Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = cVNT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2471 KB  
Article
Optimized Production of Virus-like Particles in a High-CHO-Cell-Density Transient Gene Expression System for Foot-and-Mouth Disease Vaccine Development
by Ana Clara Mignaqui, Alejandra Ferella, Cintia Sánchez, Matthew Stuible, Romina Scian, Jorge Filippi, Sabrina Beatriz Cardillo, Yves Durocher and Andrés Wigdorovitz
Vaccines 2025, 13(6), 581; https://doi.org/10.3390/vaccines13060581 - 29 May 2025
Viewed by 1439
Abstract
Background/Objectives: Foot-and-mouth disease virus (FMDV) poses a continuous threat to livestock health and agricultural economies. Current vaccines require high biosafety standards and are costly to produce. While novel vaccine technologies have been explored, most fail to meet industrial scalability, cost-efficiency, or multiserotype flexibility [...] Read more.
Background/Objectives: Foot-and-mouth disease virus (FMDV) poses a continuous threat to livestock health and agricultural economies. Current vaccines require high biosafety standards and are costly to produce. While novel vaccine technologies have been explored, most fail to meet industrial scalability, cost-efficiency, or multiserotype flexibility required for effective FMD control. This study aimed to evaluate the feasibility of using a high-cell density transient gene expression (TGE) system in CHO cells for the production of FMDV virus-like particles (VLPs) as a recombinant vaccine platform. Methods: VLP expression was optimized by adjusting cDNA and polyethyleneimine (PEI) concentrations. Expression yields were compared at 24 and 48 h post-transfection to determine optimal harvest timing. We further tested the system’s capacity to express different serotypes and chimeric constructs, incorporating VP1 sequences from various FMDV strains. Immunogenicity was evaluated in swine using VLPs from the A2001 Argentina strain as a model. Results: Optimal VLP expression was achieved at 24 h post-transfection. Chimeric constructs incorporating heterologous VP1 regions were successfully expressed. Immunized pigs developed protective antibody titers as measured by a virus neutralization test (VNT, log10 titer 1.43) and liquid-phase blocking ELISA (LPBE, titer 2.20) at 28 days post-vaccination (dpv). Titers remained above protective thresholds up to 60 dpv with a single dose. A booster at 28 dpv further elevated titers to levels comparable to those induced by the inactivated vaccine. Conclusions: Our results demonstrate the feasibility of using CHO cell-based TGE for producing immunogenic FMDV VLPs. This platform shows promise for scalable, cost-effective, and biosafe development of recombinant FMD vaccines. Full article
(This article belongs to the Special Issue Vaccines and Passive Immune Strategies in Veterinary Medicine)
Show Figures

Figure 1

10 pages, 244 KB  
Article
The Role of Ruminants as Sentinel Animals in the Circulation of the West Nile Virus in Tunisia
by Ahmed Ouni, Hajer Aounallah, Wafa Kammoun Rebai, Francisco Llorente, Walid Chendoul, Walid Hammami, Adel Rhim, Miguel Ángel Jiménez-Clavero, Elisa Pérez-Ramírez, Ali Bouattour and Youmna M’Ghirbi
Pathogens 2025, 14(3), 267; https://doi.org/10.3390/pathogens14030267 - 8 Mar 2025
Cited by 2 | Viewed by 1469
Abstract
Outbreaks of the West Nile Virus (WNV) have increased significantly in recent years in the Mediterranean region, including Tunisia. To understand the risks for animal and human health and to mitigate the impact of future outbreaks, comprehensive viral surveillance in vertebrate hosts and [...] Read more.
Outbreaks of the West Nile Virus (WNV) have increased significantly in recent years in the Mediterranean region, including Tunisia. To understand the risks for animal and human health and to mitigate the impact of future outbreaks, comprehensive viral surveillance in vertebrate hosts and vectors is needed. We conducted the first serosurvey for the WNV in ruminants in southern Tunisia using the ELISA test and confirmed it with the micro-virus neutralization test (VNT). Antibodies were detected by the ELISA test in camels (38/112), sheep (9/155), and goats (7/58), and six samples were doubtful (five camels and one sheep). The ELISA positive and doubtful sera (n = 60) were further analyzed to confirm the presence of specific anti-WNV and anti-Usutu virus (USUV) antibodies using the micro-virus neutralization test (VNT). Out of the 60 sera, 33 were confirmed for specific WNV antibodies, with an overall seroprevalence of 10.15% [95% CI: 7.09–13.96]. The high seroprevalence observed in camels (22.3%) suggests their potential use as sentinel animals for WNV surveillance in southern Tunisia. The viral genome, and consequently active circulation, could not be detected by real-time RT-qPCR in blood samples. Ongoing surveillance of the WNV in animals, including camels, sheep, and goats, may be used for the early detection of viral circulation and for a rapid response to mitigate potential outbreaks in horses and humans. Full article
(This article belongs to the Special Issue One Health and Neglected Zoonotic Diseases)
16 pages, 1568 KB  
Article
Challenges of BTV-Group Specific Serology Testing: No One Test Fits All
by Antonio Di Rubbo, Kalpana Agnihotri, Timothy R. Bowden, Michelle Giles, Kimberly Newberry, Grantley R. Peck, Brian J. Shiell, Marzieh Zamanipereshkaft and John R. White
Viruses 2024, 16(12), 1810; https://doi.org/10.3390/v16121810 - 21 Nov 2024
Cited by 1 | Viewed by 1509
Abstract
A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera [...] Read more.
A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.70% and 99.20%, respectively, for bovine sera, and 97.80% and 99.50%, respectively, for ovine sera. Comparable diagnostic performances were noted for the sELISA compared to four competition ELISAs. While the sensitivity of the sELISA remained unaffected by BTV-15 positive sera, the cELISAs were not as sensitive. BTV-15 is endemic to Australia, and early warning depends on sensitive diagnoses of all serotypes: endemic or incurring. The sELISA failed to discriminate against epizootic hemorrhagic disease virus (EHDV) antibodies, the most serologically related orbivirus to BTV. The ACDP cELISA and the IDEXX kit showed cross-reactivity with some EHDV serotypes, with the least cross-reactive being the VMRD and the IDVet kits. Cross-reactivities, however, were also detected in sera raised experimentally from 10 isolates of the 21 known non-BTV orbiviruses. In this case, the sELISA was the least affected, followed equally by the VMRD and IDVet kits, and the IDEXX kit and the ACDP cELISA were the least discriminatory. In addition to exclusivity assessment of the ELISAs, an inclusivity assessment was made for all ELISAs using well characterized reference sera positive for antibodies to all serotypes BTV-1 to BTV-24. Full article
Show Figures

Figure 1

10 pages, 986 KB  
Article
SARS-CoV-2 Infection Enhances Humoral Immune Response in Vaccinated Liver Transplant Recipients
by Jan Basri Adiprasito, Tobias Nowacki, Richard Vollenberg, Jörn Arne Meier, Florian Rennebaum, Tina Schomacher, Jonel Trebicka, Julia Fischer, Eva U. Lorentzen and Phil-Robin Tepasse
Antibodies 2024, 13(3), 78; https://doi.org/10.3390/antib13030078 - 23 Sep 2024
Cited by 1 | Viewed by 1670
Abstract
In the spring of 2020, the SARS-CoV-2 pandemic presented a formidable challenge to national and global healthcare systems. Immunocompromised individuals or those with relevant pre-existing conditions were particularly at risk of severe coronavirus disease 2019 (COVID-19). Thus, understanding the immunological processes in these [...] Read more.
In the spring of 2020, the SARS-CoV-2 pandemic presented a formidable challenge to national and global healthcare systems. Immunocompromised individuals or those with relevant pre-existing conditions were particularly at risk of severe coronavirus disease 2019 (COVID-19). Thus, understanding the immunological processes in these patient groups is crucial for current research. This study aimed to investigate humoral immunity following vaccination and infection in liver transplant recipients. Humoral immunity analysis involved measuring IgG against the SARS-CoV-2 spike protein (anti-S IgG) and employing a surrogate virus neutralization test (sVNT) for assessing the hACE2 receptor-binding inhibitory capacity of antibodies. The study revealed that humoral immunity post-vaccination is well established, with positive results for anti-S IgG in 92.9% of the total study cohort. Vaccinated and SARS-CoV-2-infected patients exhibited significantly higher anti-S IgG levels compared to vaccinated, non-infected patients (18,590 AU/mL vs. 2320 AU/mL, p < 0.001). Additionally, a significantly elevated receptor-binding inhibitory capacity was observed in the cPassTMTM sVNT (96.4% vs. 91.8%, p = 0.004). Furthermore, a substantial enhancement of anti-S IgG levels (p = 0.034) and receptor-binding inhibition capacity (p < 0.001) was observed with an increasing interval post-transplantation (up to 30 years), calculated by generalized linear model analysis. In summary, fully vaccinated liver transplant recipients exhibit robust humoral immunity against SARS-CoV-2, which significantly intensifies following infection and with increasing time after transplantation. These findings should be considered for booster vaccination schemes for liver transplant recipients. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

11 pages, 1109 KB  
Article
Post-Hoc Analysis of Potential Correlates of Protection of a Recombinant SARS-CoV-2 Spike Protein Extracellular Domain Vaccine Formulated with Advax-CpG55.2-Adjuvant
by Nikolai Petrovsky
Int. J. Mol. Sci. 2024, 25(17), 9459; https://doi.org/10.3390/ijms25179459 - 30 Aug 2024
Cited by 1 | Viewed by 1515
Abstract
SpikoGen® vaccine is a subunit COVID-19 vaccine composed of an insect cell expressed recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A randomized double-blind, placebo-controlled Phase II clinical trial was conducted in 400 adult subjects who were randomized 3:1 to receive [...] Read more.
SpikoGen® vaccine is a subunit COVID-19 vaccine composed of an insect cell expressed recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A randomized double-blind, placebo-controlled Phase II clinical trial was conducted in 400 adult subjects who were randomized 3:1 to receive two intramuscular doses three weeks apart of either SpikoGen® vaccine 25 μg or saline placebo, as previously reported. This study reports a post hoc analysis of the trial data to explore potential immune correlates of SpikoGen® vaccine protection. A range of humoral markers collected pre- and post-vaccination, including spike- and RBD-binding IgG and IgA, surrogate (sVNT), and conventional (cVNT) virus neutralization tests were compared between participants who remained infection-free or got infected over three months of follow-up. From 2 weeks after the second vaccine dose, 21 participants were diagnosed with SARS-CoV-2 infection, 13 (4.2%) in the SpikoGen® group and 8 (9%) in the placebo group. Those in the vaccinated group who experienced breakthrough infections had significantly lower sVNT titers (GMT 5.75 μg/mL, 95% CI; 3.72–8.91) two weeks after the second dose (day 35) than those who did not get infected (GMT 21.06 μg/mL, 95% CI; 16.57–26.76). Conversely, those who did not develop SARS-CoV-2 infection during follow-up had significantly higher baseline sVNT, cVNT, spike-binding IgG and IgA, and RBD-binding IgG, consistent with a past SARS-CoV-2 infection. SpikoGen® further reduced the risk of re-infection (OR 0.29) in baseline seropositive (previously infected) as well as baseline seronegative participants. This indicates that while SpikoGen vaccine is protective in seronegative individuals, those with hybrid immunity have the most robust protection. Full article
(This article belongs to the Special Issue Advances in Vaccines, Adjuvants and Delivery Technologies)
Show Figures

Figure 1

21 pages, 5550 KB  
Article
Novel Competitive ELISA Utilizing Trimeric Spike Protein of SARS-CoV-2, Could Identify More Than RBD-RBM Specific Neutralizing Antibodies in Hybrid Sera
by Petros Eliadis, Annie Mais, Alexandros Papazisis, Eleni K. Loxa, Alexios Dimitriadis, Ioannis Sarrigeorgiou, Marija Backovic, Maria Agallou, Marios Zouridakis, Evdokia Karagouni, Konstantinos Lazaridis, Avgi Mamalaki and Peggy Lymberi
Vaccines 2024, 12(8), 914; https://doi.org/10.3390/vaccines12080914 - 13 Aug 2024
Cited by 2 | Viewed by 3337
Abstract
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), [...] Read more.
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50–90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones. Full article
Show Figures

Figure 1

14 pages, 5268 KB  
Article
West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain
by Richard A. J. Williams, Hillary A. Criollo Valencia, Irene López Márquez, Fernando González González, Francisco Llorente, Miguel Ángel Jiménez-Clavero, Núria Busquets, Marta Mateo Barrientos, Gustavo Ortiz-Díez and Tania Ayllón Santiago
Vet. Sci. 2024, 11(6), 259; https://doi.org/10.3390/vetsci11060259 - 7 Jun 2024
Cited by 4 | Viewed by 4282
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases [...] Read more.
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved. Full article
(This article belongs to the Special Issue Wild Birds as Sentinels of the Health Status of the Environment)
Show Figures

Figure 1

15 pages, 3195 KB  
Article
Vaccine Based on Recombinant Fusion Protein Combining Hepatitis B Virus PreS with SARS-CoV-2 Wild-Type- and Omicron-Derived Receptor Binding Domain Strongly Induces Omicron-Neutralizing Antibodies in a Murine Model
by Pia Gattinger, Bernhard Kratzer, Al Nasar Ahmed Sehgal, Anna Ohradanova-Repic, Laura Gebetsberger, Gabor Tajti, Margarete Focke-Tejkl, Mirjam Schaar, Verena Fuhrmann, Lukas Petrowitsch, Walter Keller, Sandra Högler, Hannes Stockinger, Winfried F. Pickl and Rudolf Valenta
Vaccines 2024, 12(3), 229; https://doi.org/10.3390/vaccines12030229 - 23 Feb 2024
Cited by 2 | Viewed by 3441
Abstract
Background: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses [...] Read more.
Background: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses of disease, vaccines are needed to boost and maintain antibody levels capable of neutralizing Omicron. Recently, we produced and characterized a SARS-CoV-2 vaccine based on a recombinant fusion protein consisting of hepatitis B virus (HBV)-derived PreS and two SARS-CoV-2 wild-type RBDs. Objectives: To develop a PreS-RBD vaccine which induces high levels of Omicron-specific neutralizing antibodies. Methods: We designed, produced, characterized and compared strain-specific (wild-type: W-PreS-W; Omicron: O-PreS-O), bivalent (mix of W-PreS-W and O-PreS-O) and chimeric (i.e., W-PreS-O) SARS-CoV-2 protein subunit vaccines. Immunogens were characterized in vitro using protein chemical methods, mass spectrometry, and circular dichroism in combination with thermal denaturation and immunological methods. In addition, BALB/c mice were immunized with aluminum–hydroxide-adsorbed proteins and aluminum hydroxide alone (i.e., placebo) to study the specific antibody and cytokine responses, safety and Omicron neutralization. Results: Defined and pure immunogens could be produced in significant quantities as secreted and folded proteins in mammalian cells. The antibodies induced after vaccination with different doses of strain-specific, bivalent and chimeric PreS-RBD fusion proteins reacted with wild-type and Omicron RBD in a dose-dependent manner and resulted in a mixed Th1/Th2 immune response. Interestingly, the RBD-specific IgG levels induced with the different vaccines were comparable, but the W-PreS-O-induced virus neutralization titers against Omicron (median VNT50: 5000) were seven- and twofold higher than the W-PreS-W- and O-PreS-O-specific ones, respectively, and they were six-fold higher than those of the bivalent vaccine. Conclusion: Among the tested immunogens, the chimeric PreS-RBD subunit vaccine, W-PreS-O, induced the highest neutralizing antibody titers against Omicron. Thus, W-PreS-O seems to be a highly promising COVID-19 vaccine candidate for further preclinical and clinical evaluation. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines)
Show Figures

Figure 1

13 pages, 698 KB  
Article
Performance Analysis of Serodiagnostic Tests to Characterize the Incline and Decline of the Individual Humoral Immune Response in COVID-19 Patients: Impact on Diagnostic Management
by Ronald von Possel, Babett Menge, Christina Deschermeier, Carlos Fritzsche, Christoph Hemmer, Hilte Geerdes-Fenge, Micha Loebermann, Anette Schulz, Erik Lattwein, Katja Steinhagen, Ralf Tönnies, Reiner Ahrendt and Petra Emmerich
Viruses 2024, 16(1), 91; https://doi.org/10.3390/v16010091 - 6 Jan 2024
Cited by 2 | Viewed by 2080
Abstract
Serodiagnostic tests for antibody detection to estimate the immunoprotective status regarding SARS-CoV-2 support diagnostic management. This study aimed to investigate the performance of serological assays for COVID-19 and elaborate on test-specific characteristics. Sequential samples (n = 636) of four panels (acute COVID-19, [...] Read more.
Serodiagnostic tests for antibody detection to estimate the immunoprotective status regarding SARS-CoV-2 support diagnostic management. This study aimed to investigate the performance of serological assays for COVID-19 and elaborate on test-specific characteristics. Sequential samples (n = 636) of four panels (acute COVID-19, convalescent COVID-19 (partly vaccinated post-infection), pre-pandemic, and cross-reactive) were tested for IgG by indirect immunofluorescence test (IIFT) and EUROIMMUN EUROLINE Anti-SARS-CoV-2 Profile (IgG). Neutralizing antibodies were determined by a virus neutralization test (VNT) and two surrogate neutralization tests (sVNT, GenScript cPass, and EUROIMMUN SARS-CoV-2 NeutraLISA). Analysis of the acute and convalescent panels revealed high positive (78.3% and 91.6%) and negative (91.6%) agreement between IIFT and Profile IgG. The sVNTs revealed differences in their positive (cPass: 89.4% and 97.0%, NeutraLISA: 71.5% and 72.1%) and negative agreement with VNT (cPass: 92.3% and 50.0%, NeutraLISA: 95.1% and 92.5%) at a diagnostic specificity of 100% for all tests. The cPass showed higher inhibition rates than NeutraLISA at VNT titers below 1:640. Cross-reactivities were only found by cPass (57.1%). Serodiagnostic tests, which showed substantial agreement and fast runtime, could provide alternatives for cell-based assays. The findings of this study suggest that careful interpretation of serodiagnostic results obtained at different times after SARS-CoV-2 antigen exposure is crucial to support decision-making in diagnostic management. Full article
(This article belongs to the Collection SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

13 pages, 1878 KB  
Article
Evidence of West Nile Virus Circulation in Horses and Dogs in Libya
by Kholoud Khalid Ben-Mostafa, Giovanni Savini, Annapia Di Gennaro, Liana Teodori, Alessandra Leone, Federica Monaco, Mohammed Masoud A. Alaoqib, Abdunnabi A. Rayes, Abdunaser Dayhum and Ibrahim Eldaghayes
Pathogens 2024, 13(1), 41; https://doi.org/10.3390/pathogens13010041 - 31 Dec 2023
Cited by 5 | Viewed by 3366
Abstract
West Nile virus (WNV) is a globally significant mosquito-borne Flavivirus that causes West Nile disease (WND). In Libya, evidence of WNV circulation has been reported in humans but never in animals. The aim of this study was to determine the seroprevalence of WNV [...] Read more.
West Nile virus (WNV) is a globally significant mosquito-borne Flavivirus that causes West Nile disease (WND). In Libya, evidence of WNV circulation has been reported in humans but never in animals. The aim of this study was to determine the seroprevalence of WNV infection in horses and dogs in Libya. In total, 574 and 63 serum samples were collected from apparently healthy, unvaccinated horses and dogs, respectively, between 2016 and 2019. A commercially available competitive enzyme-linked immunosorbent assay (c-ELISA) kit was initially used to test the collected samples for the presence of WNV Ig-G antibodies. Positive and doubtful sera were also tested using a more specific virus neutralisation assay to confirm whether the ELISA-positive results were due to WNV or other Flavivirus antibodies. The seroprevalence of WNV IgG antibodies according to ELISA was 13.2% out of 574 of total horses’ samples and 30.2% out of 63 of total dogs’ samples. The virus neutralisation test (VNT) confirmed that 10.8% (62/574) and 27% (17/63) were positive for WNV-neutralising titres ranging from 1:10 to 1:640. Univariable analysis using chi-square tests was conducted to measure the statistical significance of the association between the hypothesized risk factors including city, sex, breed, and age group and were then analyzed using the subsequent multivariable logistic regression model for horse samples. Age group was found to be the only significant risk factor in this study. The results of the present study provide new evidence about WNV circulation in Libya. Full article
(This article belongs to the Special Issue West Nile Virus and Other Zoonotic Infections)
Show Figures

Figure 1

16 pages, 1318 KB  
Article
Surrogate Virus Neutralisation Test Based on Nanoluciferase-Tagged Antigens to Quantify Inhibitory Antibodies against SARS-CoV-2 and Characterise Omicron-Specific Reactivity in a Vaccination Cohort
by Michael Schoefbaenker, Rieke Neddermeyer, Theresa Guenther, Marlin M. Mueller, Marie-Luise Romberg, Nica Classen, Marc T. Hennies, Eike R. Hrincius, Stephan Ludwig, Joachim E. Kuehn and Eva U. Lorentzen
Vaccines 2023, 11(12), 1832; https://doi.org/10.3390/vaccines11121832 - 8 Dec 2023
Cited by 5 | Viewed by 2080
Abstract
Virus-specific antibodies are crucial for protective immunity against SARS-CoV-2. Assessing functional antibodies through conventional or pseudotyped virus neutralisation tests (pVNT) requires high biosafety levels. Alternatively, the virus-free surrogate virus neutralisation test (sVNT) quantifies antibodies interfering with spike binding to angiotensin-converting enzyme 2. We [...] Read more.
Virus-specific antibodies are crucial for protective immunity against SARS-CoV-2. Assessing functional antibodies through conventional or pseudotyped virus neutralisation tests (pVNT) requires high biosafety levels. Alternatively, the virus-free surrogate virus neutralisation test (sVNT) quantifies antibodies interfering with spike binding to angiotensin-converting enzyme 2. We evaluated secreted nanoluciferase-tagged spike protein fragments as diagnostic antigens in the sVNT in a vaccination cohort. Initially, spike fragments were tested in a capture enzyme immunoassay (EIA), identifying the receptor binding domain (RBD) as the optimal diagnostic antigen. The sensitivity of the in-house sVNT applying the nanoluciferase-labelled RBD equalled or surpassed that of a commercial sVNT (cPass, GenScript Diagnostics) and an in-house pVNT four weeks after the first vaccination (98% vs. 94% and 72%, respectively), reaching 100% in all assays four weeks after the second and third vaccinations. When testing serum reactivity with Omicron BA.1 spike, the sVNT and pVNT displayed superior discrimination between wild-type- and variant-specific serum reactivity compared to a capture EIA. This was most pronounced after the first and second vaccinations, with the third vaccination resulting in robust, cross-reactive BA.1 construct detection. In conclusion, utilising nanoluciferase-labelled antigens permits the quantification of SARS-CoV-2-specific inhibitory antibodies. Designed as flexible modular systems, the assays can be readily adjusted for monitoring vaccine efficacy. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

19 pages, 2073 KB  
Article
Validation of a SARS-CoV-2 Surrogate Neutralization Test Detecting Neutralizing Antibodies against the Major Variants of Concern
by Eveline Santos da Silva, Jean-Yves Servais, Michel Kohnen, Vic Arendt, Therese Staub, the CON-VINCE Consortium, the CoVaLux Consortium, Rejko Krüger, Guy Fagherazzi, Paul Wilmes, Judith M. Hübschen, Markus Ollert, Danielle Perez-Bercoff and Carole Seguin-Devaux
Int. J. Mol. Sci. 2023, 24(19), 14965; https://doi.org/10.3390/ijms241914965 - 6 Oct 2023
Cited by 14 | Viewed by 2568
Abstract
SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron [...] Read more.
SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron BA.1, BA.2, and BA.5. Analytical performances were compared against the respective VOC to the reference virus neutralization test (VNT) and two CE-IVD labeled kits using three different cohorts collected during the COVID-19 waves. Correlation analyses showed moderate to strong correlation for Omicron sub-variants (Spearman’s r = 0.7081 for BA.1, r = 0.7205 for BA.2, and r = 0.6042 for BA.5), and for WT (r = 0.8458) and Delta-sVNT (r = 0.8158), respectively. Comparison of the WT-sVNT performance with two CE-IVD kits, the “Icosagen SARS-CoV-2 Neutralizing Antibody ELISA kit” and the “Genscript cPass, kit” revealed an overall good correlation ranging from 0.8673 to −0.8773 and a midway profile between both commercial kits with 87.76% sensitivity and 90.48% clinical specificity. The BA.2-sVNT performance was similar to the BA.2 Genscript test. Finally, a correlation analysis revealed a strong association (r = 0.8583) between BA.5-sVNT and VNT sVNT using a double-vaccinated cohort (n = 100) and an Omicron-breakthrough infection cohort (n = 91). In conclusion, the sVNT allows for the efficient prediction of immune protection against the various VOCs. Full article
(This article belongs to the Special Issue Coronavirus Disease (COVID-19): Pathophysiology 4.0)
Show Figures

Figure 1

13 pages, 1587 KB  
Article
Monitoring of Sotrovimab-Levels as Pre-Exposure Prophylaxis in Kidney Transplant Recipients Not Responding to SARS-CoV-2 Vaccines
by Constantin Aschauer, Andreas Heinzel, Karin Stiasny, Christian Borsodi, Karin Hu, Jolanta Koholka, Wolfgang Winnicki, Alexander Kainz, Helmuth Haslacher, Rainer Oberbauer, Roman Reindl-Schwaighofer and Lukas Weseslindtner
Viruses 2023, 15(8), 1624; https://doi.org/10.3390/v15081624 - 26 Jul 2023
Viewed by 1466
Abstract
Background Sotrovimab, a monoclonal antibody against SARS-CoV-2, is used as a pre-exposition prophylaxis (PrEP) against COVID-19, but monitoring strategies using routine test systems have not been defined. Methods Twenty kidney transplant recipients without antibodies after vaccination received 500 mg Sotrovimab. Antibody levels were [...] Read more.
Background Sotrovimab, a monoclonal antibody against SARS-CoV-2, is used as a pre-exposition prophylaxis (PrEP) against COVID-19, but monitoring strategies using routine test systems have not been defined. Methods Twenty kidney transplant recipients without antibodies after vaccination received 500 mg Sotrovimab. Antibody levels were quantified over eight weeks using live-virus neutralization (BA1 and BA2), antibody binding assays (TrimericS, Elecsys, QuantiVAC) and surrogate virus neutralization tests (sVNTs; TECOmedical, cPass and NeutraLISA). Results Sotrovimab neutralized both Omicron subvariants (BA1 NT titer 90 (+−50) > BA2 NT titer 33 (+−15) one hour post infusion). Sotrovimab was measurable on all used immunoassays, although a prior 1:100 dilution was necessary for Elecsys due to a presumed prozone effect. The best correlation with live-virus neutralization titers was found for QuantiVAC and TrimericS, with a respective R2 of 0.65/0.59 and 0.76/0.57 against BA1/BA2. Elecsys showed an R2 of 0.56/0.54 for BA1/BA2, respectively. sVNT values increased after infusion but had only a poor correlation with live-virus neutralization titers (TECOmedical and cPass) or did not reach positivity thresholds (NeutraLISA). Conclusion Antibody measurements by the used immunoassays showed differences in antibody levels and only a limited correlation with neutralization capacity. We do not recommend sVNTs for monitoring SARS-CoV-2 neutralization by Sotrovimab. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 2339 KB  
Article
Investigation of Potency and Safety of Live-Attenuated Peste des Petits Ruminant Virus Vaccine in Goats by Detection of Cellular and Humoral Immune Response
by Milovan Milovanović, Klaas Dietze, Ulrich Wernery and Bernd Hoffmann
Viruses 2023, 15(6), 1325; https://doi.org/10.3390/v15061325 - 5 Jun 2023
Cited by 4 | Viewed by 2573
Abstract
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits [...] Read more.
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits ruminant virus (PPRV) vaccine, which provides long-lasting immunity. We studied the potency and safety of a live-attenuated vaccine in goats by detecting their cellular and humoral immune responses. Six goats were subcutaneously vaccinated with a live-attenuated PPRV vaccine according to the manufacturer’s instructions, and two goats were kept in contact. Following vaccination, the goats were monitored daily, and we recorded their body temperature and clinical score. Heparinized blood and serum were collected for a serological analysis, and swab samples and EDTA blood were collected to detect the PPRV genome. The safety of the used PPRV vaccine was confirmed by the absence of PPR-related clinical signs, a negative pen-side test, a low virus genome load as detected with RT-qPCR on the vaccinated goats, and the lack horizontal transmission between the in-contact goats. The strong humoral and cellular immune responses detected in the vaccinated goats showed that the live-attenuated PPRV vaccine has a strong potency in goats. Therefore, live-attenuated vaccines against PPR can be used to control and eradicate PRR. Full article
Show Figures

Figure 1

11 pages, 1436 KB  
Article
Reduced Binding between Omicron B.1.1.529 and the Human ACE2 Receptor in a Surrogate Virus Neutralization Test for SARS-CoV-2
by Tove Hoffman, Linda Kolstad, Dario Akaberi, Josef D. Järhult, Bengt Rönnberg and Åke Lundkvist
Viruses 2023, 15(6), 1280; https://doi.org/10.3390/v15061280 - 30 May 2023
Cited by 2 | Viewed by 3607
Abstract
The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 [...] Read more.
The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 surrogate virus neutralization test (sVNT) that, with Luminex technology, detects NAbs. The assay was designed to mimic the virus–host interaction and is based on antibody blockage between the human angiotensin-converting enzyme 2 (hACE2) receptor and the spike (S) protein of the Wuhan, Delta, and Omicron (B.1.1.529) variants of SARS-CoV-2. The sVNT proved to have a 100% correlation with a SARS-CoV-2 cVNT regarding qualitative results. Binding between the hACE2 receptor and the S1 domain of the B.1.1.529 lineage of the Omicron variant was not observed in the assay but between the receptor and an S1 + S2 trimer and the receptor binding domain (RBD) in a reduced manner, suggesting less efficient receptor binding for the B.1.1.529 Omicron variant. The results indicate that the SARS-CoV-2 sVNT is a suitable tool for both the research community and the public health service, as it may serve as an efficient diagnostic alternative to the cVNT. Full article
(This article belongs to the Special Issue Antibody-Based Therapeutics and Diagnostics for Viral Diseases)
Show Figures

Figure 1

Back to TopTop