Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (349)

Search Parameters:
Keywords = cable rating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2870 KiB  
Article
Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action
by Yan Shi, Yan Wang, Lu-Nan Wang, Wei-Nan Wang and Tao-Yuan Yang
Buildings 2025, 15(15), 2733; https://doi.org/10.3390/buildings15152733 - 2 Aug 2025
Viewed by 168
Abstract
The displacement of bridge towers is relatively large under strong wind action. Changes in tower displacement can reflect the usage status of the bridge towers. Therefore, it is necessary to conduct performance warning research on tower displacement under strong wind action. In this [...] Read more.
The displacement of bridge towers is relatively large under strong wind action. Changes in tower displacement can reflect the usage status of the bridge towers. Therefore, it is necessary to conduct performance warning research on tower displacement under strong wind action. In this paper, the triple standard deviation method, multiple linear regression method, and interpolation method are used to preprocess monitoring data with skipped points and missing anomalies. An improved multi-rate data fusion method, validated using simulated datasets, was applied to correct monitoring data at bridge tower tops. The fused data were used to feed predictive models and generate structural performance alerts. Spectral analysis confirmed that the fused displacement measurements achieve high precision by effectively merging the low-frequency GPS signal with the high-frequency accelerometer signal. Structural integrity monitoring of wind-loaded bridge towers used modeling residuals as alert triggers. The efficacy of this proactive monitoring strategy has been quantitatively validated through statistical evaluation of alarm accuracy rates. Full article
Show Figures

Figure 1

16 pages, 3620 KiB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 173
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 5535 KiB  
Article
Research on Power Cable Intrusion Identification Using a GRT-Transformer-Based Distributed Acoustic Sensing (DAS) System
by Xiaoli Huang, Xingcheng Wang, Han Qin and Zhaoliang Zhou
Informatics 2025, 12(3), 75; https://doi.org/10.3390/informatics12030075 - 21 Jul 2025
Viewed by 446
Abstract
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch [...] Read more.
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch parallel collaborative architecture: two branches employ Gramian Angular Summation Field (GASF) and Recursive Pattern (RP) algorithms to convert one-dimensional intrusion waveforms into two-dimensional images, thereby capturing rich spatial patterns and dynamic characteristics and the third branch utilizes a Gated Recurrent Unit (GRU) algorithm to directly focus on the temporal evolution features of the waveform; additionally, a Transformer component is integrated to capture the overall trend and global dependencies of the signals. Ultimately, the terminal employs a Bidirectional Long Short-Term Memory (BiLSTM) network to perform a deep fusion of the multidimensional features extracted from the three branches, enabling a comprehensive understanding of the bidirectional temporal dependencies within the data. Experimental validation demonstrates that the GRT-Transformer achieves an average recognition accuracy of 97.3% across three typical intrusion events—illegal tapping, mechanical operations, and vehicle passage—significantly reducing false alarms, surpassing traditional methods, and exhibiting strong practical potential in complex real-world scenarios. Full article
Show Figures

Figure 1

14 pages, 2512 KiB  
Article
Research on Two-Stage Data Compression at the Acquisition Node in Remote-Detection Acoustic Logging
by Xiaolong Hao, Yangtao Hu, Bingnan Yan, Hang Hui, Yunxia Chen and Bingqi Zhang
Sensors 2025, 25(14), 4512; https://doi.org/10.3390/s25144512 - 21 Jul 2025
Viewed by 266
Abstract
The substantial volume of data acquired through remote-detection acoustic logging poses a remarkable challenge because of the limited real-time upload speed of the cable, which severely impedes its further application. To address this issue, a two-stage data compression method that was implemented at [...] Read more.
The substantial volume of data acquired through remote-detection acoustic logging poses a remarkable challenge because of the limited real-time upload speed of the cable, which severely impedes its further application. To address this issue, a two-stage data compression method that was implemented at the acquisition node was proposed in this study. This approach includes a field programmable gate array (FPGA)-based hardware system and a two-stage downhole data compression algorithm combining wavelet transform and adaptive differential pulse-code modulation paired with ground decompression software. Finally, the proposed compression method was evaluated using actual logging data. The test results revealed that the overall compression rate of the two-stage compression method was 25.1%. The reconstructed waveforms highly retained the overall shape of the original waveforms, and the severe relative distortion of individual data points did not affect the extraction of the sliding longitudinal, sliding transverse and reflected waveforms. The FPGA compressed 2048 16-bit waveforms in approximately 100 μs with low resource utilization and workload. It considerably outperformed DSP-based pre-transmission compression. Herein, the data compression method at the acquisition node helped in reducing the workload on the master control node and increasing the effective speed of the cable transmission up to 400%, thereby enhancing the remote-detection acoustic logging. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 8131 KiB  
Article
Rapid Dismantling of Aluminum Stranded Conductors: An Automated Approach
by Zhinan Cao, Jie Feng, Shijun Xie, Qian Peng, Jiahui Chen, Cheng Wen and Jigang Huang
Machines 2025, 13(7), 608; https://doi.org/10.3390/machines13070608 - 15 Jul 2025
Viewed by 278
Abstract
Currently, the dismantling of aluminum stranded conductors remains predominantly manual due to their structural complexity. To enhance the efficiency and reduce the labor intensity for dismantling aluminum stranded conductors, this study presents an innovative torque-driven dismantling method validated through dynamic simulation analysis. To [...] Read more.
Currently, the dismantling of aluminum stranded conductors remains predominantly manual due to their structural complexity. To enhance the efficiency and reduce the labor intensity for dismantling aluminum stranded conductors, this study presents an innovative torque-driven dismantling method validated through dynamic simulation analysis. To demonstrate the proposed method, a modular prototype machine that includes four main functional modules (transmission, untwisting, separation, and shearing) was developed. Experimental results from the prototype dismantling machine demonstrated that when processing JL/G3A-500/65 conductors (Sichuan Star Cable Co., Ltd., Leshan, China) under the following operational parameters—0.5 rad/s rotational speed, 10 cm extension length, 2400 N clamping force, and 40 N·m torque application—the system achieved a single-layer dismantling efficiency exceeding 98%. This represents a significant improvement in operational speed compared to traditional manual methods. The developed machine achieved collaborative control of axial feed, reverse untwisting, and automatic shearing, elevating the untwisting qualification rate to 95%. This solution provides an efficient and safe approach to conductor inspection, demonstrating substantial engineering application value. Full article
Show Figures

Figure 1

13 pages, 3785 KiB  
Article
Experimental Investigation of Flame Spread Characteristics in Cable Fires Within Covered Trays Under Different Tilt Angles
by Changkun Chen, Yipeng Bao, Boyuan Zuo, Jia Zhang and Yuhuai Wang
Fire 2025, 8(7), 272; https://doi.org/10.3390/fire8070272 - 11 Jul 2025
Viewed by 465
Abstract
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used [...] Read more.
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used as the test cables. The flame morphology, temperature distribution, and fire spread rate during the cable combustion process were analyzed for experimental scenarios for which the cable laying angles and the ignition positions changed. The results indicate that the inclination angle of the covered cable tray has a significant impact on flame propagation and temperature distribution. For the ignition located at the lowest part of the cable, the fire spread rate increases significantly with the tilt angle. In contrast, for the ignition located at the highest part of the cable, the fire spread rate initially decreases slightly and then increases, with a relatively smaller overall change in magnitude. Under both ignition positions, the flame spread rate significantly increases at 15–30°. Therefore, in actual cable installation processes, cables within covered troughs should avoid large-angle inclinations. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

16 pages, 10934 KiB  
Article
Visualization Monitoring and Safety Evaluation of Turnout Wheel–Rail Forces Based on BIM for Sustainable Railway Management
by Xinyi Dong, Yuelei He and Hongyao Lu
Sensors 2025, 25(14), 4294; https://doi.org/10.3390/s25144294 - 10 Jul 2025
Viewed by 368
Abstract
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating [...] Read more.
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating lines without marking train operation lines is relatively low. To enhance the efficiency of turnout safety monitoring, in this study, a three-dimensional BIM model of the No. 42 turnout was established and a corresponding wheel–rail force monitoring scheme was devised. Collision detection for monitoring equipment placement and construction process simulation was conducted using Navisworks, such that the rationality of cable routing and the precision of construction sequence alignment were improved. A train wheel–rail force analysis program was developed in MATLAB R2022b to perform signal filtering, and static calibration was applied to calculate key safety evaluation indices—namely, the coefficient of derailment and the rate of wheel load reduction—which were subsequently analyzed. The safety of the No. 42 turnout and the effectiveness of the proposed monitoring scheme were validated, theoretical support was provided for train operational safety and turnout maintenance, and technical guidance was offered for whole-life-cycle management and green, sustainable development of railway infrastructure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 482
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

15 pages, 4884 KiB  
Article
Influence of Cable Spacing on Flame Interaction and Combustion Characteristics of Parallel Thermoplastic Cables
by Rongshui Qin, Xiangxiang Zhang, Yuyao Li, Jinchao Wei, Chao Ding and Yan Jiao
Fire 2025, 8(7), 258; https://doi.org/10.3390/fire8070258 - 30 Jun 2025
Viewed by 357
Abstract
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, [...] Read more.
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, including flame merging behavior, flame morphology, mass loss rate, flame spread rate, flame temperature, and radiant heat flux, were analyzed. The results revealed that cable spacing critically affects flame interaction, with three distinct flame merging modes—continuous merging, intermittent merging, and non-merging—identified as spacing increases. A critical spacing of 2.5 mm was found, at which the flame spread rate and mass loss rate reached their maximum, approximately 1.7 times higher than that of a single cable. At intermediate spacings (2.5–12.5 mm), enhanced flame interaction and radiative feedback significantly intensified combustion, leading to higher flame temperatures and radiant heat peaks. Conversely, insufficient oxygen supply at zero spacing and reduced flame interaction at large spacings (15 mm) resulted in diminished combustion efficiency. These findings highlight the importance of cable spacing as a key design parameter for mitigating fire hazards in electrical installations, providing valuable insights for fire safety engineering and risk assessment. Full article
(This article belongs to the Special Issue Cable and Wire Fires)
Show Figures

Figure 1

20 pages, 12338 KiB  
Article
Study on the Evolution Characteristics of Surrounding Rock and Differentiated Support Design of Dynamic Pressure Roadway with Double-Roadway Arrangement
by Linjun Peng, Shixuan Wang, Wei Zhang, Weidong Liu and Dazhi Hui
Appl. Sci. 2025, 15(13), 7315; https://doi.org/10.3390/app15137315 - 29 Jun 2025
Viewed by 349
Abstract
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue [...] Read more.
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue of resource wastage resulting from the excessive dimensions of coal pillars in prior periods by employing a research methodology that integrates theoretical analysis, numerical simulation, and field monitoring to systematically examine the movement characteristics of overlying rock in the working face. On that basis, the size of coal pillar is optimized. The advance’s stress transfer law and deformation distribution characteristics of the return air roadway and transport roadway are studied. The cause of the asymmetric deformation of roadway retention is explained. A differentiated design is conducted on the support parameters of double-roadway bolts and cables under strong dynamic pressure conditions. The study indicates that a 16 m coal pillar results in an 8 m elastic zone at its center, balancing stability with optimal resource extraction. In the basic top-sloping double-block conjugate masonry beam structure, the differing stress levels between the top working face’s transport roadway and the lower working face’s return air roadway are primarily due to the varied placements of key blocks. In the return air roadway, floor heave deformation is managed using locking anchor rods, while roof subsidence is controlled with a constant group of large deformation anchor cables. The displacement of surrounding rock increases under the influence of both leading and lagging pressures from the previous working face, although the change is minimal. There is a significant correlation between roadway deformation and support parameters and coal pillar size. With a 16 m coal pillar, differential support of the double roadway lowers the return air roadway deformation by 30%, which improves the mining rate and effectively controls the deformation of the roadway. Full article
Show Figures

Figure 1

13 pages, 4704 KiB  
Article
Freshwater Thin Ice Sheet Monitoring and Imaging with Fiber Optic Distributed Acoustic Sensing
by Meghan Quinn, Adrian K. Doran, Constantine Coclin, Levi Cass and Heath Turner
Glacies 2025, 2(3), 7; https://doi.org/10.3390/glacies2030007 - 21 Jun 2025
Viewed by 696
Abstract
Fiber optic distributed acoustic sensing (DAS) technology can monitor vibrational strain of vast areas with fine spatial resolution at high sampling rates. The fiber optic cable portion of DAS may directly monitor, measure, and map potentially unsafe areas such as thin ice sheets. [...] Read more.
Fiber optic distributed acoustic sensing (DAS) technology can monitor vibrational strain of vast areas with fine spatial resolution at high sampling rates. The fiber optic cable portion of DAS may directly monitor, measure, and map potentially unsafe areas such as thin ice sheets. Once the fiber optic cable is emplaced, DAS can provide “rapid-response” information along the cable’s length through remote sampling. A field campaign was performed to test the sensitivity of DAS to spatial variations within thin ice sheets. A pilot field study was conducted in the northeastern United States in which fiber-optic cable was deployed on the surface of a freshwater pond. Phase velocity transformations were used to analyze the DAS response to strike testing on the thin ice sheet. The study results indicated that the ice sheet was about 5 cm thick generally, tapering to about 3.5 cm within 2 m of the pond’s edge and then disappearing at the margins. After validation of the pilot study’s methodology, a follow-up experiment using DAS to collect on a rapidly deployed, surface-laid cable atop a larger freshwater pond was conducted. Using phase velocity transformations, the ice thickness along the fiber optic cable was estimated to be between 25.5 and 28 cm and confirmed via ice auger measurements along the fiber optic cable. This field campaign demonstrates the feasibility of employing DAS systems to remotely assess spatially variable properties on thin freshwater ice sheets. Full article
Show Figures

Figure 1

18 pages, 6117 KiB  
Article
Numerical Analysis of Conditions for Partial Discharge Inception in Spherical Gaseous Voids in XLPE Insulation of AC Cables at Rated Voltage and During AC, VLF and DAC Tests
by Paweł Mikrut and Paweł Zydroń
Energies 2025, 18(11), 2949; https://doi.org/10.3390/en18112949 - 4 Jun 2025
Viewed by 506
Abstract
AC power cables play an important role in power systems, in the transmission and distribution of electrical energy. For this reason, to ensure high operational reliability, voltage withstand tests and diagnostic tests are performed at every stage of their technical life to determine [...] Read more.
AC power cables play an important role in power systems, in the transmission and distribution of electrical energy. For this reason, to ensure high operational reliability, voltage withstand tests and diagnostic tests are performed at every stage of their technical life to determine the condition of cable insulation. Due to the large electrical capacitances of cable systems, modern testing methods use very low frequency (VLF) and damped oscillating (DAC) voltages. The research presented in the article analyzed the effect of the test voltage waveform parameters on the partial discharge (PD) inception conditions in spherical gaseous voids present in the XLPE insulation of AC cable model. Using COMSOL 6.1 and MATLAB R2021b, a coupled electro-thermal model of a 110 kV AC cable was implemented, for which the critical gaseous void dimensions were estimated and phase-resolved PD patterns were generated for the rated voltage and the VLF and DAC test voltages specified in the relevant standards. In the analyses for the rated voltage, the influence of internal temperature distribution, which causes modification of XLPE permittivity, was taken into account in the numerical cable model. Full article
Show Figures

Figure 1

31 pages, 4895 KiB  
Article
Dynamic Analysis and Experimental Research on Anti-Swing Control of Distributed Mass Payload for Marine Cranes
by Guoliang Jin, Shenghai Wang, Yufu Gao, Maokai Sun, Haiquan Chen and Yuqing Sun
J. Mar. Sci. Eng. 2025, 13(6), 1112; https://doi.org/10.3390/jmse13061112 - 2 Jun 2025
Viewed by 464
Abstract
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes [...] Read more.
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes a dynamic coupling model considering ship roll and pitch environmental excitations. Then, under the maximum environmental excitation set in the experiment, the flexible cable parallel anti-swing system achieves swing suppression rates of 41.0% and 58.0% for the in-plane and out-of-plane angles of the DMP with regular geometric shape and mass distribution, respectively. For the DMP with irregular geometry and mass distribution, the suppression rates are 48.4% and 39.3% for the in-plane and out-of-plane angles, respectively. It is found that, after adjusting the lifting method and increasing the distance between the lifting points, the maximum in-plane angle of the payload decreases by 2.3%, while the out-of-plane angle maximum decreases by 52.0%. These results demonstrate the effectiveness of adjusting lifting methods in suppressing swing for irregular DMPs, thereby verifying the reliability and applicability of the flexible cable parallel anti-swing system and providing a reference for improving anti-swing performance and lifting efficiency in offshore DMP operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 4413 KiB  
Article
Autonomous Control of Electric Vehicles Using Voltage Droop
by Hanchi Zhang, Rakesh Sinha, Hessam Golmohamadi, Sanjay K. Chaudhary and Birgitte Bak-Jensen
Energies 2025, 18(11), 2824; https://doi.org/10.3390/en18112824 - 29 May 2025
Viewed by 384
Abstract
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on [...] Read more.
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on Denmark’s residential distribution networks. A residential grid comprising 67 households powered by a 630 kVA transformer is studied using DiGSILENT PowerFactory. With the assumption of simultaneous charging of all EVs, the transformer can be heavily loaded up to 147.2%. Thus, a voltage-droop based autonomous control approach is adopted, where the EV charging power is dynamically adjusted based on the point-of-connection voltage of each charger instead of the fixed rated power. This strategy eliminates overloading of the transformers and cables, ensuring they operate within a pre-set limit of 80%. Voltage drops are mitigated within the acceptable safety range of ±10% from normal voltage. These results highlight the effectiveness of the droop control strategy in managing EV charging power. Finally, it exemplifies the benefits of intelligent EV charging systems in Horizon 2020 EU Projects like SERENE and SUSTENANCE. The findings underscore the necessity to integrate smart control mechanisms, consider reinforcing grids, and promote active consumer participation to meet the rising demand for a low-carbon future. Full article
Show Figures

Figure 1

13 pages, 4557 KiB  
Article
Study on the Ground Pressure Manifestation Patterns of Roof Cutting and Pressure Relief
by Runhu Zheng, Bingyuan Hao, Chaoyao Shi and Tongxi Li
Appl. Sci. 2025, 15(11), 6049; https://doi.org/10.3390/app15116049 - 28 May 2025
Cited by 1 | Viewed by 311
Abstract
Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 [...] Read more.
Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 at Huayang Mine No. 2. Comprehensive monitoring of roof–floor convergence, rib deformation, and support resistance revealed the gob-side entry retaining deformation mechanisms with roof-cutting pressure relief; the results show that this retaining deformation exhibits the following three phases of characteristics: the rapid, decelerated, and stable stages. The average roof–floor convergence (607 mm) was significantly greater than the average rib deformation (170 mm), with floor heave accounting for 72.6% of total convergence. The coal pillar side showed dominant deformation in rib movements. The mining influence zones can be divided, based on their distances behind the working face, into strong disturbance zones (0–88 m), weak disturbance zones (88–142 m), and stabilized zones (>178 m). The cable bolt support system demonstrated advanced response characteristics. Compared with conventional gob-side entry retaining, the roof-cutting pressure relief technique altered stress transmission paths, significantly reduced roof load transfer efficiency, and effectively controlled roadway convergence, providing technical guidance for safe production in both this panel and mines with similar geological conditions. Full article
Show Figures

Figure 1

Back to TopTop