Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = calculation of bending moment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1430 KiB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 98
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 314
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 308
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

32 pages, 21606 KiB  
Article
Calculation Method and Experimental Investigation of Root Bending Stress in Line Contact Spiral Bevel Gear Pairs
by Shiyu Zuo, Yuehai Sun, Liang Chen, Simin Li and Mingyang Wang
Machines 2025, 13(8), 632; https://doi.org/10.3390/machines13080632 - 22 Jul 2025
Viewed by 274
Abstract
Compared to spiral bevel gear drives with localized conjugation, line contact spiral bevel gears possess a significantly larger meshing area, theoretically achieving full tooth surface contact and substantially enhancing load capacity. To accurately support the root strength calculation and parameter design of line [...] Read more.
Compared to spiral bevel gear drives with localized conjugation, line contact spiral bevel gears possess a significantly larger meshing area, theoretically achieving full tooth surface contact and substantially enhancing load capacity. To accurately support the root strength calculation and parameter design of line contact spiral bevel gear drives, this paper presents a theoretical analysis and experimental study of the root bending stress of gear pairs. First, based on the analysis of the meshing characteristics of line contact spiral bevel gear pairs, the load distribution along the contact lines is investigated. Using the slicing method, the load distribution characteristics along the contact line are obtained, and the load sharing among multiple tooth pairs during meshing is further studied. Then, by applying a cantilever beam bending stress model, the root bending stress on such a gear drive is calculated. A root bending moment distribution model is proposed based on the characteristics of the line load distribution previously obtained, from which a formula for calculating root bending stress is derived. Finally, static-condition experiments are conducted to test the root bending stress. The accuracy of the proposed calculation method is verified through experimental testing and finite element analysis. The results of this study provide a foundation for designing lightweight and high-power-density spiral bevel gear drives. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

25 pages, 9567 KiB  
Article
Mechanical Characterization and Theoretical Study of Friction Pile Groups in Coastal Areas Based on Finite Element Analysis
by Jun Wu, Yanfeng Li, Jia Zhao, Guangzuo Feng, Yuanhui Li, Jialong Li and Jiaxu Jin
Buildings 2025, 15(14), 2556; https://doi.org/10.3390/buildings15142556 - 20 Jul 2025
Viewed by 203
Abstract
Field foundation pile loading tests were conducted in the context of an actual bridge pile foundation project. The test data were analyzed to determine the reasons for the variation in the complex geological conditions of the seashore. Moreover, finite element analysis was conducted [...] Read more.
Field foundation pile loading tests were conducted in the context of an actual bridge pile foundation project. The test data were analyzed to determine the reasons for the variation in the complex geological conditions of the seashore. Moreover, finite element analysis was conducted to evaluate the influence of pile length and diameter on the settlement of coastal friction foundation piles. Increasing the pile length from 65 m to 75 m reduced the settlement by 25.7%, while increasing the diameter from 1.5 m to 2.0 m led to a 35.9% reduction. Increasing the pile spacing reduced the amount of structural settlement. Group pile foundation pile spacings should be 2.5–3.0 D. Pile group superposition reduced the most obvious effects and the settlement reduction rate was the fastest. Under seismic conditions, the pile group foundation exhibited 5.60 times greater horizontal displacement, 3.57 times higher bending moment, and 5.30 times increased shear force relative to static loading. The formula for predicting the settlement of oversized friction pile group foundations was modified based on settlement values calculated using finite elements. The revised formula is suitable for calculating the settlement of friction pile group foundations in coastal areas. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 4099 KiB  
Article
Numerical Study of the Effect of Unsteady Aerodynamic Forces on the Fatigue Load of Yawed Wind Turbines
by Dereje Haile Hirgeto, Guo-Wei Qian, Xuan-Yi Zhou and Wei Wang
Machines 2025, 13(7), 607; https://doi.org/10.3390/machines13070607 - 15 Jul 2025
Viewed by 257
Abstract
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw [...] Read more.
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw offsets using blade element momentum theory, dynamic blade element momentum, and the converging Lagrange filaments vortex method, all implemented in OpenFAST. Simulations employed yaw angles from −40° to 40°, with turbulent inflow generated by TurbSim, an OpenFAST tool for realistic wind conditions. Fatigue loads were calculated according to IEC 61400-1 design load case 1.2 standards, using thirty simulations per yaw angle across five wind speed bins. Damage equivalent load was evaluated via rainflow counting, Miner’s rule, and Goodman correction. Results showed that the free vortex method, by modeling unsteady aerodynamic forces, yielded distinct differences in damage equivalent load compared to the blade element method in yawed conditions. The free vortex method predicted lower damage equivalent load for the low-speed shaft bending moment at negative yaw offsets, attributed to its improved handling of unsteady effects that reduce load variations. Conversely, for yaw offsets above 20°, the free vortex method indicated higher damage equivalent for low-speed shaft torque, reflecting its accurate capture of dynamic inflow and unsteady loading. These findings highlight the critical role of unsteady aerodynamics in fatigue load predictions and demonstrate the free vortex method’s value within OpenFAST for realistic damage equivalent load estimates in yawed turbines. The results emphasize the need to incorporate unsteady aerodynamic models like the free vortex method to accurately assess yaw offset impacts on wind turbine component fatigue. Full article
(This article belongs to the Special Issue Aerodynamic Analysis of Wind Turbine Blades)
Show Figures

Figure 1

27 pages, 5468 KiB  
Article
Numerical Modelling and Parametric Study of Steel-Concrete Composite Slim-Floor Flexural Beam Using Dowel Shear Connectors
by Xinxin Xu, Xianghe Dai and Dennis Lam
Infrastructures 2025, 10(6), 146; https://doi.org/10.3390/infrastructures10060146 - 13 Jun 2025
Viewed by 679
Abstract
The use of steel-concrete composite slim-floor beams with dowel shear connectors is uncommon, and the design rules provided in Eurocode 4 for composite construction are not directly applicable to the slim-floor composite beam. In this paper, a finite element model is developed, followed [...] Read more.
The use of steel-concrete composite slim-floor beams with dowel shear connectors is uncommon, and the design rules provided in Eurocode 4 for composite construction are not directly applicable to the slim-floor composite beam. In this paper, a finite element model is developed, followed by a parametric study that examines the effects of various shear connector parameters on the structural behaviour of composite beams. The comparison and analysis show that the load-bearing capacity increases with a bigger concrete dowel, as long as the shear connection degree is less than 100% and the dowel diameter is not greater than 80 mm; the load-bearing capacity goes up about 5–10% for every 10 N/mm2 increase in concrete strength and about 2% for every 4 mm increase in rebar diameter in the dowel; also, the dowel central spacing has a big impact on the structural behaviour. The composite beams showed great flexibility, with the end slip at the highest load being more than 6 mm and the maximum load declining by less than 15% when the midspan deflection reached L/30. The proposed calculation method for bending moment resistance is more than 90% accurate for composite beams that have a shear connection degree greater than 40%. The findings from this research provided more profound insights into the behaviour of this type of slim-floor composite beam. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

16 pages, 3925 KiB  
Article
Modeling of Non-Uniform Interference and Deformation Prediction for Riveting Assembly of Aircraft Thin-Walled Components
by Yuanfan Hu and Yongguo Zhu
Aerospace 2025, 12(6), 526; https://doi.org/10.3390/aerospace12060526 - 10 Jun 2025
Viewed by 362
Abstract
Current deformation modeling theories for aircraft thin-walled components in riveting assembly typically assume uniform rivet interference. However, engineering practice shows that rivet interference is non-uniform, and such interference directly affects the magnitude of thin-walled component deformation during riveting assembly. Therefore, this paper investigates [...] Read more.
Current deformation modeling theories for aircraft thin-walled components in riveting assembly typically assume uniform rivet interference. However, engineering practice shows that rivet interference is non-uniform, and such interference directly affects the magnitude of thin-walled component deformation during riveting assembly. Therefore, this paper investigates the deformation of aircraft thin-walled components caused by press riveting, models the non-uniform rivet interference for thin-walled components in riveting assembly, and conducts deformation prediction modeling. This paper performs stress analysis on the rivet shank to obtain the non-uniform distribution of riveting interference. Further, the non-uniform radial stress of the rivet shank and the bending moment of thin-walled components are derived. Using the thin plate theory, the deformation of aircraft thin-walled components in riveting assembly is calculated. The prediction model is applied to thin-walled component models with single-row and double-row riveting assemblies. Results show that the proposed prediction model is more accurate. Specifically, compared with traditional methods, the prediction accuracy of each index from this model is improved by over 29%. Full article
Show Figures

Figure 1

15 pages, 3488 KiB  
Article
Prediction of Large Springback in the Forming of Long Profiles Implementing Reverse Stretch and Bending
by Mohammad Reza Vaziri Sereshk and Hamed Mohamadi Bidhendi
J. Exp. Theor. Anal. 2025, 3(2), 16; https://doi.org/10.3390/jeta3020016 - 6 Jun 2025
Viewed by 303
Abstract
Springback represents the deflection of a workpiece after releasing the forming tools or dies, which influences the quality and precision of the final products. It is basically governed by the elastic strain recovery of the material after unloading. Most approaches only implement reverse [...] Read more.
Springback represents the deflection of a workpiece after releasing the forming tools or dies, which influences the quality and precision of the final products. It is basically governed by the elastic strain recovery of the material after unloading. Most approaches only implement reverse bending to determine the final shape of the formed product. However, stretch plays significant role whe the blank is held by a blank holder. In this paper, an algorithm is presented to calculate the contributions of both stretch loads and bending moments to elastic deformation during springback for each element, and to combine them mathematically and geometrically to achieve the final shape of the product. Comparing the results of this algorithm for different sheet metal forming processes with experimental measurements demonstrates that this technique successfully predicts a wide range of springback with reasonable accuracy. The advantage of this approach is its accuracy, which is not sensitive to hardening and softening mechanisms, the magnitude of plastic deformation during the forming process, or the size of the object. The application of the proposed formulation is limited to long profiles (plane-strain cases). However, it can be extended to more general applications by adding the effect of torsion and developing equations in 3D space. Due to the explicit nature of the calculations, data-processing time would be reduced significantly compared to the sophisticated algorithms used in commercial software. Full article
Show Figures

Figure 1

20 pages, 2733 KiB  
Article
Study on Semi-Rigid Joint Performance and Stability Bearing Capacity of Disc-Type Steel Pipe Support
by Fankui Zeng, Guoxin Zou, Meng Ji and Jianhua Zhang
Buildings 2025, 15(11), 1955; https://doi.org/10.3390/buildings15111955 - 4 Jun 2025
Viewed by 331
Abstract
The current lack of standardized calculation methods for disc-buckle-type steel pipe supports, coupled with unsafe calculation length coefficients, has resulted in frequent safety incidents leading to severe casualties and economic losses. In this paper, the semi-rigidity characteristics of joints were investigated through the [...] Read more.
The current lack of standardized calculation methods for disc-buckle-type steel pipe supports, coupled with unsafe calculation length coefficients, has resulted in frequent safety incidents leading to severe casualties and economic losses. In this paper, the semi-rigidity characteristics of joints were investigated through the field bending test of disc-buckle steel pipe supports. Through analysis of the bending moment–rotation curves obtained from these tests, accurate initial bending stiffness values and a calculation model for semi-rigid joints were established. Numerical simulation and analytical correction method were employed to determine the effective length correction coefficient μ0 under various erection parameters while accounting for joint semi-rigidity. The findings indicate that the slenderness ratio derived by the revised effective length coefficient is 8.13% greater than the standard value, primarily because current standards fail to adequately consider the constraint effect of the crossbar. The correction coefficient proposed in this paper provides a theoretical foundation for the safe construction of disc-type steel pipe supports, and holds significant value for engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 8650 KiB  
Article
Separating the Location and Severity Effects in Frequency-Based Crack Detection Using the Dynamic Stiffness Matrix
by Julian De Los Rios, Sinniah Ilanko, Yusuke Mochida and David Kennedy
J. Exp. Theor. Anal. 2025, 3(2), 13; https://doi.org/10.3390/jeta3020013 - 9 May 2025
Viewed by 343
Abstract
The Dynamic Stiffness Matrix (DSM) of a structure is a frequency-dependent stiffness matrix relating the actions (forces and moments) and displacements (translations and rotations) when the structure vibrates at a given frequency. The DSM may be used to find the natural frequencies, modes, [...] Read more.
The Dynamic Stiffness Matrix (DSM) of a structure is a frequency-dependent stiffness matrix relating the actions (forces and moments) and displacements (translations and rotations) when the structure vibrates at a given frequency. The DSM may be used to find the natural frequencies, modes, and structural response. For many structures, including skeletal frames of prismatic members, exact transcendental expressions for the DSM are readily available. This paper presents a mathematical proof of a linear determinantal relationship between the DSM of a skeletal frame when it is undamaged, cracked, and hinged at the crack location. The rotational stiffness or flexibility of the crack also appears as a linear term. This relationship gives, for the first time, an explicit equation to directly calculate the stiffness of the rotational spring representing a crack from measured natural frequencies for any potential crack location. Numerical examples demonstrate that computing the DSM of the intact and hinged structures gives an efficient solution method for the inverse problem of identifying crack location and severity. This paper also shows that an approximate DSM based on a finite element model can be used in the same way, making this procedure more versatile. Furthermore, new approximate expressions for the natural frequencies of structures with very small or very severe cracks are derived. An interesting relationship between the square of the bending moment in an undamaged beam and the determinant of the DSM of a hinged beam is also derived. This relationship, which can also be inferred from previous work, leads to a better understanding of the effect of crack location in specific vibration modes. Full article
Show Figures

Figure 1

28 pages, 6643 KiB  
Article
Machine-Learning-Driven Approaches for Assessment, Delegation, and Optimization of Multi-Floor Building
by Abtin Baghdadi and Harald Kloft
Buildings 2025, 15(9), 1565; https://doi.org/10.3390/buildings15091565 - 6 May 2025
Viewed by 422
Abstract
This study presents a novel integrated framework for the structural analysis and optimization of multi-floor buildings by combining validated theoretical models with machine learning and evolutionary algorithms. The proposed Process–Action–Response System (PARS-Solution) accurately computes key structural responses—such as deformations, shear forces, and bending [...] Read more.
This study presents a novel integrated framework for the structural analysis and optimization of multi-floor buildings by combining validated theoretical models with machine learning and evolutionary algorithms. The proposed Process–Action–Response System (PARS-Solution) accurately computes key structural responses—such as deformations, shear forces, and bending moments—based on eleven critical design parameters (P1 to P11). The significance of this research lies in its ability to automate and accelerate complex structural analysis using Adaptive Neuro-Fuzzy Inference Systems (ANFISs), achieving an average error of less than 2% in multi-variable prediction scenarios. The results were compared against reference calculations and ETABS simulations to validate its effectiveness, demonstrating deviations of less than 3%. The methodology combines MATLAB-based coding, interpolation from verified reference diagrams, and iterative stiffness adjustment across floors, offering transparency and accuracy. Optimization is performed using Multi-Objective Particle Swarm Optimization (MOPSO), enabling efficient exploration of Pareto-optimal solutions that balance deformation and material usage. Extensive parametric studies reveal the dominant impact of core wall dimensions and floor number on structural efficiency, while the application of stiffness reduction factors (e.g., P11) proves effective in reducing material without compromising performance. This hybrid approach enables the delegation of labor-intensive calculations to a trained ANFIS model and supports rapid pre-validation of structural configurations in early design phases. As such, the framework offers a powerful data-driven tool for engineers seeking optimal, lightweight, and high-performance solutions in high-rise building design. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 3664 KiB  
Article
Theoretical Insights into Twist–Bend Nematic Liquid Crystals: Infrared Spectra Analysis of Naphthalene-Based Dimers
by Barbara Loska, Yuki Arakawa and Katarzyna Merkel
Materials 2025, 18(9), 1971; https://doi.org/10.3390/ma18091971 - 26 Apr 2025
Viewed by 999
Abstract
In this study, we employed density functional theory (DFT), a standard method in quantum chemistry, to investigate the structural intricacies of thioether-linked naphthalene-based liquid-crystal dimers. The theoretical analysis included the calculation of the molecular bend angle, a crucial factor influencing the formation of [...] Read more.
In this study, we employed density functional theory (DFT), a standard method in quantum chemistry, to investigate the structural intricacies of thioether-linked naphthalene-based liquid-crystal dimers. The theoretical analysis included the calculation of the molecular bend angle, a crucial factor influencing the formation of the twist–bend nematic (NTB) phase, as well as other molecular parameters such as transition dipole moments, bond lengths, and bond energies. These calculations allowed for the determination of the probable conformations and the computation of their vibrational spectra, which are essential for interpreting experimental spectra. Connecting these insights, we identified stable conformations and observed differences in the spectra between the conventional nematic (N) and NTB phases. The combined DFT calculations and infrared absorbance measurements allowed us to investigate the structure and intermolecular interactions of molecules in the N and NTB phases of the dimers. Notably, significant changes in average absorbance were detected in the experimental spectra in the NTB phase. During the transition from the N phase to the NTB phase, a clear decrease in absorbance for longitudinal dipoles and an increase for transverse dipoles were observed. This phenomenon suggests that longitudinal dipoles are antiparallel, while transverse dipoles are parallel. To verify the influence of nearest-neighbor interactions, DFT calculations were conducted on a system comprising several neighboring molecules. Full article
(This article belongs to the Special Issue Liquid Crystals and Other Partially Disordered Molecular Systems)
Show Figures

Graphical abstract

28 pages, 12901 KiB  
Article
Cracking Behavior of Fiber-Reinforced Concrete Beams Made of Waste Sand
by Jacek Domski, Joanna Laskowska-Bury and Anna Dudzińska
Appl. Sci. 2025, 15(9), 4790; https://doi.org/10.3390/app15094790 - 25 Apr 2025
Viewed by 351
Abstract
This report presents the results of cracking tests on concrete beams. The test specimens were created in ten different series. Each series comprised two beams, six cylinders, and twelve cubic samples intended for the determination of strength properties. These samples varied in terms [...] Read more.
This report presents the results of cracking tests on concrete beams. The test specimens were created in ten different series. Each series comprised two beams, six cylinders, and twelve cubic samples intended for the determination of strength properties. These samples varied in terms of the type of concrete mixture (fiber-reinforced fine aggregate concrete and plain concrete), the applied steel fibers (50/0.8 mm and 30/0.55 mm), the longitudinal reinforcement ratio in beams (0.6%, 0.9%, 1.3%, and 1.8%), and the inclusion (or exclusion) of compressed reinforcement and vertical stirrups. The fine aggregate concrete was made from waste sand, which is a byproduct of the hydroclassification process of gravel. The use of this sand in fiber concrete will help reduce the exploitation of natural resources and lower carbon dioxide emissions. Based on four-point beam bending tests, the study experimentally determined cracking moments, crack spacing, and crack width. Additionally, these results were compared with calculations proposed by L. Vandewalle and Domski, as well as with the methods outlined in Eurocode 2. The analyses conducted show that the best agreement between the research results and the calculations was obtained for Domski’s proposal. It follows that the average percentage error was 38.4%, indicating the safe use of this method. Full article
Show Figures

Figure 1

26 pages, 9513 KiB  
Article
Dynamic Response of Beams Under Random Loads
by Mario Rosario Chiarelli
Mathematics 2025, 13(8), 1322; https://doi.org/10.3390/math13081322 - 17 Apr 2025
Viewed by 532
Abstract
In engineering, the study of the dynamic response of structures subjected to non-deterministically variable loads is particularly important, especially when considering the damage that such loads can cause due to fatigue phenomena. This is the case, for example, of the vibrations that a [...] Read more.
In engineering, the study of the dynamic response of structures subjected to non-deterministically variable loads is particularly important, especially when considering the damage that such loads can cause due to fatigue phenomena. This is the case, for example, of the vibrations that a satellite must withstand during the launch phase. In the preliminary design phases, it is very useful to have semi-analytical calculation methodologies that are sufficiently reliable but, at the same time, simple. In the technical literature, there are numerous publications that deal with the study of the random dynamic response of beam models. In general, the presented studies are rather complex, and the dynamic solutions are often obtained in the time domain. The case of a linear elastic uniform cantilever beam model is considered here, for which the analytical expressions of the transfer functions for acceleration, displacement, bending moment, and bending stress are calculated, taking as input the acceleration assigned to the root section or an external lateral load. Knowing the spectral density of the input loads, the spectral densities of all the above-mentioned variables are calculated along the beam axis, assuming stationary and ergodic random processes. Using the spectral density of each output variable, the effective value (RMS) is obtained via integration, which allows for a preliminary estimate of the severity of the working conditions of the beam. The spectral density of the responses also allows us to quickly highlight the contribution of each natural vibration mode as the spectrum of the load varies. The results were obtained using simple spreadsheets available to the reader. Full article
(This article belongs to the Special Issue Numerical Analysis and Finite Element Method with Applications)
Show Figures

Figure 1

Back to TopTop