Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (803)

Search Parameters:
Keywords = building integration of photovoltaics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3350 KB  
Article
Challenges in the Legal and Technical Integration of Photovoltaics in Multi-Family Buildings in the Polish Energy Grid
by Robert Kowalak, Daniel Kowalak, Konrad Seklecki and Leszek S. Litzbarski
Energies 2026, 19(2), 474; https://doi.org/10.3390/en19020474 - 17 Jan 2026
Viewed by 49
Abstract
This article analyzes the case of a typical modern residential area, which was built following current legal regulations in Poland. For the purposes of the calculations, a housing estate consisting of 32 houses was assumed, with a connection power of 36 kW each. [...] Read more.
This article analyzes the case of a typical modern residential area, which was built following current legal regulations in Poland. For the purposes of the calculations, a housing estate consisting of 32 houses was assumed, with a connection power of 36 kW each. The three variants evaluate power consumption and photovoltaic system operation: Variant I assumes no PV installations and fluctuating consumer power demands; Variant II involves PV installations in all estate buildings with a total capacity matching the building’s 36 kW connection power and minimal consumption; and Variant III increases installed PV capacity per building to 50 kW, aligning with apartment connection powers, also with minimal consumption. The simulations performed indicated that there may be problems with voltage levels and current overloads of network elements. Although in case I the transformer worked properly, after connecting the PV installation in an extreme case, it was overloaded by about 117% (Variant II) or even about 180% (Variant III). The described case illustrates the impact of changes in regulations on the stability of the electricity distribution network. A potential solution to this problem is to oversize the distribution network elements, introduce power restrictions for PV installations or to oblige prosumers to install energy storage facilities. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

23 pages, 2113 KB  
Article
Building-Integrated Solar Delivery Strategies for Algae Photobioreactors in Cold Climates
by Neda Ghaeili Ardabili, Mohammad Elmi and Julian Wang
Buildings 2026, 16(2), 391; https://doi.org/10.3390/buildings16020391 - 17 Jan 2026
Viewed by 40
Abstract
Microalgae photobioreactors (PBRs) are promising building-integrated biotechnologies for carbon capture and biomass production; however, their high energy requirements for artificial lighting remain a significant energy barrier in cold climates. This study developed an integrated spectral–optical energy modeling framework to evaluate two PBR deployment [...] Read more.
Microalgae photobioreactors (PBRs) are promising building-integrated biotechnologies for carbon capture and biomass production; however, their high energy requirements for artificial lighting remain a significant energy barrier in cold climates. This study developed an integrated spectral–optical energy modeling framework to evaluate two PBR deployment strategies in State College, PA: rooftop daylight-exposed integration and basement installation with solar-assisted lighting. Results show that fiber-optic daylighting can supply a substantial fraction of photosynthetically useful light without introducing additional internal heat loads, while photovoltaics sized at approximately 0.40–0.55 kWDC per reactor can offset the annual PBR lighting energy use when sufficient roof area is available. Whole-building energy simulations further reveal that rooftop PBR integration reduces total annual space energy consumption by ~21% relative to basement placement due to lower artificial lighting and cooling loads. When combined, PV and fiber systems can fully meet basement PBR lighting demand, whereas rooftop configurations may rely more on grid electricity. Economically, fiber-optic daylighting achieves comparable lighting offsets at roughly half the annualized cost of PV-based systems, subject to surface-area and routing constraints. Overall, solar-assisted lighting strategies markedly improve the operational sustainability of building-integrated PBRs in cold climates, with fiber-optic daylighting offering substantial spectral and thermal advantages, subject to surface-area availability and routing-related design constraints. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

23 pages, 1435 KB  
Article
Research on Source–Grid–Load–Storage Coordinated Optimization and Evolutionarily Stable Strategies for High Renewable Energy
by Yu Shi, Yiwen Yao, Yiran Li, Jing Wang, Rui Zhou, Xiaomin Lu, Xinhong Wang, Dingheng Wang, Xuefeng Gao, Xin Xu, Zilai Ou, Leilei Jiang and Zhe Ma
Energies 2026, 19(2), 415; https://doi.org/10.3390/en19020415 - 14 Jan 2026
Viewed by 127
Abstract
In the context of large-scale renewable energy integration driven by China’s dual-carbon goals, and under distribution network scenarios with continuously increasing shares of wind and photovoltaic generation, this paper proposes a source–grid–load–storage coordinated planning method embedded with a multi-agent game mechanism. First, the [...] Read more.
In the context of large-scale renewable energy integration driven by China’s dual-carbon goals, and under distribution network scenarios with continuously increasing shares of wind and photovoltaic generation, this paper proposes a source–grid–load–storage coordinated planning method embedded with a multi-agent game mechanism. First, the interest transmission pathways among distributed generation operators (DGOs), distribution network operators (DNOs), energy storage operators (ESOs), and electricity users are mapped, based on which a profit model is established for each stakeholder. Building on this, a coordinated planning framework for active distribution networks (DN) is developed under the assumption of bounded rationality. Through an evolutionary-game process among DGOs, DNOs, and ESOs, and in combination with user-side demand response, the model jointly determines the optimal network reinforcement scheme as well as the optimal allocation of distributed generation (DG) and energy storage system (ESS) resources. Case studies are then conducted to verify the feasibility and effectiveness of the proposed method. The results demonstrate that the approach enables coordinated planning of DN, DG, and ESS, effectively guides users to participate in demand response, and improves both planning economy and renewable energy accommodation. Moreover, by explicitly capturing the trade-offs among multiple stakeholders through evolutionary-game interactions, the planning outcomes align better with real-world operational characteristics. Full article
Show Figures

Figure 1

47 pages, 2718 KB  
Review
A Systematic Review of the Scalability of Building-Integrated Photovoltaics from a Multidisciplinary Perspective
by Baitong Li, Dian Zhou, Mengyuan Zhou, Duo Xu, Qian Zhang, Yingtao Qi, Zongzhou Zhu and Yujun Yang
Buildings 2026, 16(2), 332; https://doi.org/10.3390/buildings16020332 - 13 Jan 2026
Viewed by 110
Abstract
Over the past two decades, Building-Integrated Photovoltaics (BIPV) has become a core technology in the green building sector, driven by global carbon-neutrality goals and the growing demand for sustainable design. This review adopts a scalability-oriented perspective and systematically examines 82 peer-reviewed articles published [...] Read more.
Over the past two decades, Building-Integrated Photovoltaics (BIPV) has become a core technology in the green building sector, driven by global carbon-neutrality goals and the growing demand for sustainable design. This review adopts a scalability-oriented perspective and systematically examines 82 peer-reviewed articles published between 2001 and 2025. The results indicate that existing research is dominated by studies on electrical and thermal performance, with East Asia and Europe—particularly China, Japan, and Germany—emerging as the most active regions. This dominance matters for scalability because real projects must satisfy comfort, compliance, buildability, and operation/maintenance constraints alongside energy yield; limited evidence in these dimensions increases delivery risk when transferring solutions across regions and building types. Accordingly, we interpret the observed distribution as an evidence-maturity pattern: performance gains are increasingly well characterized, whereas deployment-relevant uncertainties (e.g., boundary-condition sensitivity and validation depth) remain less consistently reported. Multidimensional integration of thermal, optical, and electrical functions is gaining momentum; however, user-centered performance dimensions remain underexplored. Simulation-based approaches still prevail, whereas large-scale empirical studies are limited. The review also reveals extensive interdisciplinary collaboration but also identifies a notable lack of architectural perspectives. Using Biblioshiny, this study maps co-authorship networks and research structures. Based on the evidence, we propose future research directions to enhance the practical scalability of BIPV, including strengthening interdisciplinary integration, expanding empirical validation, and developing product-level design strategies. Full article
(This article belongs to the Special Issue Carbon-Neutral Pathways for Urban Building Design)
Show Figures

Figure 1

28 pages, 4808 KB  
Article
Hybrid Renewable Systems Integrating Hydrogen, Battery Storage and Smart Market Platforms for Decarbonized Energy Futures
by Antun Barac, Mario Holik, Kristijan Ćurić and Marinko Stojkov
Energies 2026, 19(2), 331; https://doi.org/10.3390/en19020331 - 9 Jan 2026
Viewed by 347
Abstract
Rapid decarbonization and decentralization of power systems are driving the integration of renewable generation, energy storage and digital technologies into unified energy ecosystems. In this context, photovoltaic (PV) systems combined with battery and hydrogen storage and blockchain-based platforms represent a promising pathway toward [...] Read more.
Rapid decarbonization and decentralization of power systems are driving the integration of renewable generation, energy storage and digital technologies into unified energy ecosystems. In this context, photovoltaic (PV) systems combined with battery and hydrogen storage and blockchain-based platforms represent a promising pathway toward sustainable and transparent energy management. This study evaluates the techno-economic performance and operational feasibility of integrated PV systems combining battery and hydrogen storage with a blockchain-based peer-to-peer (P2P) energy trading platform. A simulation framework was developed for two representative consumer profiles: a scientific–educational institution and a residential household. Technical, economic and environmental indicators were assessed for PV systems integrated with battery and hydrogen storage. The results indicate substantial reductions in grid electricity demand and CO2 emissions for both profiles, with hydrogen integration providing additional peak-load stabilization under current cost constraints. Blockchain functionality was validated through smart contracts and a decentralized application, confirming the feasibility of P2P energy exchange without central intermediaries. Grid electricity consumption is reduced by up to approximately 45–50% for residential users and 35–40% for institutional buildings, accompanied by CO2 emission reductions of up to 70% and 38%, respectively, while hydrogen integration enables significant peak-load reduction. Overall, the results demonstrate the synergistic potential of integrating PV generation, battery and hydrogen storage and blockchain-based trading to enhance energy independence, reduce emissions and improve system resilience, providing a comprehensive basis for future pilot implementations and market optimization strategies. Full article
(This article belongs to the Special Issue Energy Management and Life Cycle Assessment for Sustainable Energy)
Show Figures

Figure 1

29 pages, 14221 KB  
Article
Integrated Control of Hybrid Thermochemical–PCM Storage for Renewable Heating and Cooling Systems in a Smart House
by Georgios Martinopoulos, Paschalis A. Gkaidatzis, Luis Jimeno, Alberto Belda González, Panteleimon Bakalis, George Meramveliotakis, Apostolos Gkountas, Nikolaos Tarsounas, Dimosthenis Ioannidis, Dimitrios Tzovaras and Nikolaos Nikolopoulos
Electronics 2026, 15(2), 279; https://doi.org/10.3390/electronics15020279 - 7 Jan 2026
Viewed by 301
Abstract
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped [...] Read more.
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped with a heat pump, advanced electronics-enabled control, photovoltaic–thermal panels, and flat-plate solar collectors. To optimize energy flows, regulate charging and discharging cycles, and maintain operational stability under fluctuating solar irradiance and building loads, the system utilizes state-of-the-art power electronics, variable-frequency drives and modular multi-level converters. The hybrid storage is safely, reliably, and efficiently integrated with building HVAC requirements owing to a multi-layer control architecture that is implemented via Internet of Things and SCADA platforms that allow for real-time monitoring, predictive operation, and fault detection. Data from the MiniStor prototype demonstrate effective thermal–electrical coordination, controlled energy consumption, and high responsiveness to dynamic environmental and demand conditions. The findings highlight the vital role that digital control, modern electronics, and Internet of Things-enabled supervision play in connecting small, high-density thermal storage and renewable energy generation. This strategy demonstrates the promise of electronics-driven integration for next-generation renewable energy solutions and provides a scalable route toward intelligent, robust, and effective building energy systems. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

19 pages, 3965 KB  
Article
Assessing the Sustainability and Thermo-Economic Performance of Solar Power Technologies: Photovoltaic Power Plant and Linear Fresnel Reflector Coupled with an Organic Rankine System
by Erdal Yıldırım and Mehmet Azmi Aktacir
Processes 2026, 14(2), 204; https://doi.org/10.3390/pr14020204 - 7 Jan 2026
Viewed by 164
Abstract
In this study, the technical, economic, and environmental performances of a Linear Fresnel Reflector (LFR) integrated with an Organic Rankine Cycle (ORC), designed with a non-storage approach, and a monocrystalline photovoltaic (PV) system were comparatively evaluated in meeting a building’s 10 kW electricity [...] Read more.
In this study, the technical, economic, and environmental performances of a Linear Fresnel Reflector (LFR) integrated with an Organic Rankine Cycle (ORC), designed with a non-storage approach, and a monocrystalline photovoltaic (PV) system were comparatively evaluated in meeting a building’s 10 kW electricity demand. Solar-based electricity generation systems play a critical role in reducing carbon emissions and increasing energy self-sufficiency in buildings, yet small-scale, storage-free LFR-ORC applications remain relatively underexplored compared to PV systems. The optimal areas for both systems were determined using the P1P2 methodology. The electricity generation of the LFR-ORC system was calculated based on experimentally measured thermal power output and ORC efficiency, while the production of the PV system was determined using panel area, efficiency, and measured solar irradiation data. System performance was assessed through self-consumption and self-sufficiency ratios, and the economic analysis included life cycle savings (LCS), payback period, and levelized cost of electricity (LCOE). The results indicate that the PV system is more advantageous economically, with an optimal payback of 4.93 years and lower LCOE of 0.053 €/kWh when the economically optimal panel area is considered. On the other hand, the LFR-ORC system exhibits up to 35% lower life-cycle CO2 emissions compared to grid electricity under grid-connected operation (15.86 tons CO2-eq for the standalone LFR-ORC system versus 50.57 tons CO2-eq for PV over 25-year lifetime), thus providing superiority in terms of environmental sustainability. In this context, the study presents an engineering-based approach for the technical, economic, and environmental assessment of small-scale, non-storage solar energy systems in line with the United Nations Sustainable Development Goals (SDG 7: Affordable and Clean Energy and SDG 13: Climate Action) and contributes to the existing literature. Full article
Show Figures

Figure 1

25 pages, 12071 KB  
Article
Self-Adaptive Virtual Synchronous Generator Control for Photovoltaic Hybrid Energy Storage Systems Based on Radial Basis Function Neural Network
by Mu Li and Shouyuan Wu
Symmetry 2026, 18(1), 70; https://doi.org/10.3390/sym18010070 - 31 Dec 2025
Viewed by 199
Abstract
Renewable energy’s growing penetration erodes traditional power systems’ inherent dynamic symmetry—balanced inertia, damping, and frequency response. This paper proposes a self-adaptive virtual synchronous generator (VSG) control strategy for a photovoltaic hybrid energy storage system (PV-HESS) based on a radial basis function (RBF) neural [...] Read more.
Renewable energy’s growing penetration erodes traditional power systems’ inherent dynamic symmetry—balanced inertia, damping, and frequency response. This paper proposes a self-adaptive virtual synchronous generator (VSG) control strategy for a photovoltaic hybrid energy storage system (PV-HESS) based on a radial basis function (RBF) neural network. The strategy establishes a dynamic adjustment framework for inertia and damping parameters via online learning, demonstrating enhanced system stability and robustness compared to conventional VSG methods. In the structural design, the DC-side energy storage system integrates a passive filter to decouple high- and low-frequency power components, with the supercapacitor attenuating high-frequency power fluctuations and the battery stabilizing low-frequency power variations. A small-signal model of the VSG active power loop is developed, through which the parameter ranges for rotational inertia (J) and damping coefficient (D) are determined by comprehensively considering the active loop cutoff frequency, grid connection standards, stability margin, and frequency regulation time. Building on this analysis, an adaptive parameter control strategy based on an RBF neural network is proposed. Case studies show that under various conditions, the proposed RBF strategy significantly outperforms conventional methods, enhancing key performance metrics in stability and dynamic response by 16.98% to 70.37%. Full article
(This article belongs to the Special Issue New Power System and Symmetry)
Show Figures

Figure 1

34 pages, 4272 KB  
Review
Toward Low-Carbon Buildings: Breakthroughs and Challenges in PV–Storage–DC–Flexibility System
by Qihang Jin and Wei Lu
Energies 2026, 19(1), 197; https://doi.org/10.3390/en19010197 - 30 Dec 2025
Viewed by 344
Abstract
The photovoltaic–energy storage–direct current–flexibility (PEDF) system provides an integrated pathway for low-carbon and intelligent building energy management by combining on-site PV generation, electrical storage, DC distribution, and flexible load control. This paper reviews recent advances in these four modules and synthesizes quantified benefits [...] Read more.
The photovoltaic–energy storage–direct current–flexibility (PEDF) system provides an integrated pathway for low-carbon and intelligent building energy management by combining on-site PV generation, electrical storage, DC distribution, and flexible load control. This paper reviews recent advances in these four modules and synthesizes quantified benefits reported in real-world deployments. Building-scale systems typically integrate 20–150 kW PV and achieve ~10–18% energy-efficiency gains enabled by DC distribution. Industrial-park deployments scale to 500 kW–5 MW, with renewable self-consumption often exceeding 50% and CO2 emissions reductions of ~40–50%. Community-level setups commonly report 10–15% efficiency gains and annual CO2 reductions on the order of tens to hundreds of tons. Key barriers to large-scale adoption are also discussed, including multi-energy coordination complexity, high upfront costs and uncertain business models, limited user engagement, and gaps in interoperability standards and supportive policies. Finally, we outline research and deployment priorities toward open and interoperable PEDF architectures that support cross-sector integration and accelerate the transition toward carbon-neutral (and potentially carbon-negative) built environments. Full article
Show Figures

Figure 1

28 pages, 11264 KB  
Article
A New Genetic Algorithm-Based Optimization Methodology for Energy Efficiency in Buildings
by Luis Angel Iturralde Carrera, Omar Rodríguez-Abreo, Jose Manuel Álvarez-Alvarado, Gerardo I. Pérez-Soto, Carlos Gustavo Manriquez-Padilla and Juvenal Rodríguez-Reséndiz
Algorithms 2026, 19(1), 27; https://doi.org/10.3390/a19010027 - 26 Dec 2025
Viewed by 383
Abstract
This study aims to develop a methodology for implementing solar photovoltaic systems (SSFV) in Caribbean hotels. It begins with an analysis of building characteristics to design and size the SSFV, considering panel support structures, system layout, and grid integration. The methodology also evaluates [...] Read more.
This study aims to develop a methodology for implementing solar photovoltaic systems (SSFV) in Caribbean hotels. It begins with an analysis of building characteristics to design and size the SSFV, considering panel support structures, system layout, and grid integration. The methodology also evaluates economic and environmental impacts at both company and national levels. Machine learning analysis identified the variables (Degree Days (DG) and Hotel Days Occupied (HDO)) HDO×DG as key determinants of energy consumption, with a high coefficient of determination (R2 = 0.97). Implementing a target energy-saving line achieved a 5.3% reduction (1028 kWh) relative to the baseline. Using a genetic algorithm to optimize the SSFV azimuth angle increased photovoltaic energy production by 14.75%, enhancing efficiency and installation area use. Economic assessments showed a challenging scenario for hotels, with a negative internal rate of return of −10%, a 17 year payback period, and a net present value of USD 20,000. However, on a national scale, significant annual savings of USD 225,990.8 from reduced fuel imports were projected. Additionally, carbon emissions reductions of 18,751.4 tons (tCO2) were estimated. The findings highlight the feasibility and benefits of SSFV implementation, emphasizing its potential to improve energy efficiency, reduce costs, and enhance sustainability in the Caribbean hotel sector. Full article
Show Figures

Figure 1

20 pages, 4180 KB  
Article
Economic Benefits and Carbon Reduction Potential of Rooftop Photovoltaic Power Generation at Railway Stations in China’s Qinghai–Tibet Plateau Region
by Guanguan Jia, Qingqin Wang, Li Zhao and Weiwei Wu
Sustainability 2026, 18(1), 51; https://doi.org/10.3390/su18010051 - 19 Dec 2025
Viewed by 337
Abstract
To promote green and low-carbon transformation in the transportation sector and achieve the national “dual-carbon” targets, this study examines rooftop photovoltaic (PV) deployment at 12 representative railway stations located on the Qinghai–Tibet Plateau. Using high-resolution solar radiation data, building spatial information, and regional [...] Read more.
To promote green and low-carbon transformation in the transportation sector and achieve the national “dual-carbon” targets, this study examines rooftop photovoltaic (PV) deployment at 12 representative railway stations located on the Qinghai–Tibet Plateau. Using high-resolution solar radiation data, building spatial information, and regional electricity pricing, we develop an integrated analysis framework that combines a PV power-generation simulation, life-cycle cost assessment, and carbon emission reduction evaluation. The model systematically evaluates the power output, economic performance, and emission reduction potential of rooftop PV systems installed on railway station buildings. Two PV array configurations—horizontal angle and optimum tilt angle—together with three business models (T1: all-consumption; T2: all-feed-into-grid; T3: self-consumption with surplus feed-in) are compared. The results indicate that the Qinghai–Tibet Plateau possesses substantial solar energy advantages. Rooftop arrays installed at a horizontal angle significantly increase both installed capacity and lifetime electricity generation, with stations XN and LS producing 523.12 GWh and 300.87 GWh, respectively, values that exceed the corresponding optimum tilt scenarios. In terms of economic performance, the T1 model yields the highest returns, with several stations achieving a lifetime return on investment exceeding 300% over a 25-year period. The T3 model demonstrates strong profit potential at stations such as RKZ and ZN, whereas the T2 model shows the weakest economic viability due to feed-in tariff constraints. Regarding carbon reduction, horizontal systems perform the best, with cumulative CO2 emission reductions at station XN exceeding 300,000 tonnes of CO2-equivalent. Overall, the findings highlight the substantial PV development potential of railway station rooftops on the Qinghai–Tibet Plateau. By selecting appropriate installation angles and business models, significant economic benefits and carbon emission reduction outcomes can be achieved, providing practical guidance for renewable-energy utilization in high-altitude transportation infrastructure. Full article
Show Figures

Figure 1

24 pages, 3838 KB  
Article
Fire Behaviour of Building-Integrated Photovoltaic Claddings Under Different Cavity Conditions: Glass Failure to Ignition
by Yoon Ko, Dana Duong, Reidar Stølen and Janne Siren Fjærestad
Solar 2026, 6(1), 1; https://doi.org/10.3390/solar6010001 - 19 Dec 2025
Viewed by 245
Abstract
This study investigates the fire behaviour of building-integrated photovoltaic (PV) claddings, focusing on the progression from glass failure to ignition under different cavity conditions. Experimental tests were conducted on two common PV cladding types: bifacial dual-glass (GG) and monofacial glass–plastic (GP) modules. Results [...] Read more.
This study investigates the fire behaviour of building-integrated photovoltaic (PV) claddings, focusing on the progression from glass failure to ignition under different cavity conditions. Experimental tests were conducted on two common PV cladding types: bifacial dual-glass (GG) and monofacial glass–plastic (GP) modules. Results revealed that GP modules exhibited faster burning and higher peak heat release rates (HRR), reaching up to 600 kW, while GG modules burned more slowly with peak HRR between 50 and 100 kW. Cavity conditions, including depth, ventilation, and operational energization, were found to be vital in determining glass breakage, occurring between 400 and 550 °C, and cavity ignition and subsequent flame spread. The relationship between cavity fire dynamics and glass breakage suggests the importance of system design, particularly regarding cavity ventilation and flame barriers, for mitigating upward fire propagation. These results establish a basis for advancing numerical fire models through integration of critical parameters such as material properties, glass breakage, cavity ignition, and cavity configuration. This approach supports comprehensive real-scale analysis to guide the development of effective design recommendations, ultimately improving fire safety in PV-integrated construction. Full article
Show Figures

Figure 1

29 pages, 1483 KB  
Article
Economic and Energy Efficiency of Bivalent Heating Systems in a Retrofitted Hospital Building: A Case Study
by Jakub Szymiczek, Krzysztof Szczotka, Piotr Michalak, Radosław Pyrek and Ewa Chomać-Pierzecka
Energies 2026, 19(1), 10; https://doi.org/10.3390/en19010010 - 19 Dec 2025
Viewed by 362
Abstract
This case study evaluates the economic and energy efficiency of retrofitting a hospital heating system in Krakow, Poland, by transitioning from a district-heating-only model to a bivalent hybrid system. The analyzed configuration integrates air-to-water heat pumps (HP), a 180 kWp photovoltaic (PV) installation, [...] Read more.
This case study evaluates the economic and energy efficiency of retrofitting a hospital heating system in Krakow, Poland, by transitioning from a district-heating-only model to a bivalent hybrid system. The analyzed configuration integrates air-to-water heat pumps (HP), a 180 kWp photovoltaic (PV) installation, and a 120 kWh battery energy storage (ES) unit, while retaining the municipal district heating network as a peak load and backup source. Utilizing high-resolution quasi-steady-state simulations in Ebsilon Professional (10 min time step) and projected 2025 market data, the study compares three modernization scenarios differing in heat pump capacity (20, 40, and 60 kW). The assessment focuses on key performance indicators, including Net Present Value (NPV), Levelized Cost of Heating (LCOH), and Simple Payback Time (SPBT). The results identify the bivalent system with 40 kW thermal capacity (Variant 2) as the economic optimum, delivering the highest NPV (EUR 121,021), the lowest LCOH (0.0908 EUR/kWh), and a payback period of 11.94 years. Furthermore, the study quantitatively demonstrates the law of diminishing returns in the oversized scenario (60 kW), confirming that optimal sizing is critical for maximizing the efficiency of bivalent systems in public healthcare facilities. This work provides a detailed methodology and data that can form a basis for making investment decisions in similar public utility buildings in Central and Eastern Europe. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 4th Edition)
Show Figures

Figure 1

37 pages, 8649 KB  
Review
A Systems Approach to Thermal Bridging for a Net Zero Housing Retrofit: United Kingdom’s Perspective
by Musaddaq Azeem, Nesrine Amor, Muhammad Kashif, Waqas Ali Tabassum and Muhammad Tayyab Noman
Sustainability 2025, 17(24), 11325; https://doi.org/10.3390/su172411325 - 17 Dec 2025
Viewed by 402
Abstract
The United Kingdom’s (UK) retrofit revolution is at a crossroads and the efficacy of retrofit interventions is not solely a function of insulation thickness. To truly slash emissions and lift households out of fuel poverty, we must solve the persistent problem of thermal [...] Read more.
The United Kingdom’s (UK) retrofit revolution is at a crossroads and the efficacy of retrofit interventions is not solely a function of insulation thickness. To truly slash emissions and lift households out of fuel poverty, we must solve the persistent problem of thermal bridging (TB), i.e., the hidden flaws that cause heat to escape, dampness to form, and well-intentioned retrofits to fail. This review moves beyond basic principles to spotlight the emerging tools and transformative strategies to make a difference. We explore the role of advanced modelling techniques, including finite element analysis (FEA), in pinpointing thermal and moisture-related risks, and how emerging materials like vacuum-insulated panels (VIPs) offer high-performance solutions in tight spaces. Crucially, we demonstrate how an integrated fabric-first approach, guided by standards like PAS 2035, is essential to manage moisture, ensure durability, and deliver the comfortable, low-energy homes the UK desperately needs. Therefore, achieving net-zero targets is critically dependent on the systematic upgrade of the building envelope, with the mitigation of TB representing a fundamental prerequisite. The EnerPHit approach applies a rigorous fabric-first methodology to eliminate TB and significantly reduce the building’s overall heat demand. This reduction enables the use of a compact heating system that can be efficiently powered by renewable energy sources, such as solar photovoltaic (PV). Moreover, this review employs a systematic literature synthesis to critically evaluate the integration of TB mitigation within the PAS 2035 framework, identifying key technical interdependencies and research gaps in whole-house retrofit methodology. This article provides a comprehensive review of established FEA modelling methodologies, rather than presenting results from original simulations. Full article
Show Figures

Figure 1

29 pages, 3429 KB  
Article
Integrating Eco-Design and a Building-Integrated Photovoltaic (BIPV) System for Achieving Net Zero Energy Building for a Hot–Dry Climate
by Mohamed Ouazzani Ibrahimi, Abdelali Mana, Samir Idrissi Kaitouni and Abdelmajid Jamil
Buildings 2025, 15(24), 4538; https://doi.org/10.3390/buildings15244538 - 16 Dec 2025
Viewed by 561
Abstract
Despite growing interest in positive-energy and net-zero-energy buildings (NZEBs), few studies have addressed the integration of biobased construction with building-integrated photovoltaics (BIPV) under hot–dry climate conditions, particularly in Morocco and North Africa. This study fills this gap by presenting a simulation-based evaluation of [...] Read more.
Despite growing interest in positive-energy and net-zero-energy buildings (NZEBs), few studies have addressed the integration of biobased construction with building-integrated photovoltaics (BIPV) under hot–dry climate conditions, particularly in Morocco and North Africa. This study fills this gap by presenting a simulation-based evaluation of energy performance and renewable energy integration strategies for a residential building in the Fes-Meknes region. Two structural configurations were compared using dynamic energy simulations in DesignBuilder/EnergyPlus, that is, a conventional concrete brick model and an eco-constructed alternative based on biobased wooden materials. Thus, the wooden construction reduced annual energy consumption by 33.3% and operational CO2 emissions by 50% due to enhanced thermal insulation and moisture-regulating properties. Then multiple configurations of the solar energy systems were analysed, and an optimal hybrid off-grid hybrid system combining rooftop photovoltaic, BIPV, and lithium-ion battery storage achieved a 100% renewable energy fraction with an annual output of 12,390 kWh. While the system incurs a higher net present cost of $45,708 USD, it ensures full grid independence, lowers the electricity cost to $0.70/kWh, and improves occupant comfort. The novelty of this work lies in its integrated approach, which combines biobased construction, lifecycle-informed energy modelling, and HOMER-optimised PV/BIPV systems tailored to a hot, dry climate. The study provides a replicable framework for designing NZEBs in Morocco and similar arid regions, supporting the low-carbon transition and informing policy, planning, and sustainable construction strategies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop