A New Genetic Algorithm-Based Optimization Methodology for Energy Efficiency in Buildings
Abstract
1. Introduction
2. Materials and Methods
2.1. Energy Management System Model ISO 50001 Energy
2.1.1. Energy Planning
2.1.2. General Requirements
2.1.3. Study of Energy Consumption and Production in the Company
2.1.4. Energy Baseline and Target
2.1.5. Calculation of the Variable Degree Days
- : Degree Days accumulated over the month;
- : Daily average temperature for each day of the month (°C);
- : Reference temperature (18 °C).
2.1.6. Energy Performance Indicator Calculation
2.2. Review of Previous Structural Studies Executed for the Entity
- Request a structural or structural characteristics study of the company from the company.Having direct access to a study that examines the structural and organizational characteristics of the company is vital for understanding its current operational framework. This information is essential for identifying how resources are distributed, how teams or departments are interconnected, and whether the company’s structure aligns with its strategic objectives. Requesting this study directly from the company ensures that the information is accurate, up-to-date, and reflects internal perspectives, making it a critical tool for effective decision-making and planning.
- In the absence of such a study, request from competent entities.If the company has not conducted or does not have access to a comprehensive structural analysis, seeking assistance from specialized external entities becomes necessary. External experts bring an impartial perspective and the technical expertise needed to evaluate the company’s organizational framework. These entities can provide a thorough and objective assessment that fills existing knowledge gaps, ensuring that any analysis or recommendations are based on reliable and professional insights. This step is crucial to gaining a complete understanding of the company’s structure in the absence of internal documentation.
2.3. Review of Site Orientation and Coordinates
2.3.1. Calculation of Structure Support
- Weight of the structure;
- Own weight of the panel;
- Load on the beams;
- Load on the beams;
- Load due to wind action;
- Calculation of joint resistance.
2.3.2. Eigenweight of the Panels
- A—area;
- —Weight of a solar panel.
2.3.3. Load on the Beams
- N—Load on the beam;
- —proper weight of the panel plus accessories;
- —total panels on the beam;
- —beam length;
- —linear weight of conductor gauge.
- V—wind speed;
- —angle between the wind direction and the panel;
- —Wind force on panels.
2.3.4. Load Due to Wind Action
- —Density of the air at sea level;
- —Coefficient of resistance of flat surfaces;
- A—Projected area of the panel;
- —Frontal wind speed.
- —Basic characteristic wind pressure for a 25 year recurrence.
- —wind speed in the territory;
- Cj—recurrence coefficient for 25 years;
- k—site coefficient considering exposed site;
- Ca—height coefficient;
- Cp—gust coefficient;
- Cea—area reduction coefficient;
- Cw—shape coefficient.
2.3.5. Calculation of the Resistance of the Connections
- —bolt diameter to the outside of the fillet (nominal diameter);
- P—Axial load to which the joint is subjected;
- []—admissible breaking stress.
- : Shear stress exerted;
- : Diameter of the bolt to the base of the fillet;
- h: Screw head height;
- : Allowable shear stress.
- H—thread height;
- —thread height filling coefficient ( = 1 for triangular threads).
- —bending stress exerted;
- —half of the working height of the loop;
- b—Theoretical distance between the fillets;
- []—allowable bending stress.
2.3.6. Cost and Environmental Impact Analysis
- —Income;
- —Electricity generated;
- —Electricity rate.
2.3.7. Determination of the Net Present Value
- —initial investment;
- Fc—cash flow;
- D—Actual discount rate used.
2.3.8. Determination of the Internal Rate of Return (TIR)
2.3.9. Determination of the Real Investment Recovery Period (PRI)
2.3.10. Cost–Benefit Ratio (RCB)
2.4. Environmental Analysis and Contribution
- Analyzing the problem in terms of fuel not burned to produce the same amount of energy.
- Therefore, from the fuel saved, the amount of no longer emitted to the atmosphere can be obtained in per year.
2.4.1. Quantity of Fuel Saved
- —fuel saved;
- E—energy generated;
- g—specific fuel consumption of generator sets.
2.4.2. Quantity of Not Emitted to the Atmosphere
- R— not emitted;
- K—coefficient that allows relating the unburned fuel to the tons of not discharged into the atmosphere;
- —fuel density.
3. Results
3.1. Energy Analysis and Indicator Design
3.1.1. Statistical Analysis in the Specialized Software R-Studio
3.1.2. Energy Performance Indicator
- The energy baseline has equation and correlation: y = 0.0657x + 20,500 and = 0.93;
- The target line has equation and correlation: y = 0.0647x + 19,412 and = 0.97;
- With the target line obtained, there is an improvement in the correlation of the data and a 5.3% decrease in energy not associated with the process, with an energy saving of 1088 kWh.
3.2. SSFV Sizing and Optimization
Results of the Calculation of the Support to Be Used
3.3. Classification of the Site Areas and Shadow Study
3.4. Photovoltaic Array Analysis and Optimization
- A total of 360 simulations were carried out in the SketchUp 2023 software, with its link in Skelion, to detect the number of modules and the spaces between them that could best occupy the available area.
- 360 simulations were performed in PVsyst 7.3 with the objective of adjusting the best possible electrical arrangement, selecting the inverters in the most convenient way.
- A model describing this process was estimated with the help of machine learning and statistically analyzed. After validation, the optimization process was performed.
- Import necessary libraries (pandas, numpy, matplotlib, seaborn, and sklearn).
- Define the function ‘’ that performs data analysis:a. Print the loaded data.b. Calculate and plot the correlation matrix between variables.c. Separate the features (X) and the target variable (y).d. Initialize a linear regression model without an intercept.e. Train the model with the data.f. Obtain the model coefficients.g. Print the model coefficients.h. Define and print the model equation.i. Make predictions with the model.j. Calculate and print the value.k. Plot the actual and predicted data.l. Plot the model equation.
- Load the data from a CSV file.
- Divide the Production column (kWh/year) by 1000.
- Perform the analysis on all data by calling .
- Perform the analysis on the first 180 data points by calling .
- Perform the analysis on the last 180 data points by calling ‘’.
3.4.1. 360 Degree Analysis
3.4.2. First 180 Degrees Analysis
3.4.3. Analysis of 180 to 360 Degrees
3.4.4. Optimization Process
3.4.5. Defined Functions
- POBLACION_INICIAL: Generates an initial population of random solutions within the specified limits.
- OPERADOR_CRUCE: Performs the crossing of individuals of the population, generating new individuals from the combination of characteristics of two randomly selected individuals.
- OPERADOR_MUTACION: Applies random mutations to the individuals of the population, introducing genetic variability in the population.
- OBJETIVO_V1: Calculates the value of the objective function for each individual in the population. In this case, the objective function is a specific cubic function.
- SELECCION_V1: Performs the selection of individuals for the next generation based on the value of the objective function. Individuals with higher objective function values are preferred.
3.4.6. Algorithm Parameters
- G: number of generations;
- mu: population size;
- limits: Limits for the generation of random numbers;
- var: standard deviation for the mutation.
3.4.7. Variable Initialization
3.4.8. Algorithm Execution
3.4.9. Validation of Results
3.4.10. Economic and Environmental Analysis
- Each 550 Wp module would cost USD 60 per unit, so the 804 modules would have a total value of USD 48,240.
- Inverters cost USD 3000 per 100 kW inverter (quantity 2), USD 7500 per 274 kW inverter (quantity 1), and USD 75 per 0.70 kW inverter (quantity 1); and for the installation, four inverters are needed for a value of USD 10,575.
- Labor USD 0.02 per Wp would be 442 kWp for a total of USD 8840.
- Structure USD 0.02 per Wp would be 442 kWp for a total of USD 8840.
- Electrical equipment USD 0.01 per Wp would be 442 kWp for a total of USD 4420.
- For a total of USD 80,915.
3.4.11. Economic Evaluation at Country Level
3.4.12. Environmental Analysis
4. Discussions
4.1. Discussion: Energy Performance Indicators
4.2. Discussion: Optimization of the SSFV
5. Conclusions
- A structured methodology was developed that integrates energy performance analysis, SSFV system design, and artificial intelligence-based optimization. The proposed approach demonstrates the feasibility of combining energy efficiency assessment with photovoltaic system optimization within a unified framework.
- An energy performance indicator based on the combined variable HDO × DG was validated, showing a strong correlation with system behavior (). This indicator enabled the identification of energy-saving potential not associated with production, achieving a reduction of 5.3% relative to the baseline.
- The application of a genetic algorithm for SSFV optimization led to a non-conventional azimuth configuration, resulting in an increase in energy production of 14.75%, an improvement in the performance ratio, and a more efficient use of the available installation area compared to the conventional south-oriented configuration.
- The economic and environmental assessment revealed that, although the project presents limited financial profitability at the facility level, it offers significant benefits at the national and environmental levels, including fuel savings and a substantial reduction in greenhouse gas emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thangavelu, S.; Umapathy, P. Design of new high step-up DC-DC converter Topology for solar PV applications. Int. J. Photoenergy 2021, 2021, 7833628. [Google Scholar] [CrossRef]
- González Gaudiano, E.J.; Meira Cartea, P.Á. Educación para el cambio climático: ¿Educar sobre el clima o para el cambio? Perfiles Educ. 2020, 42, 157–174. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Sher, F.; Curnick, O.; Azizan, M.T. Sustainable conversion of renewable energy sources. Sustainability 2021, 13, 2940. [Google Scholar] [CrossRef]
- Aleksandr, S.B.; Sergey, A.Y.; Aleksandr, S.S.; Aleksandr, F.S.; Galina, M.B. Implementation of ISO 50001 standard in the activities of energy companies. In Proceedings of the 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, 16–18 November 2021; pp. 417–420. [Google Scholar]
- Sousa Lira, J.M.; Salgado, E.G.; Beijo, L.A. Which factors does the diffusion of ISO 50001 in different regions of the world is influenced? J. Clean. Prod. 2019, 226, 759–767. [Google Scholar] [CrossRef]
- Marimon, F.; Casadesús, M. Reasons to adopt ISO 50001 energy management system. Sustainability 2017, 9, 1740. [Google Scholar] [CrossRef]
- Zhou, X.; Mei, Y.; Liang, L.; Fan, Z.; Yan, J.; Pan, D. A dynamic energy benchmarking methodology on room level for energy performance evaluation. J. Build. Eng. 2021, 42, 102837. [Google Scholar] [CrossRef]
- Dibene-Arriola, L.M.; Carrillo-González, F.M.; Quijas, S.; Rodríguez-Uribe, M.C. Energy efficiency indicators for hotel buildings. Sustainability 2021, 13, 1754. [Google Scholar] [CrossRef]
- Teng, Z.R.; Wu, C.Y.; Xu, Z.Z. New energy benchmarking model for budget hotels. Int. J. Hosp. Manag. 2017, 67, 62–71. [Google Scholar] [CrossRef]
- Salem, R.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Energy performance and cost analysis for the nZEB retrofit of a typical UK hotel. J. Build. Eng. 2020, 31, 101403. [Google Scholar] [CrossRef]
- Palani, H.; Karatas, A. Identifying Energy-Use Behavior and Energy-Use Profiles of Hotel Guests. Appl. Sci. 2021, 11, 6093. [Google Scholar] [CrossRef]
- Álvarez Guerra Plasencia, M.A.; Cabello Eras, J.J.; Sousa Santos, V.; Sagastume Gutiérrez, A.; Haeseldonckx, D.; Vandecasteele, C. Experiencias en la utilización de información meteorológica para el pronóstico y control del consumo de electricidad en hoteles. In Proceedings of the XI Congreso de la Asociación Española de Climatología, Cartagena, Spain, 17–19 October 2018; Asociación Española de Climatología: Barcelona, Spain, 2018. [Google Scholar]
- Faiz, F.U.H.; Shakoor, R.; Raheem, A.; Umer, F.; Rasheed, N.; Farhan, M. Modeling and analysis of 3 MW solar photovoltaic plant using PVSyst at Islamia University of Bahawalpur, Pakistan. Int. J. Photoenergy 2021, 2021, 6673448. [Google Scholar] [CrossRef]
- Junaidh, P.; Vijay, A.; Mathew, M. Power enhancement of solar photovoltaic module using micro-climatic strategies in warm-humid tropical climate. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6. [Google Scholar]
- Kumar, N.M. Simulation tools for technical sizing and analysis of solar PV systems. In Proceedings of the 6th World Conference on Applied Sciences, Engineering and Technology (WCSET-2017), Bangkok, Thailand, 11–12 October 2017; Volume 201, pp. 218–222. [Google Scholar]
- Huang, K.H.; Chao, K.H.; Lee, T.W. An Improved Photovoltaic Module Array Global Maximum Power Tracker Combining a Genetic Algorithm and Ant Colony Optimization. Technologies 2023, 11, 61. [Google Scholar] [CrossRef]
- Chander, S.; Purohit, A.; Sharma, A.; Arvind; Nehra, S.; Dhaka, M. A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep. 2015, 1, 104–109. [Google Scholar] [CrossRef]
- Ramya, D.; Krishnakumari, A.; Dineshkumar, P.; Srivastava, M.P.; Kannan, L.V.; Puthilibai, G.; Kumar, P.M. Investigating the influence of nanoparticle disbanded phase changing material (NDPCM) on the working of solar PV. Mater. Today Proc. 2022, 56, 1341–1346. [Google Scholar] [CrossRef]
- Nadia, M.; Lassad, H.; Abderrahmen, Z.; Abdelkader, C. Influence of temperature and irradiance on the different solar PV panel technologies. Int. J. Energy Sect. Manag. 2021, 15, 421–430. [Google Scholar] [CrossRef]
- Venkateswari, R.; Sreejith, S. Factors influencing the efficiency of photovoltaic system. Renew. Sustain. Energy Rev. 2019, 101, 376–394. [Google Scholar] [CrossRef]
- Kuznetsov, P.N.; Kuvshinov, V.V.; Issa, H.A.; Mohammed, H.J.; Al Barmani, A.G. Investigation of the losses of photovoltaic solar systems during operation under partial shading. J. Appl. Eng. Sci. 2020, 18, 313–320. [Google Scholar] [CrossRef]
- Rana, A.S.; Nasir, M.; Khan, H.A. String level optimisation on grid-tied solar PV systems to reduce partial shading loss. IET Renew. Power Gener. 2018, 12, 143–148. [Google Scholar] [CrossRef]
- Zsiboracs, H.; Zentko, L.; Pinter, G.; Vincze, A.; Baranyai, N.H. Assessing shading losses of photovoltaic power plants based on string data. Energy Rep. 2021, 7, 3400–3409. [Google Scholar] [CrossRef]
- Patel, A. Mejora de la eficiencia de la transferencia de calor en sistemas solares térmicos mediante intercambiadores de calor avanzados. Multidiscip. Int. J. Res. Dev. (MIJRD) 2023, 02, 31–51. Available online: https://www.mijrd.com/papers/v2/i6/MIJRDV2I60003.pdf (accessed on 15 December 2025).
- Tembhare, S.P.; Barai, D.P.; Bhanvase, B.A. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review. Renew. Sustain. Energy Rev. 2022, 153, 111738. [Google Scholar] [CrossRef]
- Osorio, J.D.; Wang, Z.; Karniadakis, G.; Cai, S.; Chryssostomidis, C.; Panwar, M.; Hovsapian, R. Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture. Energy Convers. Manag. 2022, 252, 115063. [Google Scholar] [CrossRef]
- Verma, S.K.; Kumar, R.; Barthwal, M.; Rakshit, D. A review on futuristic aspects of hybrid photo-voltaic thermal systems (PV/T) in solar energy utilization: Engineering and Technological approaches. Sustain. Energy Technol. Assess. 2022, 53, 102463. [Google Scholar]
- Zhang, C.; Shen, C.; Zhang, Y.; Pu, J. Feasibility investigation of spectral splitting photovoltaic/thermal systems for domestic space heating. Renew. Energy 2022, 192, 231–242. [Google Scholar] [CrossRef]
- Derick, M.; Rani, C.; Rajesh, M.; Farrag, M.; Wang, Y.; Busawon, K. An improved optimization technique for estimation of solar photovoltaic parameters. Sol. Energy 2017, 157, 116–124. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T. Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 2013, 73, 10–25. [Google Scholar] [CrossRef]
- Zamen, M.; Baghban, A.; Pourkiaei, S.M.; Ahmadi, M.H. Optimization methods using artificial intelligence algorithms to estimate thermal efficiency of PV/T system. Energy Sci. Eng. 2019, 7, 821–834. [Google Scholar] [CrossRef]
- Pardo de Vera García, J. Optimización del Dimensionamiento de Plantas Solares Fotovoltaicas. Ph.D. Thesis, Universidad Pontificia Comillas, Madrid, Spain, 2020. [Google Scholar]
- Odry, Á. An open-source test environment for effective development of marg-based algorithms. Sensors 2021, 21, 1183. [Google Scholar] [CrossRef]
- Odry, Á.; Tadic, V.L.; Odry, P. A stochastic logic-based fuzzy logic controller: First experimental results of a novel architecture. IEEE Access 2021, 9, 29895–29920. [Google Scholar] [CrossRef]
- Benítez Soler, A.C.; Tello Reyes, I.D. Estudio de Factibilidad de la Implementación de un Sistema Solar Fotovoltaico en la Finca Villa Catalina. Ph.D. Thesis, Universidad Libre, Bogotá, Colombia, 2018. [Google Scholar]
- Lamigueiro, O.P. Energía solar fotovoltaica. In Creative Commons Ebook; RC Libros: Madrid, Spain, 2013; p. 192. [Google Scholar]
- Delgado, R.M.B.; Yanes, C.J.P.M. Anteproyecto de sistema solar fotovoltaico en la Delegación Provincial de Materiales de la Construcción, Cienfuegos. In Proceedings of the I Convención Científica Internacional de la Universidad de Cienfuegos, XI Taller Internacional de Energía, Medio Ambiente y Desarrollo Sostenible, Cienfuegos, Cuba, 22 November 2022. [Google Scholar]
- Callisaya Condori, A.; Romay Ossio, M. Calculo y Diseño de un Sistema Solar Fotovoltaico Auxiliar para el Hospital de La Asunta-Sud Yungas. Ph.D. Thesis, Universidad Mayor de San Andrés, La Paz, Bolivia, 2012. [Google Scholar]
- Crespo Sánchez, G.; Monteagudo Yanes, J.P.; Montesino Pérez, M.; Cruz Virosa, I.; Cabrera Sánchez, J.L. La gestión energética en la fabricación de piensos balanceados en Cienfuegos. Rev. Univ. Soc. 2019, 11, 249–256. [Google Scholar]
- Vassiliades, C.; Agathokleous, R.; Barone, G.; Forzano, C.; Giuzio, G.; Palombo, A.; Buonomano, A.; Kalogirou, S. Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renew. Sustain. Energy Rev. 2022, 164, 112482. [Google Scholar] [CrossRef]
- Vassiliades, C.; Barone, G.; Buonomano, A.; Forzano, C.; Giuzio, G.; Palombo, A. Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis. Renew. Energy 2022, 186, 845–863. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Nikitin, A.; Davoodi, V.; Nikitina, V.; Hekmatshoar, M.; Shein, V. A new multigenerational solar energy system integrated with near-zero energy building including energy storage—A dynamic energy, exergy, and economic-environmental analyses. Energy Convers. Manag. 2022, 261, 115653. [Google Scholar] [CrossRef]
- Su, B.; Lin, F.; Ma, J.; Huang, S.; Wang, Y.; Zhang, X.; Han, W.; Wang, H. System integration of multi-grade exploitation of biogas chemical energy driven by solar energy. Energy 2022, 241, 122857. [Google Scholar] [CrossRef]
- Tamer, T.; Dino, I.G.; Baker, D.K.; Akgül, C.M. Coupling PCM wallboard utilization with night Ventilation: Energy efficiency and overheating risk in office buildings under climate change impact. Energy Build. 2023, 298, 113482. [Google Scholar] [CrossRef]
- Marcelo García, J.S. Análisis Económico y Ambiental de la Implementación de Energía Fotovoltaica en las Instalaciones de Fresenius Medical Care Como Alternativa Frente al Alto Consumo Energético. Ph.D. Thesis, Universidad El Bosque, Bogota, Colombia, 2022. [Google Scholar]
- Pupo, G.H.; De la Paz Pérez, G.A.; De la Paz Vento, G.; Mendoza, L.E. Evaluación de opciones de inversión en eficiencia energética y fuentes renovables de energía en hoteles de Santa Lucía, Camagüey. Rev. Arquit. E Ing. 2022, 16, 1–7. [Google Scholar]
- Banco Central de Cuba. Tipo de Cambio Oficial con Relación al Peso Cubano. Available online: https://www.bc.gob.cu (accessed on 22 November 2023).
- Sevajanes, R. Tarifa Eléctrica Promedio para Instalaciones Hoteleras en Cuba. Available online: https://www.onure.cu/ (accessed on 22 November 2023).
- Cuba Gasoline Prices. Available online: https://www.globalpetrolprices.com/Cuba/ (accessed on 15 June 2023).
- Guzmán Villavicencio, M.; Soto Castellón, C.R.; Águila Bernal, I.; Torres Águila, J.M. Procedimiento para instalación de un sistema fotovoltaico sobre techos en la corporación cuba ron sa. Cent. Azúcar 2017, 44, 70–81. [Google Scholar]
- Albert López, E. Instalación de Placas Solares en una Nave Industrial para Autoconsumo. Ph.D. Thesis, Universidad Pontificia Comillas, Madrid, Spain, 2020. [Google Scholar]
- Chiang, W.; Permana, I.; Wang, F.; Chen, H.; Erdenebayar, M. Experimental investigation for an innovative hybrid photovoltaic/Thermal (PV/T) solar system. Energy Rep. 2022, 8, 910–918. [Google Scholar] [CrossRef]
- Gautam, K.R.; Andresen, G.B. Performance comparison of building-integrated combined photovoltaic thermal solar collectors (BiPVT) with other building-integrated solar technologies. Sol. Energy 2017, 155, 93–102. [Google Scholar] [CrossRef]
- Alshibil, A.M.; Farkas, I.; Víg, P. Multi-aspect approach of electrical and thermal performance evaluation for hybrid photovoltaic/thermal solar collector using TRNSYS tool. Int. J. Thermofluids 2022, 16, 100222. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Khanlari, A.; Afshari, F.; Sözen, A.; Çiftçi, E.; Kusun, B.; Şahinkesen, İ. Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Appl. Therm. Eng. 2023, 218, 119288. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Rezapour, M.; Farahnak, M. Modeling of a novel nanofluid-based concentrated photovoltaic thermal system coupled with a heat pump cycle (CPVT-HP). Appl. Therm. Eng. 2022, 201, 117765. [Google Scholar] [CrossRef]
- eddine Mechri, H.; Amara, S. Investigation and analysis of energy and water use of hotel buildings in Tunisia. Energy Build. 2021, 241, 110930. [Google Scholar] [CrossRef]
- Molina González, A.; Velarde Bedregal, H.R.; Borroto Nordelo, A.E.; Santiesteban Toca, C.E.; Monteagudo Yanes, J.P. Nuevos índices de consumo energético para hoteles tropicales. Ing. Energ. 2017, 38, 198–207. [Google Scholar]
- Mendoza, R.P.C.; Yanes, J.P.M.; Nordelo, A.B.; Oqueña, E.C.Q. Línea de Base Energética en la implementación de la norma ISO 50001. Estudios de casos. Hombre Máquina 2015, 137–143. [Google Scholar]
- Ochoa, G.V. Application of equivalent occupation method as a tool for energy management in hotel sector. Int. J. Energy Econ. Policy 2018, 8, 187–192. [Google Scholar]
- Rodríguez, L.R.; Insuasti, J.A.P.; Peña, W.Y.; Sierra, C.O.; Arroyave, C.P.S.; Soto, C.A.P.; Vispo, N.F.S.; Pinchao, J.M.H.; Torres, R.D.G.; Lara, G.R. Método de cálculo del índice de eficiencia energética de los hoteles. Revista Tecnol. ESPOL 2017, 30, 1–10. Available online: https://www.rte.espol.edu.ec (accessed on 22 November 2023).
- Eras, J.J.C.; Santos, V.S.; Gutiérrez, A.S.; Plasencia, M.Á.G.; Haeseldonckx, D.; Vandecasteele, C. Tools to improve forecasting and control of the electricity consumption in hotels. J. Clean. Prod. 2016, 137, 803–812. [Google Scholar] [CrossRef]
- Torres Navarro, C.; Malta Callegari, N.; Jara Olave, H. Modelos de regresión y diseño de línea base para indicadores energéticos en una empresa siderúrgica. Ing. Energ. 2021, 42, 1–10. [Google Scholar]
- Mesones Abanto, P.F. Dimensionamiento y Selección de un Sistema Solar Fotovoltaico de Conexión a Red para el Restaurante “El Zarco” Ubicado en la Ciudad de Cajamarca. Ph.D. Thesis, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru, 2019. [Google Scholar]
- Dey, D.; Subudhi, B. Design, simulation and economic evaluation of 90 kW grid connected Photovoltaic system. Energy Rep. 2020, 6, 1778–1787. [Google Scholar] [CrossRef]
- Al-Zoubi, H.; Al-Khasawneh, Y.; Omar, W. Design and feasibility study of an on-grid photovoltaic system for green electrification of hotels: A case study of Cedars hotel in Jordan. Int. J. Energy Environ. Eng. 2021, 12, 611–626. [Google Scholar] [CrossRef]
- Sharma, S.; Kurian, C.P.; Paragond, L.S. Solar PV system design using PVsyst: A case study of an academic Institute. In Proceedings of the 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT), Kannur, India, 23–24 March 2018; pp. 123–128. [Google Scholar]
- Belmahdi, B.; El Bouardi, A. Solar potential assessment using PVsyst software in the northern zone of Morocco. Procedia Manuf. 2020, 46, 738–745. [Google Scholar] [CrossRef]
- Dindar, T.; Vedat, E.; Sarkin, A.S. Comparison of Simulation Results for 25 kW Power Output Rooftop PV System. Eur. J. Tech. (EJT) 2022, 12, 176–181. [Google Scholar] [CrossRef]
- Abu Qadourah, J. Energy and economic potential for photovoltaic systems installed on the rooftop of apartment buildings in Jordan. Results Eng. 2022, 16, 100642. [Google Scholar] [CrossRef]
- Hassan, Q. Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renew. Energy 2021, 164, 375–390. [Google Scholar] [CrossRef]
- Fu, X.; Zhou, Y. Collaborative Optimization of PV Greenhouses and Clean Energy Systems in Rural Areas. IEEE Trans. Sustain. Energy 2023, 14, 642–656. [Google Scholar] [CrossRef]
- Huang, P.; Sun, Y.; Lovati, M.; Zhang, X. Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements. Energy 2021, 222, 119931. [Google Scholar] [CrossRef]




















| Arrangement Subsets | Orientation | Type of Arrangement | Parameters |
|---|---|---|---|
| 1 | Tilt/Azimuth = 15.0°/0.0° | 9 chains of 17 modules in series, 153 total | Set PNom = 84 kWp, area = 395 m2; Investors (100.0 kWca) |
| 2 | Tilt/Azimuth = 15.0°/180.0° | 10 chains of 16 modules in series, 160 total | Set PNom = 88 kWp, area = 413 m2; Investors (110 kWca) |
| 3 | Tilt/Azimuth = 15.0°/6.2° | 35 chains of 14 modules in series, 490 total | Set PNom = 270 kWp, area = 1266 m2; Investors (274 kWca) |
| 4 | Tilt/Azimuth = 15.0°/6.2° | 1 chains of 1 modules in series, 1 total | Set PNom = 550 Wp, area = 3 m2; Investors (0.70 kWca) |
| Ref. | Energy Analysis | Efficiency Analysis Methods | Optimization and Integration | Economic and Environmental Assessment |
|---|---|---|---|---|
| [51] | Energy consumption behavior | Do not perform | They do not use any optimization method | Do not take into account the TIR |
| [52] | Energy consumption behavior | Adjustments to the photovoltaic array | They do not use any optimization method | The corresponding calculations and estimates are made |
| [53] | It does not have | Make a hybrid solar photovoltaic–thermal hybrid system | They do not use any optimization method | It does not have |
| [54] | It does not have | Make a hybrid solar photovoltaic–thermal hybrid system | They do not use any optimization method | It does not have |
| [55] | It does not have | make a hybrid solar photovoltaic–thermal hybrid system | They do not use any optimization method | It does not have |
| [56] | It does not have | Make a hybrid solar photovoltaic–thermal hybrid system | They do not use any optimization method | Do not take into account the TIR |
| [57] | It does not have | Make a hybrid solar photovoltaic–thermal hybrid system | They do not use any optimization method | The corresponding calculations and estimates are made |
| Our research | An energy performance indicator is designed and planning for energy generation is carried out | Performs climatological, shading, support design and structural studies | A genetic algorithm is used | A feasibility study and economic forecasts and an environmental analysis are carried out |
| Energy Performance Indicator Used | Correlation Obtained () | Author | Linear Regression | Standard Used (ISO 50001) |
|---|---|---|---|---|
| 0.72 | [58] | s | 2018 | |
| 0.73 | [59] | s | 2011 | |
| 0.77 | [60] | s | 2011 | |
| 0.80 | [61] | s | 2011 | |
| 0.90 | [62] | s | 2011 | |
| 0.91 | [63] | s | 2011 | |
| 0.92 | [13] | s | 2011 | |
| 0.77 | [64] | m | 2018 | |
| 0.90 | Our research | m | 2018 | |
| 0.97 | Our research | s | 2018 |
| Orientation | Location | Modules | Installed Power (kWp) | PR (%)/Efficiency | Analysis Type | Reference |
|---|---|---|---|---|---|---|
| North (9°) | Cajamarca, Peru | 30 | 9.6 | 84 | PVsyst | [65] |
| South (20°) | Odish Institute of Technology, India | 360 | 90 | 79 | PVsyst | [66] |
| South (7°) | Cedars Hotel, Jordan | 912 | 300 | 82 | PVsyst | [67] |
| South (13°) | India | 158 | 54.25 | 79.80 | PVsyst | [68] |
| South (32°) | Morocco | 3924 | 1000 | 77.3 | PVsyst | [69] |
| South (20°) | Turkey | 54 | 29.4 | 72.8 | PVsyst | [70] |
| East–West (30°) | Jordan | 64 | 26 | 78 | PVsyst | [71] |
| South (30°) | Iraq | 15 | 4.3 | 80–85 | Genetic Algorithm | [72] |
| South (32°) | China | N/A | N/A | 80–90 | Collaborative Optimization | [73] |
| South | Sweden | N/A | 322 kWh | 85–90 | Genetic Algorithm | [74] |
| Southwest (15°) | Hotel Punta la Cueva, Cuba | 804 | 442.2 | 91.72/91.05 | SketchUp–PVsyst–GA | Our research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Iturralde Carrera, L.A.; Rodríguez-Abreo, O.; Álvarez-Alvarado, J.M.; Pérez-Soto, G.I.; Manriquez-Padilla, C.G.; Rodríguez-Reséndiz, J. A New Genetic Algorithm-Based Optimization Methodology for Energy Efficiency in Buildings. Algorithms 2026, 19, 27. https://doi.org/10.3390/a19010027
Iturralde Carrera LA, Rodríguez-Abreo O, Álvarez-Alvarado JM, Pérez-Soto GI, Manriquez-Padilla CG, Rodríguez-Reséndiz J. A New Genetic Algorithm-Based Optimization Methodology for Energy Efficiency in Buildings. Algorithms. 2026; 19(1):27. https://doi.org/10.3390/a19010027
Chicago/Turabian StyleIturralde Carrera, Luis Angel, Omar Rodríguez-Abreo, Jose Manuel Álvarez-Alvarado, Gerardo I. Pérez-Soto, Carlos Gustavo Manriquez-Padilla, and Juvenal Rodríguez-Reséndiz. 2026. "A New Genetic Algorithm-Based Optimization Methodology for Energy Efficiency in Buildings" Algorithms 19, no. 1: 27. https://doi.org/10.3390/a19010027
APA StyleIturralde Carrera, L. A., Rodríguez-Abreo, O., Álvarez-Alvarado, J. M., Pérez-Soto, G. I., Manriquez-Padilla, C. G., & Rodríguez-Reséndiz, J. (2026). A New Genetic Algorithm-Based Optimization Methodology for Energy Efficiency in Buildings. Algorithms, 19(1), 27. https://doi.org/10.3390/a19010027

