Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (504)

Search Parameters:
Keywords = building stones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7203 KiB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 - 2 Aug 2025
Viewed by 208
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

18 pages, 4939 KiB  
Article
Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns
by Hui Liu, Zhen Wang, Xinyi Du, Fei Qi, Chaoyuan Wang and Zhengxiang Shi
Agriculture 2025, 15(15), 1645; https://doi.org/10.3390/agriculture15151645 - 30 Jul 2025
Viewed by 190
Abstract
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full [...] Read more.
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full life cycle inventory of the material quantities and energy consumption for dairy barns. The LCCE was quantified from the production to end-of-life stages using the carbon equivalent of dairy barns (CEDB) as the functional unit, expressed in kg CO2e head−1 year−1. A carbon emission assessment model was developed based on the “building–process–energy” framework. The LCCE of the open barn and the lower profile cross-ventilated (LPCV) barn were 152 kg CO2e head−1 year−1 and 229 kg CO2e head−1 year−1, respectively. Operational carbon emissions (OCE) accounted for the largest share of LCCE, contributing 57% and 74%, respectively. For embodied carbon emissions (ECE), the production of building materials dominated, representing 91% and 87% of the ECE, respectively. Regarding carbon mitigation strategies, the use of extruded polystyrene boards reduced carbon emissions by 45.67% compared with stone wool boards and by 36% compared with polyurethane boards. Employing a manure pit emptying system reduced carbon emissions by 76% and 74% compared to manure scraping systems. Additionally, the adoption of clean electricity resulted in a 33% reduction in OCE, leading to an overall LCCE reduction of 22% for the open barn and 26% for the LPCV barn. This study introduces the CEDB to evaluate low-carbon design strategies for dairy barns, integrating building layout, ventilation systems, and energy sources in a unified assessment approach, providing valuable insights for the low-carbon transition of agricultural buildings. Full article
Show Figures

Figure 1

25 pages, 7677 KiB  
Article
Seismic Assessment and Strengthening of a Load-Bearing Masonry Structure Considering SSI Effects
by Kyriaki G. Amarantidou, Panagiota S. Katsimpini, George Papagiannopoulos and George Hatzigeorgiou
Appl. Sci. 2025, 15(15), 8135; https://doi.org/10.3390/app15158135 - 22 Jul 2025
Viewed by 365
Abstract
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a [...] Read more.
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a composite load-bearing system of timber-framed stone masonry. Over time, the structure has undergone irreversible modifications, primarily involving reinforced concrete (RC) interventions. The building’s seismic performance was evaluated using two finite element models developed in the SAP2000 software (v. 25.3.00). The first model simulates the original structure, strengthened by grout injections, while the second represents the current condition of the structural system following RC additions. Soil–structure interaction was also investigated, given that the local soil is classified as Category D according to Eurocode 8 (EC8). Each model was analyzed under two different support conditions: fixed-base and SSI-inclusive. A suite of appropriate accelerograms was applied to both models, in compliance with Eurocode 8 using the SeismoMatch software, and linear time-history analyses were conducted. The results underscore the significant impact of SSI on the increase of peak tensile stress and interstorey drift ratios (IDRs), and highlight the influence of different strengthening techniques on the seismic response of historic load-bearing masonry structures. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

26 pages, 3891 KiB  
Article
Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
by Ela Bahsude Gorur Avsaroglu
Buildings 2025, 15(15), 2587; https://doi.org/10.3390/buildings15152587 - 22 Jul 2025
Viewed by 297
Abstract
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials [...] Read more.
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials obtained in different sectors. The main objective of this study is to investigate the substitution of cotton (CW), chicken feather (CFF) and stone wool waste (SWW) from pumice aggregate in the production of environmentally friendly hollow blocks. To achieve this, CW, CFF and SWW were substituted for pumice at ratios of 2.5–5–7.5–10% in mass, and hollow blocks were produced with this mixture under low pressure and vibrations in a production factory. Various characterization methods, including a size and tolerance analysis, unit volume weight test, thermal conductivity test, durability test, water absorption test and strength tests, were carried out on the samples produced. This study showed that waste fibers of chicken feather and stone wool are suitable for the production of sustainable and environmentally friendly hollow blocks that can reduce the dead load of the building, have sufficient strength, provide energy efficiency due to low thermal conductivity and have a high durability due to a low water absorption value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 1677 KiB  
Article
222Rn Exhalation Rate of Building Materials: Comparison of Standard Experimental Protocols and Radiological Health Hazard Assessment
by Francesco Caridi, Lorenzo Pistorino, Federica Minissale, Giuseppe Paladini, Michele Guida, Simona Mancini, Domenico Majolino and Valentina Venuti
Appl. Sci. 2025, 15(14), 8015; https://doi.org/10.3390/app15148015 - 18 Jul 2025
Viewed by 241
Abstract
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed [...] Read more.
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed for the construction of buildings of historical-artistic relevance were analyzed using the closed chamber method (CCM) combined with the Durridge Rad7 system, by using two experimental protocols that differed in the measurement duration: 10 days (Method 1) versus 24 h (Method 2). Obtained results revealed that the radon exhalation rates ranged from 0.004 to 0.072 Bq h−1, which are moderate to low if compared to studies in other regions. Statistical comparison using the u-test confirmed equivalence between protocols (u-test ≤ 2), thus supporting the validity of the faster Method 2 for practical applications. Furthermore, to estimate the potential indoor radon levels and determine the associated radiological risks to human health, for the investigated natural stones, the Markkanen room model was employed. As a result, simulated indoor radon concentrations remained well below regulatory thresholds (maximum value: 37.3 Bq m−3), thus excluding any significant health concerns under typical indoor conditions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

22 pages, 2245 KiB  
Article
XPS Monitoring of Calcarenite Building Walls Long Exposed Outdoors: Estimation of Deterioration Trend from the Time Sequence of Curve-Fitted Spectra and PCA Exploration of the Large Dataset
by Maria A. Acquavia, Francesco Cardellicchio, Mariangela Curcio, Fausto Langerame, Anna M. Salvi, Laura Scrano and Carmen Tesoro
Appl. Sci. 2025, 15(14), 7741; https://doi.org/10.3390/app15147741 - 10 Jul 2025
Viewed by 208
Abstract
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended [...] Read more.
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended to about five years, from the walls of a new building, specifically installed in the immediate vicinity of an ancient farmhouse in an advanced state of degradation. Taking the ancient building as the final temporal reference, the aim was to obtain adequate information on the degradation processes of calcarenitic stones, from the initial and evolving phases of the new building towards those representative of the old reference. A large set of XPS data was obtained by resolving, through curve-fitting, the acquired spectra into component peaks, identified as ‘indicator’ chemical groups, which trend as a function of time, supported by PCA, demonstrates a close compositional similarity between the samples of the new building analyzed after 52 months from its installation and those of the ancient building dating back to over a century ago. The results obtained can be considered in the diagnostic strategy of the ongoing PNRR programs dedicated to the care of historical monuments and ecosystem sustainability. Full article
Show Figures

Figure 1

32 pages, 16988 KiB  
Article
From Photogrammetry to Virtual Reality: A Framework for Assessing Visual Fidelity in Structural Inspections
by Xiangxiong Kong, Terry F. Pettijohn and Hovhannes Torikyan
Sensors 2025, 25(14), 4296; https://doi.org/10.3390/s25144296 - 10 Jul 2025
Viewed by 884
Abstract
Civil structures carry significant service loads over long times but are prone to deterioration due to various natural impacts. Traditionally, these structures are inspected in situ by qualified engineers, a method that is high-cost, risky, time-consuming, and prone to error. Recently, researchers have [...] Read more.
Civil structures carry significant service loads over long times but are prone to deterioration due to various natural impacts. Traditionally, these structures are inspected in situ by qualified engineers, a method that is high-cost, risky, time-consuming, and prone to error. Recently, researchers have explored innovative practices by using virtual reality (VR) technologies as inspection platforms. Despite such efforts, a critical question remains: can VR models accurately reflect real-world structural conditions? This study presents a comprehensive framework for assessing the visual fidelity of VR models for structural inspection. To make it viable, we first introduce a novel workflow that integrates UAV-based photogrammetry, computer graphics, and web-based VR editing to establish interactive VR user interfaces. We then propose a visual fidelity assessment methodology that quantitatively evaluates the accuracy of the VR models through image alignment, histogram matching, and pixel-level deviation mapping between rendered images from the VR models and UAV-captured images under matched viewpoints. The proposed frameworks are validated using two case studies: a historic stone arch bridge and a campus steel building. Overall, this study contributes to the growing body of knowledge on VR-based structural inspections, providing a foundation for our peers for their further research in this field. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 280
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

40 pages, 13344 KiB  
Article
Geopolymers from Olive Stone Bottom Ashes for Sustainable Construction: Influence of the Molding Method
by Elena Picazo Camilo, Juan José Valenzuela Expósito, Raúl Carrillo Beltrán, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Sustainability 2025, 17(13), 6219; https://doi.org/10.3390/su17136219 - 7 Jul 2025
Viewed by 351
Abstract
The forming methodology influences the physicochemical, mechanical, and microstructural properties. In this study, which aims to develop a geopolymeric material for potential insulation applications in buildings such as vertical walls, geopolymers were developed using industrial wastes from different industries: slate stone cutting sludge [...] Read more.
The forming methodology influences the physicochemical, mechanical, and microstructural properties. In this study, which aims to develop a geopolymeric material for potential insulation applications in buildings such as vertical walls, geopolymers were developed using industrial wastes from different industries: slate stone cutting sludge (SSCS) and chamotte (CH) were used as precursors, and olive stone bottom ash (OSBA) and sodium silicate (Na2SiO3) were used as alkaline activators. Two forming methods were evaluated: uniaxial pressing and casting of the material, varying the forming method and the liquid/solid ratio. The results showed that the pressed geopolymers achieved higher bulk densities (up to 2.13 g/cm3) and significantly higher compressive strength (28.04 MPa at 28 days), attributable to a higher compactness and degree of geopolymer reaction. In contrast, the casting geopolymers exhibited surface efflorescence, related to slower curing and higher porosity, which reduced their compressive strength (17.88 MPa). In addition, the pressed geopolymers showed better thermal stability and fire performance. These results demonstrate that the variation of the forming method has a direct influence on the material properties of geopolymers, and that the pressing process allows for a reduction of the alkaline activator content, thus reducing its environmental footprint. Full article
Show Figures

Figure 1

27 pages, 6659 KiB  
Article
Structural Failures in an Architectural Heritage Site: Case Study of the Blagoveštenje Monastery Church, Kablar, Serbia
by Jelena Ivanović-Šekularac, Neda Sokolović, Nikola Macut, Tijana Žišić and Nenad Šekularac
Buildings 2025, 15(13), 2328; https://doi.org/10.3390/buildings15132328 - 2 Jul 2025
Viewed by 408
Abstract
Authenticity is a core principle in conservation guidelines and a key goal of heritage preservation, especially in Serbia, where many aging objects face ongoing deterioration. The subject of this study is the church within the Blagoveštenje Monastery complex in the Ovčar-Kablar gorge, built [...] Read more.
Authenticity is a core principle in conservation guidelines and a key goal of heritage preservation, especially in Serbia, where many aging objects face ongoing deterioration. The subject of this study is the church within the Blagoveštenje Monastery complex in the Ovčar-Kablar gorge, built using stone from a local quarry at the beginning of the 17th century. The inclination of the structure, observed as progressively increasing over the centuries, raises important concerns regarding its stability. This research focuses on identifying the underlying causes of this phenomenon in order to support its long-term preservation. The methods used the study are long-term in situ observations including analysis, geodetic research, 3D laser imaging, geophysical, geological, archaeological research, evaluation of current condition, determination of structural failures and their cause and monitoring the structural behavior of elements. All methods were carried out in accordance with the definition of rehabilitation measures and the protection of masonry buildings. The main contribution of this study is identifying that the church’s inclination and deviation result from the northern foundation resting on weaker soil and a deeper rock mass compared to the southern side. The research approach and findings presented in this paper can serve as a guide for future endeavors aimed at identifying the causes of deformations and the restoration and structural rehabilitation of masonry buildings as cultural heritage. Full article
(This article belongs to the Special Issue Advanced Research on Cultural Heritage)
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 765
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

18 pages, 5848 KiB  
Article
Residual Mechanical Properties of Sandstone After Fire
by Ema Jankovičová, Radek Zigler and Jiří Pazderka
Buildings 2025, 15(13), 2282; https://doi.org/10.3390/buildings15132282 - 28 Jun 2025
Viewed by 237
Abstract
The impact of fire on natural stone structures is a critical concern, particularly for historical buildings. This study examines the residual mechanical properties of sandstone after exposure to high temperatures. Cylindrical sandstone samples were heated to temperatures up to 900 °C and subsequently [...] Read more.
The impact of fire on natural stone structures is a critical concern, particularly for historical buildings. This study examines the residual mechanical properties of sandstone after exposure to high temperatures. Cylindrical sandstone samples were heated to temperatures up to 900 °C and subsequently tested under uniaxial compression. The results indicate that mechanical degradation becomes significant beyond 460 °C, with compressive strength decreasing by up to 43% at 900 °C. Young’s modulus also declined substantially, while axial strain increased, indicating progressive structural weakening. Additionally, visible colour changes suggest mineralogical transformations. These findings provide essential insights into the fire-induced deterioration of sandstone, offering valuable guidance for the preservation and restoration of historical stone structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 3047 KiB  
Article
Comparison of Pulse-Echo Tomography and Through-Transmission Ultrasonic Test for UPV Characterization of Building Materials
by Emilia Vasanelli, Davide Di Gennaro, Matteo Sticchi, Gianni Blasi and Luigi Capozzoli
Infrastructures 2025, 10(7), 162; https://doi.org/10.3390/infrastructures10070162 - 27 Jun 2025
Viewed by 312
Abstract
Ultrasonic pulse velocity (UPV) is a widely used technique for diagnosis and structural safety assessment of existing buildings. The main difficulties in UPV tests on-site are due to one-sided accessibility of materials and degraded/irregular surfaces. Pulse-echo ultrasonic tomography (PE-UT) can overcome the problem. [...] Read more.
Ultrasonic pulse velocity (UPV) is a widely used technique for diagnosis and structural safety assessment of existing buildings. The main difficulties in UPV tests on-site are due to one-sided accessibility of materials and degraded/irregular surfaces. Pulse-echo ultrasonic tomography (PE-UT) can overcome the problem. Though it has been widely applied for detecting inhomogeneities within concrete, few works use the instrument to assess UPV. The present paper aims to fill the gap by comparing PE-UT results with those of through-transmission ultrasonic tests (TT-UT) commonly used for UPV characterization. TT-UT measurements were performed with cylindrical and exponential transducers. The latter are used on irregular surfaces or when coupling gel is forbidden. Few data are in the literature comparing exponential and cylindrical transducers’ results. This is a further element of novelty of the paper. PE-UT and TT-UT results were compared considering the effect of material compositeness, water, transmission mode, and transducer type. It was found that PE-UT allows for reliable and rapid one-sided measurements on concrete and stone in different conditions. The differences between PE-UT and TT-UT results were between 1 and 3%. Exponential transducers gave reliable results on fine-grained stone in direct transmission, with differences lower than 4% with cylindrical transducer results. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

22 pages, 10231 KiB  
Article
Study on the Distribution Characteristics and Cultural Landscape Zoning of Traditional Villages in North Henan Province
by Yalong Mao, Zihao Zhang, Chang Sun, Minjun Cai and Yipeng Ge
Sustainability 2025, 17(12), 5254; https://doi.org/10.3390/su17125254 - 6 Jun 2025
Viewed by 453
Abstract
Traditional villages contain rich natural and humanistic information, and exploring the spatial distribution characteristics and cultural landscape zoning of traditional villages can provide scientific support for their centralized and continuous protection and renewal and sustainable development. In this study, 326 traditional villages in [...] Read more.
Traditional villages contain rich natural and humanistic information, and exploring the spatial distribution characteristics and cultural landscape zoning of traditional villages can provide scientific support for their centralized and continuous protection and renewal and sustainable development. In this study, 326 traditional villages in the northern Henan region were taken as the research object, followed by analyzing their spatial distribution characteristics by using geostatistical methods, such as nearest-neighbor index, imbalance index, geographic concentration index, etc., combining the theory of cultural landscape to construct the traditional villages’ cultural factor index system, extracting the cultural factors of the traditional villages to form a database, and adopting the K-means clustering method to divide the region. The results show that the spatial distribution of traditional villages in northern Henan tends to be concentrated overall, with an uneven distribution throughout the region. The density is highest in the northwestern part of Hebi City and lower in the central and southern parts of Xinxiang City, Neihuang County, and Puyang City. Based on the cultural factor index system, the K-means algorithm divides the traditional villages in northern Henan into six clusters. Among them, the five cultural factors of topography and geomorphology, building materials, courtyard form, structural system, and altitude and elevation are the most significant, and they are the cultural factors that dominate the landscape of the villages. There is a significant correlation between topography, altitude, and other cultural factors, while the correlation between the street layout and other factors is the lowest. Based on the similarity between the clustering results and the landscape characteristics, the traditional villages in northern Henan can be divided into the stone masonry building culture area along the Taihang Mountains, the brick and stone mixed building culture area in the low hills of the Taihang Mountains, the brick and wood building culture area in the North China Plain, and the raw soil building culture area in the transition zone of the Loess Plateau. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

16 pages, 8970 KiB  
Article
Analysis of the Thermal Properties of Soft Silica Limestone Walls of Traditional Buildings in Central Poland
by Aleksandra Gorączko, Paula Szczepaniak and Marcin Gorączko
Materials 2025, 18(10), 2399; https://doi.org/10.3390/ma18102399 - 21 May 2025
Viewed by 514
Abstract
The challenge of thermally upgrading traditional stone masonry buildings is addressed through the analysis of a representative example typical of regional rural architecture in central Poland, constructed using soft silica limestone and clay mortar. These buildings, which form an important part of the [...] Read more.
The challenge of thermally upgrading traditional stone masonry buildings is addressed through the analysis of a representative example typical of regional rural architecture in central Poland, constructed using soft silica limestone and clay mortar. These buildings, which form an important part of the local cultural heritage, are increasingly becoming the subject of interdisciplinary research and conservation initiatives. This study presents a detailed characterization of the materials and architectural features specific to this building typology. Thermal transmittance calculations were performed and analyzed, with the use of THERM 7.6.1.0 software enabling precise modeling of the wall’s heterogeneous structure. The physical and thermal properties of natural materials—particularly soft silica limestone and clay—were taken into account. The analysis included evaluation of the heat transfer coefficient, temperature distribution, and heat flux density for a reference wall model, as well as for variants with both internal and external insulation layers. The study explores thermal comfort and energy performance within the broader context of preserving and reusing historic rural buildings. Furthermore, the findings are discussed in relation to current European energy efficiency regulations and heritage protection frameworks. The scientific value of this work lies in its context-specific, material-sensitive methodology and in providing practical insight into balancing energy retrofitting with architectural conservation. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering (4th Edition))
Show Figures

Figure 1

Back to TopTop