Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (618)

Search Parameters:
Keywords = building point extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10854 KiB  
Article
A Novel Method for Predicting Landslide-Induced Displacement of Building Monitoring Points Based on Time Convolution and Gaussian Process
by Jianhu Wang, Xianglin Zeng, Yingbo Shi, Jiayi Liu, Liangfu Xie, Yan Xu and Jie Liu
Electronics 2025, 14(15), 3037; https://doi.org/10.3390/electronics14153037 - 30 Jul 2025
Viewed by 15
Abstract
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks [...] Read more.
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks (TCNs), herein referred to as the GTCN model, to forecast displacement at building monitoring points subject to landslide activity. The proposed methodology is validated using time-series monitoring data collected from the slope adjacent to the Zhongliang Reservoir in Wuxi County, Chongqing, an area where slope instability poses a significant threat to nearby structural assets. Experimental results demonstrate the GTCN model’s superior predictive performance, particularly under challenging conditions of incomplete or sparsely sampled data. The model proves highly effective in accurately characterizing both abrupt fluctuations within the displacement time series and capturing long-term deformation trends. Furthermore, the GTCN framework outperforms comparative hybrid models based on Gated Recurrent Units (GRUs) and GPR, with its advantage being especially pronounced in data-limited scenarios. It also exhibits enhanced capability for temporal feature extraction relative to conventional imputation-based forecasting strategies like forward-filling. By effectively modeling both nonlinear trends and uncertainty within displacement sequences, the GTCN framework offers a robust and scalable solution for landslide-related risk assessment and early warning applications. Its applicability to building safety monitoring underscores its potential contribution to geotechnical hazard mitigation and resilient infrastructure management. Full article
Show Figures

Figure 1

20 pages, 2776 KiB  
Article
Automatic 3D Reconstruction: Mesh Extraction Based on Gaussian Splatting from Romanesque–Mudéjar Churches
by Nelson Montas-Laracuente, Emilio Delgado Martos, Carlos Pesqueira-Calvo, Giovanni Intra Sidola, Ana Maitín, Alberto Nogales and Álvaro José García-Tejedor
Appl. Sci. 2025, 15(15), 8379; https://doi.org/10.3390/app15158379 - 28 Jul 2025
Viewed by 148
Abstract
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) [...] Read more.
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) and its successor, Gaussian splatting (GS)—as state-of-the-art techniques in the domain. The study advocates for replacing point cloud data in heritage building information modeling workflows with image-based inputs, proposing a novel “photo-to-BIM” pipeline. A proof-of-concept system is presented, capable of processing photographs or video footage of ancient ruins—specifically, Romanesque–Mudéjar churches—to automatically generate 3D mesh reconstructions. The system’s performance is assessed using both objective metrics and subjective evaluations of mesh quality. The results confirm the feasibility and promise of image-based reconstruction as a viable alternative to conventional methods. The study successfully developed a system for automated 3D mesh reconstruction of AH from images. It applied GS and Mip-splatting for NeRFs, proving superior in noise reduction for subsequent mesh extraction via surface-aligned Gaussian splatting for efficient 3D mesh reconstruction. This photo-to-mesh pipeline signifies a viable step towards HBIM. Full article
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 290
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 1956 KiB  
Article
Two Novel Quantum Steganography Algorithms Based on LSB for Multichannel Floating-Point Quantum Representation of Digital Signals
by Meiyu Xu, Dayong Lu, Youlin Shang, Muhua Liu and Songtao Guo
Electronics 2025, 14(14), 2899; https://doi.org/10.3390/electronics14142899 - 20 Jul 2025
Viewed by 187
Abstract
Currently, quantum steganography schemes utilizing the least significant bit (LSB) approach are primarily optimized for fixed-point data processing, yet they encounter precision limitations when handling extended floating-point data structures owing to quantization error accumulation. To overcome precision constraints in quantum data hiding, the [...] Read more.
Currently, quantum steganography schemes utilizing the least significant bit (LSB) approach are primarily optimized for fixed-point data processing, yet they encounter precision limitations when handling extended floating-point data structures owing to quantization error accumulation. To overcome precision constraints in quantum data hiding, the EPlsb-MFQS and MVlsb-MFQS quantum steganography algorithms are constructed based on the LSB approach in this study. The multichannel floating-point quantum representation of digital signals (MFQS) model enhances information hiding by augmenting the number of available channels, thereby increasing the embedding capacity of the LSB approach. Firstly, we analyze the limitations of fixed-point signals steganography schemes and propose the conventional quantum steganography scheme based on the LSB approach for the MFQS model, achieving enhanced embedding capacity. Moreover, the enhanced embedding efficiency of the EPlsb-MFQS algorithm primarily stems from the superposition probability adjustment of the LSB approach. Then, to prevent an unauthorized person easily extracting secret messages, we utilize channel qubits and position qubits as novel carriers during quantum message encoding. The secret message is encoded into the signal’s qubits of the transmission using a particular modulo value rather than through sequential embedding, thereby enhancing the security and reducing the time complexity in the MVlsb-MFQS algorithm. However, this algorithm in the spatial domain has low robustness and security. Therefore, an improved method of transferring the steganographic process to the quantum Fourier transformed domain to further enhance security is also proposed. This scheme establishes the essential building blocks for quantum signal processing, paving the way for advanced quantum algorithms. Compared with available quantum steganography schemes, the proposed steganography schemes achieve significant improvements in embedding efficiency and security. Finally, we theoretically delineate, in detail, the quantum circuit design and operation process. Full article
Show Figures

Figure 1

17 pages, 4914 KiB  
Article
Large-Scale Point Cloud Semantic Segmentation with Density-Based Grid Decimation
by Liangcun Jiang, Jiacheng Ma, Han Zhou, Boyi Shangguan, Hongyu Xiao and Zeqiang Chen
ISPRS Int. J. Geo-Inf. 2025, 14(7), 279; https://doi.org/10.3390/ijgi14070279 - 17 Jul 2025
Viewed by 436
Abstract
Accurate segmentation of point clouds into categories such as roads, buildings, and trees is critical for applications in 3D reconstruction and autonomous driving. However, large-scale point cloud segmentation encounters challenges such as uneven density distribution, inefficient sampling, and limited feature extraction capabilities. To [...] Read more.
Accurate segmentation of point clouds into categories such as roads, buildings, and trees is critical for applications in 3D reconstruction and autonomous driving. However, large-scale point cloud segmentation encounters challenges such as uneven density distribution, inefficient sampling, and limited feature extraction capabilities. To address these issues, this paper proposes RT-Net, a novel framework that incorporates a density-based grid decimation algorithm for efficient preprocessing of outdoor point clouds. The proposed framework helps alleviate the problem of uneven density distribution and improves computational efficiency. RT-Net also introduces two modules: Local Attention Aggregation, which extracts local detailed features of points using an attention mechanism, enhancing the model’s recognition ability for small-sized objects; and Attention Residual, which integrates local details of point clouds with global features by an attention mechanism to improve the model’s generalization ability. Experimental results on the Toronto3D, Semantic3D, and SemanticKITTI datasets demonstrate the superiority of RT-Net for small-sized object segmentation, achieving state-of-the-art mean Intersection over Union (mIoU) scores of 86.79% on Toronto3D and 79.88% on Semantic3D. Full article
Show Figures

Figure 1

28 pages, 6582 KiB  
Article
Experimental Study on Dynamic Response Characteristics of Rural Residential Buildings Subjected to Blast-Induced Vibrations
by Jingmin Pan, Dongli Zhang, Zhenghua Zhou, Jiacong He, Long Zhang, Yi Han, Cheng Peng and Sishun Wang
Buildings 2025, 15(14), 2511; https://doi.org/10.3390/buildings15142511 - 17 Jul 2025
Viewed by 204
Abstract
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along [...] Read more.
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along the Wenzhou segment of the Hangzhou–Wenzhou High-Speed Railway integrates household field surveys and empirical measurements to perform modal analysis of rural residential buildings through finite element simulation. Adhering to the principle of stratified arrangement and composite measurement point configuration, an effective and reasonable experimental observation framework was established. In this investigation, the seven-story rural residential building in adjacent villages was selected as the research object. Strong-motion seismographs were strategically positioned adjacent to frame columns on critical stories (ground, fourth, seventh, and top floors) within the observational system to acquire test data. Methodical signal processing techniques, including effective signal extraction, baseline correction, and schedule conversion, were employed to derive temporal dynamic characteristics for each story. Combined with the Fourier transform, the frequency–domain distribution patterns of different floors are subsequently obtained. Leveraging the structural dynamic theory, time–domain records were mathematically converted to establish the structure’s maximum response spectra under blast-induced loading conditions. Through the analysis of characteristic curves, including floor acceleration response spectra, dynamic amplification coefficients, and spectral ratios, the dynamic response patterns of rural residential buildings subjected to blast-induced vibrations have been elucidated. Following the normalization of peak acceleration and velocity parameters, the mechanisms underlying differential floor-specific dynamic responses were examined, and the layout principles of measurement points were subsequently formulated and summarized. These findings offer valuable insights for enhancing the seismic resilience and structural safety of rural residential buildings exposed to blast-induced vibrations, with implications for both theoretical advancements and practical engineering applications. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

19 pages, 1971 KiB  
Article
IoMT Architecture for Fully Automated Point-of-Care Molecular Diagnostic Device
by Min-Gin Kim, Byeong-Heon Kil, Mun-Ho Ryu and Jong-Dae Kim
Sensors 2025, 25(14), 4426; https://doi.org/10.3390/s25144426 - 16 Jul 2025
Viewed by 383
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by integrating smart diagnostic devices with cloud computing and real-time data analytics. The emergence of infectious diseases, including COVID-19, underscores the need for rapid and decentralized diagnostics to facilitate early intervention. Traditional centralized laboratory [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by integrating smart diagnostic devices with cloud computing and real-time data analytics. The emergence of infectious diseases, including COVID-19, underscores the need for rapid and decentralized diagnostics to facilitate early intervention. Traditional centralized laboratory testing introduces delays, limiting timely medical responses. While point-of-care molecular diagnostic (POC-MD) systems offer an alternative, challenges remain in cost, accessibility, and network inefficiencies. This study proposes an IoMT-based architecture for fully automated POC-MD devices, leveraging WebSockets for optimized communication, enhancing microfluidic cartridge efficiency, and integrating a hardware-based emulator for real-time validation. The system incorporates DNA extraction and real-time polymerase chain reaction functionalities into modular, networked components, improving flexibility and scalability. Although the system itself has not yet undergone clinical validation, it builds upon the core cartridge and detection architecture of a previously validated cartridge-based platform for Chlamydia trachomatis and Neisseria gonorrhoeae (CT/NG). These pathogens were selected due to their global prevalence, high asymptomatic transmission rates, and clinical importance in reproductive health. In a previous clinical study involving 510 patient specimens, the system demonstrated high concordance with a commercial assay with limits of detection below 10 copies/μL, supporting the feasibility of this architecture for point-of-care molecular diagnostics. By addressing existing limitations, this system establishes a new standard for next-generation diagnostics, ensuring rapid, reliable, and accessible disease detection. Full article
(This article belongs to the Special Issue Advances in Sensors and IoT for Health Monitoring)
Show Figures

Figure 1

17 pages, 865 KiB  
Article
An Intelligent Natural Language Processing (NLP) Workflow for Automated Smart Building Design
by Ebere Donatus Okonta, Francis Ogochukwu Okeke, Emeka Ebuz Mgbemena, Rosemary Chidimma Nnaemeka-Okeke, Shuang Guo, Foluso Charles Awe and Chinedu Eke
Buildings 2025, 15(14), 2413; https://doi.org/10.3390/buildings15142413 - 9 Jul 2025
Viewed by 455
Abstract
The automation of smart building design processes remains a significant challenge, particularly in translating complex natural language requirements into structured design parameters within Computer-Aided Design (CAD) environments. Traditional design workflows rely heavily on manual input, which can be inefficient, error-prone, and time-consuming, limiting [...] Read more.
The automation of smart building design processes remains a significant challenge, particularly in translating complex natural language requirements into structured design parameters within Computer-Aided Design (CAD) environments. Traditional design workflows rely heavily on manual input, which can be inefficient, error-prone, and time-consuming, limiting the integration of adaptive, real-time inputs. To address this issue, this study proposes an intelligent Natural Language Processing (NLP)-based workflow for automating the conversion of design briefs into CAD-readable parameters. This study proposes a five-step integration framework that utilizes NLP to extract key design requirements from unstructured inputs such as emails and textual descriptions. The framework then identifies optimal integration points—such as APIs, direct database connections, or plugin-based solutions—to ensure seamless adaptability across various CAD systems. The implementation of this workflow has the potential to enable the automation of routine design tasks, reducing the reliance on manual data entry and enhancing efficiency. The key findings demonstrate that the proposed NLP-based approach may significantly streamline the design process, minimize human intervention while maintaining accuracy and adaptability. By integrating NLP with CAD environments, this study contributes to advancing intelligent design automation, ultimately supporting more efficient, cost-effective, and scalable smart building development. These findings highlight the potential of NLP to bridge the gap between human input and machine-readable data, providing a transformative solution for the architectural and construction industries. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 1290 KiB  
Article
A KeyBERT-Enhanced Pipeline for Electronic Information Curriculum Knowledge Graphs: Design, Evaluation, and Ontology Alignment
by Guanghe Zhuang and Xiang Lu
Information 2025, 16(7), 580; https://doi.org/10.3390/info16070580 - 6 Jul 2025
Viewed by 437
Abstract
This paper proposes a KeyBERT-based method for constructing a knowledge graph of the electronic information curriculum system, aiming to enhance the structured representation and relational analysis of educational content. Electronic Information Engineering curricula encompass diverse and rapidly evolving topics; however, existing knowledge graphs [...] Read more.
This paper proposes a KeyBERT-based method for constructing a knowledge graph of the electronic information curriculum system, aiming to enhance the structured representation and relational analysis of educational content. Electronic Information Engineering curricula encompass diverse and rapidly evolving topics; however, existing knowledge graphs often overlook multi-word concepts and more nuanced semantic relationships. To address this gap, this paper presents a KeyBERT-enhanced method for constructing a knowledge graph of the electronic information curriculum system. Utilizing teaching plans, syllabi, and approximately 500,000 words of course materials from 17 courses, we first extracted 500 knowledge points via the Term Frequency–Inverse Document Frequency (TF-IDF) algorithm to build a baseline course–knowledge matrix and visualize the preliminary graph using Graph Convolutional Networks (GCN) and Neo4j. We then applied KeyBERT to extract about 1000 knowledge points—approximately 65% of extracted terms were multi-word phrases—and augment the graph with co-occurrence and semantic-similarity edges. Comparative experiments demonstrate a ~20% increase in non-zero matrix coverage and a ~40% boost in edge count (from 5100 to 7100), significantly enhancing graph connectivity. Moreover, we performed sensitivity analysis on extraction thresholds (co-occurrence ≥ 5, similarity ≥ 0.7), revealing that (5, 0.7) maximizes the F1-score at 0.83. Hyperparameter ablation over n-gram ranges [(1,1),(1,2),(1,3)] and top_n [5, 10, 15] identifies (1,3) + top_n = 10 as optimal (Precision = 0.86, Recall = 0.81, F1 = 0.83). Finally, GCN downstream tests show that, despite higher sparsity (KeyBERT 64% vs. TF-IDF 40%), KeyBERT features achieve Accuracy = 0.78 and F1 = 0.75, outperforming TF-IDF’s 0.66/0.69. This approach offers a novel, rigorously evaluated solution for optimizing the electronic information curriculum system and can be extended through terminology standardization or larger data integration. Full article
Show Figures

Figure 1

24 pages, 1151 KiB  
Article
EKNet: Graph Structure Feature Extraction and Registration for Collaborative 3D Reconstruction in Architectural Scenes
by Changyu Qian, Hanqiang Deng, Xiangrong Ni, Dong Wang, Bangqi Wei, Hao Chen and Jian Huang
Appl. Sci. 2025, 15(13), 7133; https://doi.org/10.3390/app15137133 - 25 Jun 2025
Viewed by 271
Abstract
Collaborative geometric reconstruction of building structures can significantly reduce communication consumption for data sharing, protect privacy, and provide support for large-scale robot application management. In recent years, geometric reconstruction of building structures has been partially studied, but there is a lack of alignment [...] Read more.
Collaborative geometric reconstruction of building structures can significantly reduce communication consumption for data sharing, protect privacy, and provide support for large-scale robot application management. In recent years, geometric reconstruction of building structures has been partially studied, but there is a lack of alignment fusion studies for multi-UAV (Unmanned Aerial Vehicle)-reconstructed geometric structure models. The vertices and edges of geometric structure models are sparse, and existing methods face challenges such as low feature extraction efficiency and substantial data requirements when processing sparse graph structures after geometrization. To address these challenges, this paper proposes an efficient deep graph matching registration framework that effectively integrates interpretable feature extraction with network training. Specifically, we first extract multidimensional local properties of nodes by combining geometric features with complex network features. Next, we construct a lightweight graph neural network, named EKNet, to enhance feature representation capabilities, enabling improved performance in low-overlap registration scenarios. Finally, through feature matching and discrimination modules, we effectively eliminate incorrect pairings and enhance accuracy. Experiments demonstrate that the proposed method achieves a 27.28% improvement in registration speed compared to traditional GCN (Graph Convolutional Neural Networks) and an 80.66% increase in registration accuracy over the suboptimal method. The method exhibits strong robustness in registration for scenes with high noise and low overlap rates. Additionally, we construct a standardized geometric point cloud registration dataset. Full article
Show Figures

Figure 1

25 pages, 7020 KiB  
Article
A Deep Learning Framework for Deformation Monitoring of Hydraulic Structures with Long-Sequence Hydrostatic and Thermal Time Series
by Hui Li, Jiankang Lou, Fan Li, Guang Yang and Yibo Ouyang
Water 2025, 17(12), 1814; https://doi.org/10.3390/w17121814 - 17 Jun 2025
Viewed by 327
Abstract
As hydraulic buildings are constantly subjected to complex interactions with water, particularly variations in hydrostatic pressure and temperature, deformation structural behavior is inherently sensitive to environmental fluctuations. Monitoring dam deformation with high accuracy and robustness is critical for ensuring the long-term safety and [...] Read more.
As hydraulic buildings are constantly subjected to complex interactions with water, particularly variations in hydrostatic pressure and temperature, deformation structural behavior is inherently sensitive to environmental fluctuations. Monitoring dam deformation with high accuracy and robustness is critical for ensuring the long-term safety and operational integrity of hydraulic structures. However, traditional physics-based models often struggle to fully capture the nonlinear and time-dependent deformation responses in hydraulic structures driven by such coupled environmental influences. To address these limitations, this study presents an advanced deep learning (DL)-based deformation monitoring for hydraulic buildings using long-sequence monitoring data of hydrostatic pressure and temperature. Specifically, the Bidirectional Stacked Long Short-Term Memory (Bi-Stacked-LSTM) is proposed to capture intricate temporal dependencies and directional dynamics within long-sequence hydrostatic and thermal time series. Then, hyperparameters, including the number of LSTM layers, neuron counts in each layer, dropout rate, and time steps, are efficiently fine-tuned using the Gaussian Process-based surrogate model optimization (GP-SMO) algorithm. Multiple deformation monitoring points from hydraulic buildings and a variety of advanced machine-learning methods are utilized for analysis. Experimental results indicate that the developed GP-SMO-optimized Bi-Stacked-LSTM dam deformation monitoring model shows better comprehensive representation capability of both past and future deformation-related sequences compared with benchmark methods. By approximating the behavior of the target function, the GP-SMO algorithms allow for the optimization of critical parameters in DL models while minimizing the high computational costs typically associated with direct evaluations. This novel DL-based approach significantly improves the extraction of deformation-relevant features from long-term monitoring data, enabling more accurate modeling of temporal dynamics. As a result, the developed method offers a promising new tool for safety monitoring and intelligent management of large-scale hydraulic structures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 10980 KiB  
Article
Research on the Assessment of Architectural Colors in Cultural Heritage Blocks Based on Computer Vision: A Case Study of Tianjin
by Xiaoli Cao, Yingxia Yun and Lijian Ren
Land 2025, 14(6), 1159; https://doi.org/10.3390/land14061159 - 28 May 2025
Viewed by 538
Abstract
Historic and cultural heritage districts, as physical carriers of a city’s cultural identity, have become key issues in urban development. Architectural color, as a core visual element of district character, is an important symbol of regional identity recognition. However, further exploration is needed [...] Read more.
Historic and cultural heritage districts, as physical carriers of a city’s cultural identity, have become key issues in urban development. Architectural color, as a core visual element of district character, is an important symbol of regional identity recognition. However, further exploration is needed regarding how to integrate architectural color quantification metrics and evaluation techniques into the urban characteristics management framework. In this paper, taking Tianjin’s historic cultural heritage districts as a case study, street view data were utilized, and deep learning along with clustering analysis methods were employed to extract architectural colors. Based on the “point-line-surface” protection strategy, a multi-scale architectural color identification and evaluation method spanning “buildings-streets-districts” was established. This methodology enables the recognition of dominant building colors in heritage zones at the district scale and the assessment of street color harmony and richness at the street scale. By analyzing these two levels, this research interprets the role of architectural color as a visual attribute in defining urban character and enhancing urban distinctiveness. It provides technical support for refining urban characteristics management systems and achieving precise control over the preservation and development of distinctive urban features. Full article
(This article belongs to the Special Issue Feature Papers for Land Planning and Landscape Architecture Section)
Show Figures

Figure 1

17 pages, 3256 KiB  
Article
Research on the Forming Detection Technology of Shell Plates Based on Laser Scanning
by Ji Wang, Baichen Wang, Yujun Liu, Rui Li, Shilin Huo, Jiawei Shi and Lin Pang
J. Mar. Sci. Eng. 2025, 13(6), 1057; https://doi.org/10.3390/jmse13061057 - 27 May 2025
Viewed by 344
Abstract
In order to solve the problems of low efficiency and insufficient accuracy of the traditional manual template method in the forming detection of shell plates, a digital solution based on laser scanning detection system was proposed. By introducing a six-degree-of-freedom robotic arm and [...] Read more.
In order to solve the problems of low efficiency and insufficient accuracy of the traditional manual template method in the forming detection of shell plates, a digital solution based on laser scanning detection system was proposed. By introducing a six-degree-of-freedom robotic arm and a high-precision line laser sensor to build a three-dimensional detection platform, a digital template method framework including data acquisition, point cloud registration, surface reconstruction, and deviation analysis was innovatively constructed. A point cloud non-penetration registration algorithm fused with boundary geometric information was proposed. Based on the improved Delaunay triangulation algorithm, the surface is reconstructed and the digital template is extracted. Experimental verification shows that the method achieves an accuracy of less than 1 mm of error in the detection of outer plates, shortens the single detection time to less than 10 min, and improves the detection efficiency by more than 75% compared with the traditional method. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 14744 KiB  
Article
Rapid Seismic Damage Assessment in Densely Built Wooden Residential Areas Using 3D Point Cloud Measurement
by Itsuki Nagaike, Ittetsu Kuniyoshi, Sachie Sato and Yue Bao
Buildings 2025, 15(10), 1623; https://doi.org/10.3390/buildings15101623 - 11 May 2025
Viewed by 513
Abstract
Rapid post-earthquake assessments of residential buildings are essential for preventing secondary disasters but typically require substantial human resources, with challenges related to accuracy and inspector safety. In wooden residential buildings, residual deformation can cause significant internal damage despite minor external indications. Thus, accurate [...] Read more.
Rapid post-earthquake assessments of residential buildings are essential for preventing secondary disasters but typically require substantial human resources, with challenges related to accuracy and inspector safety. In wooden residential buildings, residual deformation can cause significant internal damage despite minor external indications. Thus, accurate evaluation of secondary components such as exterior walls and window frames is crucial. Although recent studies on digital assessment technologies focus mainly on reinforced concrete structures, limited research addresses wooden structures, especially considering residual deformation. This study proposes a rapid emergency risk assessment method utilizing 3D point cloud measurements obtained by a 3D scanning camera for densely built wooden residential areas. Its practicality was verified through three aspects. First, a comparison with conventional methods showed that the measurement accuracy of the proposed method is sufficient for practical use, with errors significantly lower than the inclination thresholds used in emergency risk assessments (e.g., 1/60 rad ≈ 1°). Second, in detection experiments using a deformed window frame model, the average error between the applied inclination and the measured values was less than 3%, demonstrating that deformation, dislodgement, and inclination of secondary components can be reliably detected from point cloud data. Third, field validation conducted in a commercial district confirmed that multiple buildings can be simultaneously measured and that individual buildings and their secondary components can be efficiently extracted and identified. Thus, this method demonstrates practical applicability and significantly improves the speed and efficiency of emergency assessments in densely built wooden residential areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 2150 KiB  
Article
A Self-Supervised Point Cloud Completion Method for Digital Twin Smart Factory Scenario Construction
by Yongjie Xu, Haihua Zhu and Barmak Honarvar Shakibaei Asli
Electronics 2025, 14(10), 1934; https://doi.org/10.3390/electronics14101934 - 9 May 2025
Cited by 1 | Viewed by 964
Abstract
In the development of digital twin (DT) workshops, constructing accurate DT models has become a key step toward enabling intelligent manufacturing. To address challenges such as incomplete data acquisition, noise sensitivity, and the heavy reliance on manual annotations in traditional modeling methods, this [...] Read more.
In the development of digital twin (DT) workshops, constructing accurate DT models has become a key step toward enabling intelligent manufacturing. To address challenges such as incomplete data acquisition, noise sensitivity, and the heavy reliance on manual annotations in traditional modeling methods, this paper proposes a self-supervised deep learning approach for point cloud completion. The proposed model integrates self-supervised learning strategies for inferring missing regions, a Feature Pyramid Network (FPN), and cross-attention mechanisms to extract critical geometric and structural features from incomplete point clouds, thereby reducing dependence on labeled data and improving robustness to noise and incompleteness. Building on this foundation, a point cloud-based DT workshop modeling framework is introduced, incorporating transfer learning techniques to enable domain adaptation from synthetic to real-world industrial datasets, which significantly reduces the reliance on high-quality industrial point cloud data. Experimental results demonstrate that the proposed method achieves superior completion and reconstruction performance on both public benchmarks and real-world workshop scenarios, achieving an average CD-2 score of 15.96 on the 3D-EPN dataset. Furthermore, the method produces high-fidelity models in practical applications, providing a solid foundation for the precise construction and deployment of virtual scenes in DT workshops. Full article
Show Figures

Figure 1

Back to TopTop