Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (422)

Search Parameters:
Keywords = byproducts cultivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 284
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

15 pages, 1531 KiB  
Article
Towards a Circular Economy: Unlocking the Potentials of Cigarette Butt Recycling as a Resource for Seashore Paspalum Growth
by Thais Huarancca Reyes, Marco Volterrani, Lorenzo Guglielminetti and Andrea Scartazza
Sustainability 2025, 17(15), 6976; https://doi.org/10.3390/su17156976 - 31 Jul 2025
Viewed by 173
Abstract
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum [...] Read more.
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum vaginatum Swartz was grown in sand–peat substrate, either unmodified (control) or amended with small pieces of uncleaned CBs or solid byproducts from CB recycling at concentrations of 25% or 50% (v/v). In additional tests, turfgrass grown in unmodified substrate received wastewater instead of tap water once or twice weekly. Over 7 weeks, physiological and biometric parameters were assessed. Plants grown with solid debris showed traits comparable to the control. Those grown with intact CBs or cleaned filters had similar biomass and coverage as the control but accumulated more carotenoids and antioxidants. Wastewater significantly enhanced plant growth when applied once weekly, while becoming toxic when applied twice, reducing biomass and coverage. After scalping, turfgrass recovered well across all treatments, and in some cases biomass improved. Overall, recycled CB byproducts, particularly wastewater used at optimal concentrations, can be a sustainable resource for promoting turfgrass growth. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

24 pages, 1488 KiB  
Article
Assessment of the Agricultural Effectiveness of Biodegradable Mulch Film in Onion Cultivation
by Hyun Hwa Park, Young Ok Kim and Yong In Kuk
Plants 2025, 14(15), 2286; https://doi.org/10.3390/plants14152286 - 24 Jul 2025
Viewed by 288
Abstract
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across [...] Read more.
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across multiple regions and years (2023–2024). The BD and PE films demonstrated similar impacts on onion growth, bulb size, yield, and weed suppression, significantly outperforming NM, with yield increases of over 13%. There were no consistent differences in soil pH, electrical conductivity, and physical properties in crops that used either BD or PE film. Soil temperature and moisture were also comparable regardless of which film type was used, confirming BD’s viability as an alternative to PE. However, areas that used BD film had soils which exhibited reduced microbial populations, particularly Bacillus and actinomycetes which was likely caused by degradation by-products. BD film degradation was evident from 150 days post-transplantation, with near-complete decomposition at 60 days post-burial, whereas PE remained largely intact (≈98%) during the same period. These results confirm that BD film can match the agronomic performance of PE while offering the advantage of environmentally friendly degradation. Further research should optimize BD film durability and assess its cost-effectiveness for large-scale sustainable agriculture. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

14 pages, 4866 KiB  
Article
Effect of Ohmic Heating Pretreatment on Enzyme Production by Solid-State Fermentation of Brewer’s Spent Grain
by Bruna F. Silva, Luís Machado, Ana M. Fernandes, Ricardo N. Pereira and Isabel Belo
Fermentation 2025, 11(8), 421; https://doi.org/10.3390/fermentation11080421 - 22 Jul 2025
Viewed by 440
Abstract
Solid-state fermentation (SSF) involves the growth of microorganisms on solid substrates, mimicking natural environments of many species. Due to sustainability concerns, transforming agro-industrial by-products into value-added products through SSF has been increasingly studied. Brewer’s spent grain (BSG), the main by-product of beer production, [...] Read more.
Solid-state fermentation (SSF) involves the growth of microorganisms on solid substrates, mimicking natural environments of many species. Due to sustainability concerns, transforming agro-industrial by-products into value-added products through SSF has been increasingly studied. Brewer’s spent grain (BSG), the main by-product of beer production, mostly consists of barley grain husks, making BSG a great support for microorganism cultivation. Although autoclaving remains the standard sterilization and pretreatment method of substrates, electric field technologies and their attendant ohmic heating (OH) have great potential as an alternative technology. In the present work, pretreatment of BSG by OH was explored in SSF with Aspergillus niger to produce commercially valuable enzymes. OH favored the solubilization of phenolic compounds, total protein, and reducing sugars significantly higher than autoclaving. SSF of treated BSG led to the production of lignocellulosic enzymes, with xylanases being the most active, reaching 540 U/g, a 1.5-fold increase in activity compared to autoclaved BSG. Protease activity was also improved 1.6-fold by OH, resulting in 49 U/g. Our findings suggest that OH treatment is an effective alternative to autoclaving and that its integration with SSF is a sustainable strategy to enhance by-product valorization through enzyme production with many industrial applications, according to circular economy guidelines. Full article
Show Figures

Figure 1

25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 373
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

20 pages, 3098 KiB  
Article
Exploring Coffee Silverskin as a Sustainable Peat Additive in the Plant Nursery Production
by Natalia Miler, Piotr Wojewódzki, Anita Woźny, Dominika Rymarz and Agnieszka Gołębiewska
Agronomy 2025, 15(7), 1633; https://doi.org/10.3390/agronomy15071633 - 4 Jul 2025
Viewed by 333
Abstract
Sustainable alternatives to peat in horticultural substrates are increasingly sought. This study assessed the use of coffee silverskin (CS), a byproduct of coffee roasting, as a substrate component for rooting and growing ornamental plants—Buddleja, Lythrum, and Veronica. Plants were [...] Read more.
Sustainable alternatives to peat in horticultural substrates are increasingly sought. This study assessed the use of coffee silverskin (CS), a byproduct of coffee roasting, as a substrate component for rooting and growing ornamental plants—Buddleja, Lythrum, and Veronica. Plants were cultivated in peat-based substrates with 0%, 25%, 50%, and 75% CS addition. In order to determine the effect of substrate modification with CS, the following parameters were analyzed: rooting efficiency, plant growth, pigment content, physiological indices (SPAD, Fv/Fm, NFI), and substrate properties. A 25% CS addition supported high rooting success (94.4% on average) without negatively affecting root or shoot traits, and even improved flowering earliness. At 50% CS, Buddleja showed moderate tolerance, while Lythrum and Veronica performed poorly. The substrate with 75% CS addition significantly reduced rooting and growth across all species. Elevated pH and electrical conductivity in high-CS substrates likely contributed to plant stress. Physiological indicators confirmed minimal stress at 25% CS, but increased stress response at 75%. Overall, CS can replace up to 25% of peat in substrates without compromising plant performance, offering a sustainable alternative in nursery production. However, higher CS levels require structural or chemical adjustments to reduce compaction and stress effects. Further research is needed to improve CS-based substrate formulations for broader horticultural use. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 1874 KiB  
Article
Soil Drenching with Wood Distillate Modifies the Nutritional Properties of Chickpea (Cicer arietinum L.) Seeds by Increasing the Protein Content and Inducing Targeted Changes in the Proteomic Profile
by Rossana De Salvo, Riccardo Fedeli, Alfonso Carleo, Luca Bini, Stefano Loppi and Laura Bianchi
Plants 2025, 14(13), 2046; https://doi.org/10.3390/plants14132046 - 3 Jul 2025
Viewed by 471
Abstract
The production of food with a naturally enriched protein content is a strategic response to the growing global demand for sustainable protein sources. Wood distillate (WD), a by-product of the pyrolysis of woody biomass, has previously been shown to increase the protein concentration [...] Read more.
The production of food with a naturally enriched protein content is a strategic response to the growing global demand for sustainable protein sources. Wood distillate (WD), a by-product of the pyrolysis of woody biomass, has previously been shown to increase the protein concentration and bioavailability in chickpea seeds. Here, we evaluated the effect of 0.5% (v/v) WD soil drenching on chickpea productivity, nutritional profile, and proteomic pattern. WD treatment significantly improved the yield by increasing plant biomass (+144%), number of pods and seeds (+148% and +147%), and seed size (diameter: +6%; weight: +25%). Nutritional analyses revealed elevated levels of soluble proteins (+15%), starch (+11%), fructose (+135%), and polyphenols (+14%) and a greater antioxidant capacity (25%), alongside a reduction in glucose content, albeit not statistically significant, suggesting an unchanged or even lowered glycemic index. Although their concentration decreased, Ca (−31%), K (−12%), P (−5%), and Zn (−14%) in WD-treated plants remained within normal ranges. To preliminary assess the quality and safety of the protein enrichment, a differential proteomic analysis was performed on coarse flours from individual seeds. Despite the higher protein content, the overall protein profiles of the WD-treated seeds showed limited variation, with only a few storage proteins, identified as legumin and vicilin-like isoforms, being differentially abundant. These findings indicate a general protein concentration increase without a major alteration in the proteoform composition or differential protein synthesis. Overall, WD emerged as a promising and sustainable biostimulant for chickpea cultivation, capable of enhancing both yield and nutritional value, while maintaining the proteomic integrity and, bona fide, food safety. Full article
(This article belongs to the Special Issue Bio-Based Solutions for Sustainable Plant Systems)
Show Figures

Figure 1

23 pages, 1821 KiB  
Review
Beyond Peat: Wood Fiber and Two Novel Organic Byproducts as Growing Media—A Systematic Review
by Anna Elisa Sdao, Nazim S. Gruda and Barbara De Lucia
Plants 2025, 14(13), 1945; https://doi.org/10.3390/plants14131945 - 25 Jun 2025
Viewed by 776
Abstract
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key [...] Read more.
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key physical, hydrological, and chemical properties relevant to horticultural use. In soilless culture, wood fiber can be used as a stand-alone substrate. When incorporated at 30–50% (v/v) in peat mixtures, it supports plant growth comparable to peat; however, higher proportions may restrict water and nutrient availability. Coffee silverskin demonstrates high water retention and nutrient content, but its inherent phytotoxicity requires pre-treatment (e.g., co-composting); at concentrations up to 20%, it shows promise for potted ornamental crops. Brewer’s spent grain is nutrient-rich but demands careful management due to its rapid decomposition and potential salinity issues; inclusion rates around 10% have shown beneficial effects. In conclusion, when used appropriately in blends, these bio-based byproducts represent viable alternatives to reduce peat dependence in vegetable and ornamental cultivation, contributing to more sustainable horticultural practices. Future research should optimize pre-treatment methods for coffee silverskin and brewer’s spent grain, investigate long-term stability in diverse cropping systems, and explore novel combinations with other organic waste streams to develop circular horticultural substrates. Full article
Show Figures

Graphical abstract

33 pages, 2663 KiB  
Review
Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed
by Javier Echave, Antía G. Pereira, Ana O. S. Jorge, Paula Barciela, Rafael Nogueira-Marques, Ezgi N. Yuksek, María B. P. P. Oliveira, Lillian Barros and M. A. Prieto
Molecules 2025, 30(13), 2726; https://doi.org/10.3390/molecules30132726 - 25 Jun 2025
Viewed by 666
Abstract
Grape (Vitis vinifera L.) is one of the most extensively cultivated crops in temperate climates, with its primary fate being wine production, which is paired with a great generation of grape pomace (GP). GP contains a plethora of antioxidant phenolic compounds, being [...] Read more.
Grape (Vitis vinifera L.) is one of the most extensively cultivated crops in temperate climates, with its primary fate being wine production, which is paired with a great generation of grape pomace (GP). GP contains a plethora of antioxidant phenolic compounds, being well-known for its high content of various tannins, liable for the astringency of this fruit. Winemaking produces a great mass of by-products that are rich in tannins. Grape seed (GSd) and pulp waste, as well as leaves and stems (GSt), are rich in condensed tannins (CTs), while its skin (GSk) contains more flavonols and phenolic acids. CTs are polymers of flavan-3-ols, and their antioxidant and anti-inflammatory properties are well-accounted for, being the subject of extensive research for various applications. CTs from the diverse fractions of grapefruit and grapevine share similar structures given their composition but diverge in their degree of polymerization, which can modulate their chemical interactions and may be present at around 30 to 80 mg/g, depending on the grape fraction. Thus, this prominent agroindustrial by-product, which is usually managed as raw animal feed or further fermented for liquor production, can be valorized as a source of tannins with high added value. The present review addresses current knowledge on tannin diversity in grapefruit and grapevine by-products, assessing the differences in composition, quantity, and degree of polymerization. Current knowledge of their reported bioactivities will be discussed, linking them to their current and potential applications in food and feed. Full article
Show Figures

Figure 1

14 pages, 857 KiB  
Article
Rapid and Effective Recovery of Oleanolic and Maslinic Acids from Olive Leaves Using SFE and pH-Zone Centrifugal Partition Chromatography
by Lemonia Antoniadi, Apostolis Angelis, Theodora Nikou, Dimitris Michailidis and Leandros A. Skaltsounis
Molecules 2025, 30(13), 2709; https://doi.org/10.3390/molecules30132709 - 24 Jun 2025
Viewed by 359
Abstract
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to [...] Read more.
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to develop an efficient methodology for extracting and purifying OA and MA, utilizing Supercritical Fluid Extraction (SFE) and Centrifugal Partition Chromatography (CPC)—two modern, scalable, and green techniques. A total of 21 g of olive leaves were subjected to SFE using supercritical CO2 and ethanol as co-solvent. The extraction employed a step gradient mode, starting with 100% CO2 and incrementally increasing ethanol (0–10% w/w) every 20 min. Fractions rich in OA and MA (500 mg) were further purified via CPC, utilizing pH zone refining to exploit the protonation and deprotonation properties of acidic triterpenes. The biphasic solvent system consisted of n-hexane, ethyl acetate, ethanol, and water (8:2:5:5 v/v/v/v), with trifluoroacetic acid added to the stationary phase and triethylamine added to the mobile phase. This two-step process yielded 89.5 mg of OA and 28.5 mg of MA with over 95% purity, as confirmed by HPLC-ELSD and 1H-NMR. Moreover, purified compounds and SFE fractions exhibited promising elastase and collagenase inhibition, highlighting them as dermocosmetic agents. Full article
(This article belongs to the Special Issue Supercritical Fluid Extraction of Natural Bioactive Compounds)
Show Figures

Figure 1

18 pages, 1097 KiB  
Article
Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)
by Marco Zuccolo, Angela Bassoli, Annamaria Giorgi, Luca Giupponi, Stefania Mazzini and Gigliola Borgonovo
Molecules 2025, 30(12), 2649; https://doi.org/10.3390/molecules30122649 - 19 Jun 2025
Viewed by 434
Abstract
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization [...] Read more.
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization of the residual leaves of Carciofo di Malegno, an Alpine artichoke landrace. Comparative analysis was conducted against leaves from two commercial cultivars and a commercial herbal tea product. HPLC analysis revealed that Carciofo di Malegno exhibited the lowest levels of secondary metabolites. Cynaropicrin content was 0.52 ± 0.03 mg/g, lower than in the commercial samples, while the phenolic compounds were below the quantification limit. Proximate analysis indicated a distinctive nutritional profile, with significantly higher ash (8.01 ± 0.04%) and crude fiber (35.75 ± 0.29%) contents compared to all reference samples. These findings highlight the potential of Carciofo di Malegno residual leaves as a sustainable source of nutrients for functional food and nutraceutical applications. Their low content of bitter sesquiterpene lactones may enhance palatability, supporting their valorisation within circular economy frameworks. Moreover, their use may contribute to the in situ conservation of this landrace, reinforcing the link between agrobiodiversity preservation and the sustainable exploitation of agricultural by-products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

20 pages, 1206 KiB  
Review
Fungal Biomass Fermentation: Valorizing the Food Industry’s Waste
by Simas Borkertas, Jonas Viskelis, Pranas Viskelis, Paulina Streimikyte, Ugne Gasiunaite and Dalia Urbonaviciene
Fermentation 2025, 11(6), 351; https://doi.org/10.3390/fermentation11060351 - 16 Jun 2025
Viewed by 1295
Abstract
Fungi, including filamentous organisms such as yeasts, play essential roles in various processes such as nutrient exchange in ecosystems, the cultivation of mushrooms, and solid-state fermentation (SSF). SSF involves microbial growth on solid substrates without free water, leading to the production of enzymes, [...] Read more.
Fungi, including filamentous organisms such as yeasts, play essential roles in various processes such as nutrient exchange in ecosystems, the cultivation of mushrooms, and solid-state fermentation (SSF). SSF involves microbial growth on solid substrates without free water, leading to the production of enzymes, bioactive compounds, and biofuels. This fermentation method offers advantages like lower production costs, reduced waste disposal issues, and the efficient utilization of agricultural residues and fruit and vegetable by-products. Filamentous fungi excel in SSF due to their enzyme secretion capacity and ability to produce valuable compounds. The process is influenced by biological, physico-chemical, and environmental factors, requiring careful optimization for optimal results. Fruit and vegetable by-products are increasingly recognized as valuable substrates for SSF, offering rich sources of bioactive compounds and high nutritional value. The optimization of SSF processes, compatibility with various substrates, and potential for producing diverse value-added products make SSF a promising method for sustainable resource utilization and enhanced product development. Future research should focus on improving process efficiency, expanding the substrate range, enhancing product quality and yield, and integrating SSF with other technologies for enhanced production capabilities. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

16 pages, 2003 KiB  
Article
Mycelium-Based Composites Derived from Lignocellulosic Residual By-Products: An Insight into Their Physico-Mechanical Properties and Biodegradation Profile
by Galena Angelova, Husein Yemendzhiev, Roumiana Zaharieva, Mariya Brazkova, Ralitza Koleva, Petya Stefanova, Radka Baldzhieva, Veselin Vladev and Albert Krastanov
Appl. Sci. 2025, 15(11), 6333; https://doi.org/10.3390/app15116333 - 5 Jun 2025
Cited by 1 | Viewed by 646
Abstract
The bio-fabrication of sustainable mycelium-based composites (MBCs) from renewable plant by-products offers a promising approach to reducing resource depletion and supporting the transition to a circular economy. In this research, MBCs were obtained by cultivating Ganoderma resinaceum GA1M on essential oils and agricultural [...] Read more.
The bio-fabrication of sustainable mycelium-based composites (MBCs) from renewable plant by-products offers a promising approach to reducing resource depletion and supporting the transition to a circular economy. In this research, MBCs were obtained by cultivating Ganoderma resinaceum GA1M on essential oils and agricultural by-products: hexane-extracted rose flowers (HERF), steam-distilled lavender straw (SDLS), wheat straw (WS), and pine sawdust (PS), used as single or mixed substrates. The basic physical and mechanical properties revealed that MBCs perform comparably to high-efficiency thermal insulating and conventional construction materials. The relatively low apparent density, ranging from 110 kg/m3 for WS-based to 250 kg/m3 for HERF-based composites, results in thermal conductivity values between 0.043 W/mK and 0.054 W/mK. Compression stress (40–180 kPa at 10% deformation) also revealed the good performance of the composites. The MBCs had high water absorption due to open porosity, necessitating further optimization to reduce hydrophilicity and meet intended use requirements. An aerobic biodegradation test using respirometry indicated ongoing microbial decomposition for all tested bio-composites. Notably, composites from mixed HERF and WS (50:50) showed the most rapid degradation, achieving over 46% of theoretical oxygen consumption for complete mineralization. The practical applications of MBCs depend on achieving a balance between biodegradability and stability. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

11 pages, 4020 KiB  
Article
Responses of Soil Microbial Communities to Biogas Slurry Irrigation in Paddy Fields: Interactions with Environmental Factors
by Die Hu, Man Yu, Yuying Qiao, Yiping Shang, Yufei Yan, Shunyue Wang and Xiaoyang Chen
Water 2025, 17(11), 1577; https://doi.org/10.3390/w17111577 - 23 May 2025
Viewed by 431
Abstract
Biogas slurry (BS), a nutrient-rich byproduct of anaerobic digestion, is increasingly utilized in agriculture to enhance soil fertility and crop productivity. However, the long-term effects of BS on soil microbial communities in paddy fields have not been thoroughly investigated. This study investigated the [...] Read more.
Biogas slurry (BS), a nutrient-rich byproduct of anaerobic digestion, is increasingly utilized in agriculture to enhance soil fertility and crop productivity. However, the long-term effects of BS on soil microbial communities in paddy fields have not been thoroughly investigated. This study investigated the impacts of continuous BS irrigation over 0–3 years on soil microbial diversity, community composition, and their relationships with environmental factors in southeastern China. The results showed that bacterial diversity (Shannon index) significantly decreased from 6.96 (0 year) to 6.58 (3 years) (p < 0.05), while fungal diversity displayed a U-shaped trend, initially declining to 4.13 (1 year) and subsequently recovering to 4.86 (3 years) (p < 0.05). Dominant bacterial phyla such as Chloroflexi and Bacteroidetes increased in abundance under BS treatment, whereas Gemmatimonadetes decreased. Fungal communities shifted, with Mortierellomycota replacing Basidiomycota as the dominant phylum. Redundancy analysis (RDA) accounted for 91% and 74.9% of the variance in bacterial and fungal communities, respectively. Correlation analysis further indicated that soil available nitrogen and Cr were the primary drivers of bacterial community composition (p < 0.001), whereas soil available potassium and Cd were the key factors influencing the fungal community structure (p < 0.001). This study highlights that BS application alters microbial dynamics, favoring anaerobic bacteria and suppressing pathogenic fungi like Fusarium, thereby supporting sustainable soil management in rice cultivation systems. Full article
Show Figures

Figure 1

14 pages, 515 KiB  
Article
Potential Use of Tropical and Subtropical Fruits By-Products in Pig Diet: In Vitro Two-Step Evaluation
by Dieu donné Kiatti, Francesco Serrapica, Nadia Musco, Rossella Di Palo and Serena Calabrò
Animals 2025, 15(10), 1454; https://doi.org/10.3390/ani15101454 - 17 May 2025
Viewed by 544
Abstract
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew [...] Read more.
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew and mango fruits, a huge amount of waste is generated, which is generally discarded into the environment, contributing to global pollution and water contamination. This study aims to propose alternative feeds for pigs by characterizing cashew, pineapple and mango fruit by-products through an in vitro two-step (gastro-intestinal and caecum) study to provide feeds not competing with humans and promoting eco-sustainable livestock. Ten by-products [i.e., pineapple peel and pomace; cashew nut testa, cashew (var. yellow) whole fruit and pomace; cashew (var. red) whole fruit and pomace; mango peel, kernel and testa] were sampled in Benin. The samples involved chemical analysis and an in vitro two-step digestion method (enzymatic + microbial digestibility). The results report a low dry matter (DM) content specifically in the pomace, peel and whole apple (13.0–27.2%), while higher lipids were observed for cashew nut testa and mango kernel (26.4 and 11.2% DM). The investigated by-products fall within the interval of referenced feeds for structural carbohydrates (NDF: 7.6–47.1% DM) and protein (6.21–51.2% DM), except mango by-products with a low content of protein (2.51–4.69% DM). The total dry matter digestibility, short-chain fatty acid and gas production were low for cashew by-products and stopped after 48 h of incubation. Pineapple pomace, cashew whole apple, pomace and testa can be considered as feedstuff in fattening pigs, presenting characteristics partly similar to beet pulp. Indeed, mango peel and kernel should be combined with a protein feed source to feed pigs. Presently, fruit by-products, such as those from cashew, pineapple and mango, are thrown into the environment, contributing to global warming and water pollution. These problems would be reduced by recycling these wastes in other fields, such as pig nutrition, creating a circular economy to provide feeds promoting eco-sustainable livestock. Indeed, in vivo studies are needed before proposing these by-products for pig diets. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

Back to TopTop