.86 mg GAE/g TPC, and 77.57 mg QE/g TFC at 60 min). The regression models showed strong predictive accuracy (R2 > 0.9). Pinostrobin and pinocembrin were the dominant phenolic compounds. These findings demonstrate the superior efficiency of supercritical CO2 extraction for isolating phenolic compounds from B. rotunda. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

14 pages, 1615 KiB  
Article
Investigation on the Properties of Phenolic-Resin-Based Functional Gradient Thermal Protection Composite Materials
by Jiangman Li, Weixiong Chen and Jianlong Chang
Aerospace 2025, 12(6), 536; https://doi.org/10.3390/aerospace12060536 - 13 Jun 2025
Cited by 1 | Viewed by 701
Abstract
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix [...] Read more.
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix (crosslinked phenolic resin). The thermal stability of the cured product was studied by a thermogravimetric analyser (TG and DTG). The mechanical properties, heat resistance, and ablation properties of the composites were tested. The ablation morphology, element analysis, and phase structure of the composites were analysed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD), respectively. The results show that the phenolic resin has a lower initial viscosity and a longer pot life at 80 °C, and a higher carbon residue rate (70.18%). The tensile strength of the composites is close to 40 MPa, the tensile modulus is higher than 1.35 GPa, the compression modulus is higher than 10 MPa, and the elongation at break is higher than 1.55%. SiO2, SiC, and ZrO2 ceramic phases were formed after ablation, which effectively improved the ablation performance of the composites. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

15 pages, 1742 KiB  
Article
Silicon Reduce Structural Carbon Components and Its Potential to Regulate the Physiological Traits of Plants
by Baiying Huang, Danghui Xu, Wenhong Zhou, Yuqi Wu and Wei Mou
Plants 2025, 14(12), 1779; https://doi.org/10.3390/plants14121779 - 11 Jun 2025
Viewed by 390
Abstract
Phosphorus (P) and silicon (Si) could profoundly affect the net primary productivity (ANPP) of grassland ecosystems. However, how ecosystem biomass will respond to different Si addition, especially under a concurrent increase in P fertilization, remains limited. With persistent demand for grassland utilization, there [...] Read more.
Phosphorus (P) and silicon (Si) could profoundly affect the net primary productivity (ANPP) of grassland ecosystems. However, how ecosystem biomass will respond to different Si addition, especially under a concurrent increase in P fertilization, remains limited. With persistent demand for grassland utilization, there is a need to enhance and sustain the productivity of grasslands on the Qinghai–Tibet Plateau. Three P addition rates (0, 400, 800, and 1200 kg Ca(H2PO4)2 ha−1 yr−1) without Si and with Si (14.36 kg H4SiO4 ha−1 yr−1) were applied to alpine grassland on the Qinghai–Tibet Plateau to evaluate the responses of aboveground biomass and the underlying mechanisms linking to structural carbon composition and physiological traits of grasses and forbs. Our results show that the application of Si significantly reduced the lignin, cellulose, hemicellulose, and total phenol contents of both grasses and forbs. Additionally, the addition of P, Si, and phosphorus and silicon (PSi) co-application significantly increased the net photosynthetic rate (Pn) and light use efficiency (LUE) of grasses and forbs. Moreover, Si promoted the absorption of N and P by plants, resulting in significant changes in the Si:C, Si:P, and Si:N ratios and increasing the aboveground biomass. Our findings suggest that Si can replace structural carbohydrates and regulate the absorption and utilization of N and P to optimize the photosynthetic process of leaves, thereby achieving greater biomass. In summary, Si supplementation improves ecosystem stability in alpine meadows by optimizing plant functions and increasing biomass accumulation. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
The Contribution of Microbial- and Plant-Derived Carbon to Soil Organic Carbon Fractions and Stability Under Manure Application Combined with Straw Incorporation
by Yunjie Wen, Xian Liu, Na Yang, Yongping Li and Jiancheng Zhang
Agronomy 2025, 15(6), 1424; https://doi.org/10.3390/agronomy15061424 - 11 Jun 2025
Viewed by 1083
Abstract
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each [...] Read more.
The integration of manure and straw substantially affects soil organic carbon (SOC) dynamics, transformation, and long-term stabilization in agricultural systems. Dissolved organic carbon (DOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) are the three main components of the SOC pool, each influencing soil carbon dynamics and nutrient cycling. Current research gaps remain regarding how combined fertilization practices affect the inputs of plant-originated and microbe-derived carbon into SOC pools and stability mechanisms. Our investigation measured SOC fractions (DOC, POC, MOC), SOC mineralization rate (SCMR), microbial necromass carbon, lignin phenols, enzyme activities, and microbial phospholipid fatty acids (PLFAs) over a long-term (17 years) field experiment with four treatments: mineral fertilization alone (CF), manure-mineral combination (CM), straw-mineral application (CS), and integrated manure-straw-mineral treatment (CMS). The CMS treatment exhibited notably elevated levels of POC (7.42 g kg−1), MOC (10.7 g kg−1), and DOC (0.108 g kg−1), as well as a lower SCMR value (1.85%), compared with other fertilization treatments. Additionally, the CMS treatment stimulated the buildup of both bacterial and fungal necromass while enhancing the concentrations of ligneous biomarkers (vanillin, syringyl, and cinnamic derivatives), which correlated strongly with the elevated contents of fungal and bacterial PLFAs and heightened activity of carbon-processing enzymes (α-glucosidase, polyphenol oxidase, cellobiohydrolase, peroxidase, N-acetyl-β-D-glucosidase). Furthermore, fungal and bacterial microbial necromass carbon, together with lignin phenols, significantly contributed to shaping the composition of SOC. Through random forest analysis, we identified that the contents of bacterial and fungal necromass carbon were the key factors influencing DOC and MOC. The concentrations of syringyl phenol and cinnamyl phenols, and the syringyl-to-cinnamyl phenols ratio were the primary determinants for POC, while the fungal-to-bacterial necromass carbon ratio, as well as the concentrations of vanillyl, syringyl, and cinnamyl phenols, played a critical role in SCMR. In conclusion, the manure combined with straw incorporation not only promoted microbial growth and enzyme activity but also enhanced plant- and microbial-derived carbon inputs. Consequently, this led to an increase in the contents and stability of SOC fractions (DOC, POC, and MOC). These results suggest that manure combined with straw is a viable strategy for soil fertility due to its improvement in SOC sequestration and stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 2402 KiB  
Article
Factors Influencing Step Ablation in the Expansion Section of a Composite Nozzle in a Solid Rocket Motor
by Jiming Cheng, Chunyu Zhang, Hang Yan, Xiping Feng and Guoqiang Zhu
Aerospace 2025, 12(6), 499; https://doi.org/10.3390/aerospace12060499 - 31 May 2025
Viewed by 495
Abstract
During the operation of a solid rocket motor, the nozzle, which is a key component, is subjected to extreme conditions, including high temperatures, high-speed gas flow, and discrete-phase particles. For composite nozzles incorporating a carbon/carbon (C/C) throat liner and a carbon/phenolic expansion section, [...] Read more.
During the operation of a solid rocket motor, the nozzle, which is a key component, is subjected to extreme conditions, including high temperatures, high-speed gas flow, and discrete-phase particles. For composite nozzles incorporating a carbon/carbon (C/C) throat liner and a carbon/phenolic expansion section, thermochemical ablation and the formation of ablation steps during the ablation process significantly hinder nozzle performance and engine operational stability. In this study, the fluid and solid domains and the physicochemical interactions between them during nozzle operation were analyzed. An innovative thermochemical ablation model for composite nozzles was developed to account for wall recession. The coupled model covered multi-component gas flow, heterogeneous chemical reactions on the nozzle surface, structural heat transfer, variations in material parameters induced by carbon/phenolic pyrolysis, and the dynamic recession process of the nozzle profile due to ablation. The model achieved coupling between gas flow, heterogeneous reactions, and structural heat transfer through interfacial mass and energy balance relationships. Based on this model, the distribution of the nozzle’s thermochemical ablation rate was analyzed to investigate the mechanisms underlying ablation step formation. Furthermore, detailed calculations and analyses were performed to determine the effects of the gas pressure, temperature, H2O concentration, and aluminum concentration in the propellant on the ablation rate of the throat liner and the thickness of the ablation steps. This study provides a theoretical foundation for the thermal protection design and performance optimization of composite nozzles, improving the reliability and service life of solid rocket motor nozzles and advancing technological development. Full article
Show Figures

Figure 1

15 pages, 3531 KiB  
Article
Carbonized Hemp Fiber for Use in Composites
by Sodiq B. Yusuf, Michael R. Maughan and Armando G. McDonald
Materials 2025, 18(11), 2509; https://doi.org/10.3390/ma18112509 - 27 May 2025
Viewed by 605
Abstract
This study investigates the use of carbonized hemp fiber (CHF) as a reinforcement for phenol resorcinol formaldehyde (PRF)-based fiber composites. The hemp fiber was carbonized slowly up to 1000 °C under N2 with a yield of 18%. Compression-molded composites were prepared with [...] Read more.
This study investigates the use of carbonized hemp fiber (CHF) as a reinforcement for phenol resorcinol formaldehyde (PRF)-based fiber composites. The hemp fiber was carbonized slowly up to 1000 °C under N2 with a yield of 18%. Compression-molded composites were prepared with CHF and then compared to hemp (HF) and wood fiber (WF) at 0 to 50% loading with PRF resin. The flow characteristics of the uncured composites were determined by dynamic rheology and showed pseudoplastic behavior; the composites show promise as extrudable materials. The flexural strength of the HF composites (69 MPa for 40% HF) was higher than the CHF composites. The thermal stability of the composites was determined by thermogravimetric analysis (TGA), and the CHF composites were more stable than the HF and WF composites. Carbonization was shown to enhance both the thermal stability and the hydrophobicity of the composites, which is expected to lead to less susceptibility to weathering and biological attack. Formulations of 50% WF, 50% CHF, and 30% HF fiber loadings with PRF were able to be extruded into rods. Extruded CHF composites showed better mechanical properties than the HF and WF composites. Full article
Show Figures

Graphical abstract

15 pages, 5737 KiB  
Article
Advanced Optimization of Optical Carbon Dioxide Sensor Through Sensitivity Enhancement in Anodic Aluminum Oxide Substrate
by Manna Septriani Simanjuntak, Rispandi and Cheng-Shane Chu
Polymers 2025, 17(11), 1460; https://doi.org/10.3390/polym17111460 - 24 May 2025
Viewed by 480
Abstract
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as [...] Read more.
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as the pH indicator. The QDs acted as the CO2-responsive fluorophore and were embedded in a polyimide butyl methacrylate (polyIBM) matrix. This sensing solution was applied to an anodized aluminum oxide (AAO) substrate, which provided a porous and stable platform for sensor fabrication. Photoluminescence measurements were conducted using the coated AAO substrate, with excitation from a 405 nm LED light source. The sensor exhibited red fluorescence emission at 570 nm and could detect CO2 concentrations in the linear range of 0–100%. Experimental results showed that fluorescence intensity increased with CO2 concentration, achieving a sensitivity of 211. A wavelength shift of 0.1657 nm/% was observed, indicating strong interactions among CO2 molecules, Phenol Red, and the QDs within the AAO matrix. The sensor demonstrated a response time of 55 s and a recovery time of 120 s. These results confirm the effectiveness of this optical sensing approach in minimizing fluctuations from the excitation light source and highlight the potential of the AAO-supported QDs and Phenol Red composite as a reliable CO2 sensing material. This advancement holds promise for applications in both medical and industrial fields. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

13 pages, 1887 KiB  
Article
Polymer-Based Thermal Protective Composites: The Role of Reinforcement and Matrix in Providing Strength and Fire Resistance
by Mohammed Meiirbekov, Assem Kuandyk, Mukhammed Sadykov, Meiir Nurzhanov, Nurmakhan Yesbolov, Berdiyar Baiserikov, Ilyas Ablakatov, Laura Mustafa, Botagoz Medyanova, Arman Kulbekov, Sunkar Orazbek and Abussaid Yermekov
Polymers 2025, 17(10), 1419; https://doi.org/10.3390/polym17101419 - 21 May 2025
Viewed by 587
Abstract
This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different [...] Read more.
This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different textile reinforcements under identical conditions. Seven technical fabrics—carbon, aramid, basalt, silica, fiberglass, asbestos, and a carbon/aramid hybrid—were used as reinforcements. Mechanical testing revealed that carbon- and hybrid fiber composites exhibited the highest tensile (up to 465 MPa) and compressive strengths (up to 301 MPa), particularly when combined with ER. Conversely, the use of PF generally resulted in a 30–50% reduction in mechanical strength. However, PF-based composites demonstrated superior thermal resistance, with the silica/PF combination showing the lowest back-face temperature (401 °C), up to 37% lower than other pairings. Thermal conductivity ranged from 0.041 to 0.51 W/m·K, with PF-based systems offering 6–12% lower values on average compared to ER-based analogs. Morphological analysis confirmed better interfacial bonding in ER composites, while PF systems showed higher structural integrity under thermal loading. Overall, the results emphasize the trade-offs between mechanical strength and thermal protection depending on the fabric–resin combination. Among all variants, the silica fabric with PF demonstrated the most balanced performance, making it a promising candidate for thermomechanical applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 8874 KiB  
Article
Oxidation Resistance, Ablation Resistance, and Ablation Mechanism of HfC–B4C-Modified Carbon Fiber/Boron Phenolic Resin Ceramizable Composites
by Hairun Wen, Wei Zhang, Zongyi Deng, Xueyuan Yang and Wenchao Huang
Polymers 2025, 17(10), 1412; https://doi.org/10.3390/polym17101412 - 20 May 2025
Viewed by 597
Abstract
Thermal protection materials with excellent performance are critical for hypersonic vehicles. Carbon fiber/phenolic resin composites (Cf/Ph) have been widely used as thermal protection materials due to their high specific strength and ease of processing. However, oxidative failure limits the extensive applications [...] Read more.
Thermal protection materials with excellent performance are critical for hypersonic vehicles. Carbon fiber/phenolic resin composites (Cf/Ph) have been widely used as thermal protection materials due to their high specific strength and ease of processing. However, oxidative failure limits the extensive applications of Cf/Ph in harsh environments. In this paper, a novel hafnium carbide (HfC) and boron carbide (B4C)-modified Cf/Ph was fabricated via an impregnating and compression molding route. The synergistic effect of HfC and B4C on the thermal stability, flexural strength, microstructure, and phase evolution of the ceramizable composite was studied. The resulting ceramizable composites exhibited excellent resistance to oxidative corrosion and ablation behavior. The residual yield at 1400 °C and the flexural strength after heat treatment at 1600 °C for 20 min were 46% and 54.65 MPa, respectively, with an increase of 79.59% in flexural strength compared to that of the composites without ceramizable fillers. The linear ablation rate (LAR) and mass ablation rate (MAR) under a heat flux density of 4.2 MW/m2 for the 20 s were as low as −8.33 × 10−3 mm/s and 3.08 × 10−2 g/s. The ablation mechanism was further revealed. A dense B–C–N–O–Hf ceramic layer was constructed in situ as an efficient thermal protection barrier, significantly reducing the corrosion of the carbon fibers. Full article
Show Figures

Graphical abstract

35 pages, 2409 KiB  
Review
Comparative Analysis of Electrochemical and Thermochemical Hydrogenation of Biomass-Derived Phenolics for Sustainable Biofuel and Chemical Production
by Halil Durak
Processes 2025, 13(5), 1581; https://doi.org/10.3390/pr13051581 - 19 May 2025
Viewed by 1017
Abstract
The electrocatalytic hydrogenation (ECH) of biomass-derived phenolic compounds is a promising approach to the production of value-added chemicals and biofuels in a sustainable way under moderate reaction conditions. This study provides a comprehensive comparison of electrochemical and thermochemical hydrogenation processes, highlighting their relative [...] Read more.
The electrocatalytic hydrogenation (ECH) of biomass-derived phenolic compounds is a promising approach to the production of value-added chemicals and biofuels in a sustainable way under moderate reaction conditions. This study provides a comprehensive comparison of electrochemical and thermochemical hydrogenation processes, highlighting their relative advantages in terms of energy efficiency, product selectivity, and environmental impact. Several electrocatalysts (Pt, Pd, Rh, Ru), membranes (Nafion, Fumasep, GO-based PEMs), and reactor configurations are tested for the selective conversion of model compounds such as phenol, guaiacol, furfural, and levulinic acid. The contributions made by the electrode material, electrolyte composition, membrane nature, and reaction conditions are critically evaluated in relation to Faradaic efficiency, conversion rates, and product selectivity. The enhancement in the performance achieved by a new catalyst architecture is emphasized, such as MOF-based systems and bimetallic/trimetallic catalysts. In addition, a demonstration of graphite-based membranes and membrane-separated slurry reactors (SSERs) is provided, for enhanced ion transport and reaction control. The results illustrate the potential of using ECH as a low-carbon, scalable, and tunable method for the upgrading of biomass. This study offers valuable insights and guidelines for the rational design of next-generation electrocatalytic systems toward green chemical synthesis and emphasizes promising perspectives for the strategic development of electrochemical technologies in the pathway of a sustainable energy economy. Full article
(This article belongs to the Special Issue Advances in Electrocatalysts for the OER, HER and Biomass Conversion)
Show Figures

Figure 1

23 pages, 4636 KiB  
Article
Effect of Metal Additives on the Structure, Morphology, and Adsorption Characteristics of the Composites: Silicon Monoxide/Phenol–Formaldehyde-Derived Carbon
by Mariia Galaburda, Agnieszka Chrzanowska, Dariusz Sternik, Malgorzata Zienkiewicz-Strzalka and Anna Derylo-Marczewska
Int. J. Mol. Sci. 2025, 26(10), 4770; https://doi.org/10.3390/ijms26104770 - 16 May 2025
Viewed by 417
Abstract
The role of metal additives in the synthesis of composite materials based on the silicon and carbon-containing materials to create the desired structural and adsorption properties is analyzed. A two-step procedure was applied to obtain a series of nanocomposites doped with metal oxides. [...] Read more.
The role of metal additives in the synthesis of composite materials based on the silicon and carbon-containing materials to create the desired structural and adsorption properties is analyzed. A two-step procedure was applied to obtain a series of nanocomposites doped with metal oxides. Various techniques were used to characterize the phase composition and the textural, structural, morphological, and thermal properties of the synthesized materials: X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nitrogen adsorption–desorption, and thermal analysis. The adsorption processes on the obtained nanocomposites were studied for aqueous solutions of aniline, benzoic acid, and phenol. The influence of the metal additives on the formation of carbonaceous structures, the adsorption efficiency, and the adsorption mechanism was determined. The synthesized composites show mesoporous and microporous structures, with varied proportions of both pore types. They are differentiated, taking into account the quality of the carbon material (defect density and degree of graphitization), which decreases in the Co > Ni > Cu > Zn > SiO line. The complex effect of the factors determining the adsorption mechanism and efficiency was investigated: textural, structural, and morphological characteristics and the role of the active metal centers. Generally, the results provide valuable insights into the adaptation of hybrid materials for various industrial applications and underline their versatility. Full article
Show Figures

Graphical abstract

Back to TopTop