sensors-logo

Journal Browser

Journal Browser

Advances in Sensors and IoT for Health Monitoring

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Internet of Things".

Deadline for manuscript submissions: 31 July 2026 | Viewed by 1006

Special Issue Editors

Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
Interests: IoT; smart health; AI/ML; cybersecurity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Computer Science and Mathematics, University of Quebec at Chicoutimi, Chicoutimi, QC G7H 2B, Canada
Interests: software engineering; emerging architectures; healthcare systems; ubiquitous and pervasive computing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Integrating advanced sensors and the Internet of Things (IoT) into health monitoring systems revolutionizes healthcare by enabling the continuous, real-time tracking of patients' health conditions. This Special Issue aims to explore the latest innovations, research, and applications in the field of sensors and IoT for health monitoring. It will cover the development of novel sensor technologies, the implementation of IoT solutions for healthcare, and the challenges and opportunities in creating smart, connected health systems. By bringing together cutting-edge research and practical applications, this Special Issue will highlight the significant impact of these technologies on improving patient outcomes, enhancing the efficiency of healthcare delivery, and facilitating the shift toward personalized medicine.

Dr. Mehdi Adda
Prof. Dr. Hamid Mcheick
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sensor technologies
  • Internet of Things (IoT)
  • health monitoring systems
  • real-time monitoring
  • healthcare applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1971 KiB  
Article
IoMT Architecture for Fully Automated Point-of-Care Molecular Diagnostic Device
by Min-Gin Kim, Byeong-Heon Kil, Mun-Ho Ryu and Jong-Dae Kim
Sensors 2025, 25(14), 4426; https://doi.org/10.3390/s25144426 - 16 Jul 2025
Viewed by 476
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by integrating smart diagnostic devices with cloud computing and real-time data analytics. The emergence of infectious diseases, including COVID-19, underscores the need for rapid and decentralized diagnostics to facilitate early intervention. Traditional centralized laboratory [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by integrating smart diagnostic devices with cloud computing and real-time data analytics. The emergence of infectious diseases, including COVID-19, underscores the need for rapid and decentralized diagnostics to facilitate early intervention. Traditional centralized laboratory testing introduces delays, limiting timely medical responses. While point-of-care molecular diagnostic (POC-MD) systems offer an alternative, challenges remain in cost, accessibility, and network inefficiencies. This study proposes an IoMT-based architecture for fully automated POC-MD devices, leveraging WebSockets for optimized communication, enhancing microfluidic cartridge efficiency, and integrating a hardware-based emulator for real-time validation. The system incorporates DNA extraction and real-time polymerase chain reaction functionalities into modular, networked components, improving flexibility and scalability. Although the system itself has not yet undergone clinical validation, it builds upon the core cartridge and detection architecture of a previously validated cartridge-based platform for Chlamydia trachomatis and Neisseria gonorrhoeae (CT/NG). These pathogens were selected due to their global prevalence, high asymptomatic transmission rates, and clinical importance in reproductive health. In a previous clinical study involving 510 patient specimens, the system demonstrated high concordance with a commercial assay with limits of detection below 10 copies/μL, supporting the feasibility of this architecture for point-of-care molecular diagnostics. By addressing existing limitations, this system establishes a new standard for next-generation diagnostics, ensuring rapid, reliable, and accessible disease detection. Full article
(This article belongs to the Special Issue Advances in Sensors and IoT for Health Monitoring)
Show Figures

Figure 1

Back to TopTop