Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = building automation control strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5869 KB  
Article
Study on the Correlation Between Surface Roughness and Tool Wear Using Automated In-Process Roughness Measurement in Milling
by Friedrich Bleicher, Benjamin Raumauf and Günther Poszvek
Metrology 2025, 5(4), 62; https://doi.org/10.3390/metrology5040062 - 15 Oct 2025
Viewed by 278
Abstract
The growing demand for automated production systems is driving continuous innovation in smart and data-driven manufacturing technologies. In the field of production metrology, the trend is shifting from using measurement laboratories to integrating measurement systems directly into production processes. This has led the [...] Read more.
The growing demand for automated production systems is driving continuous innovation in smart and data-driven manufacturing technologies. In the field of production metrology, the trend is shifting from using measurement laboratories to integrating measurement systems directly into production processes. This has led the Institute of Manufacturing Technology at TU Vienna together with its partners to develop a roughness measurement device that can be directly integrated into machine tools. Building on this foundation, this study tries to find applications beyond mere surface roughness assessment and demonstrates how the device could be applied in broader contexts of manufacturing process monitoring. By linking surface measurements with tool wear monitoring, the study establishes a correlation between surface roughness and wear progression of indexable inserts in milling. It demonstrates how in situ data can support predictive maintenance and the real-time adjustment of cutting parameters. This represents a first step toward integrating in situ metrology into closed-loop control in machining. The experimental setup followed ISO 8688-1 guidelines for tool life testing. Indexable inserts were operated throughout their entire service life while surface roughness was continuously recorded. In parallel, cutting edge conditions were documented at defined intervals using focus variation microscopy. The results show a consistent three-phase pattern: initially stable roughness, followed by a steady increase due to flank wear, and an abrupt decrease in roughness linked to edge chipping. These findings confirm the potential of integrated roughness measurement for condition-based monitoring and the development of adaptive machining strategies. Full article
Show Figures

Figure 1

31 pages, 2953 KB  
Article
A Balanced Multimodal Multi-Task Deep Learning Framework for Robust Patient-Specific Quality Assurance
by Xiaoyang Zeng, Awais Ahmed and Muhammad Hanif Tunio
Diagnostics 2025, 15(20), 2555; https://doi.org/10.3390/diagnostics15202555 - 10 Oct 2025
Viewed by 439
Abstract
Background: Multimodal Deep learning has emerged as a crucial method for automated patient-specific quality assurance (PSQA) in radiotherapy research. Integrating image-based dose matrices with tabular plan complexity metrics enables more accurate prediction of quality indicators, including the Gamma Passing Rate (GPR) and dose [...] Read more.
Background: Multimodal Deep learning has emerged as a crucial method for automated patient-specific quality assurance (PSQA) in radiotherapy research. Integrating image-based dose matrices with tabular plan complexity metrics enables more accurate prediction of quality indicators, including the Gamma Passing Rate (GPR) and dose difference (DD). However, modality imbalance remains a significant challenge, as tabular encoders often dominate training, suppressing image encoders and reducing model robustness. This issue becomes more pronounced under task heterogeneity, with GPR prediction relying more on tabular data, whereas dose difference prediction (DDP) depends heavily on image features. Methods: We propose BMMQA (Balanced Multi-modal Quality Assurance), a novel framework that achieves modality balance by adjusting modality-specific loss factors to control convergence dynamics. The framework introduces four key innovations: (1) task-specific fusion strategies (softmax-weighted attention for GPR regression and spatial cascading for DD prediction); (2) a balancing mechanism supported by Shapley values to quantify modality contributions; (3) a fast network forward mechanism for efficient computation of different modality combinations; and (4) a modality-contribution-based task weighting scheme for multi-task multimodal learning. A large-scale multimodal dataset comprising 1370 IMRT plans was curated in collaboration with Peking Union Medical College Hospital (PUMCH). Results: Experimental results demonstrate that, under the standard 2%/3 mm GPR criterion, BMMQA outperforms existing fusion baselines. Under the stricter 2%/2 mm criterion, it achieves a 15.7% reduction in mean absolute error (MAE). The framework also enhances robustness in critical failure cases (GPR < 90%) and achieves a peak SSIM of 0.964 in dose distribution prediction. Conclusions: Explicit modality balancing improves predictive accuracy and strengthens clinical trustworthiness by mitigating overreliance on a single modality. This work highlights the importance of addressing modality imbalance for building trustworthy and robust AI systems in PSQA and establishes a pioneering framework for multi-task multimodal learning. Full article
(This article belongs to the Special Issue Deep Learning in Medical and Biomedical Image Processing)
Show Figures

Figure 1

34 pages, 2388 KB  
Article
Safe Reinforcement Learning for Buildings: Minimizing Energy Use While Maximizing Occupant Comfort
by Mohammad Esmaeili, Sascha Hammes, Samuele Tosatto, David Geisler-Moroder and Philipp Zech
Energies 2025, 18(19), 5313; https://doi.org/10.3390/en18195313 - 9 Oct 2025
Viewed by 773
Abstract
With buildings accounting for 40% of global energy consumption, heating, ventilation, and air conditioning (HVAC) systems represent the single largest opportunity for emissions reduction, consuming up to 60% of commercial building energy while maintaining occupant comfort. This critical balance between energy efficiency and [...] Read more.
With buildings accounting for 40% of global energy consumption, heating, ventilation, and air conditioning (HVAC) systems represent the single largest opportunity for emissions reduction, consuming up to 60% of commercial building energy while maintaining occupant comfort. This critical balance between energy efficiency and human comfort has traditionally relied on rule-based and model predictive control strategies. Given the multi-objective nature and complexity of modern HVAC systems, these approaches fall short in satisfying both objectives. Recently, reinforcement learning (RL) has emerged as a method capable of learning optimal control policies directly from system interactions without requiring explicit models. However, standard RL approaches frequently violate comfort constraints during exploration, making them unsuitable for real-world deployment where occupant comfort cannot be compromised. This paper addresses two fundamental challenges in HVAC control: the difficulty of constrained optimization in RL and the challenge of defining appropriate comfort constraints across diverse conditions. We adopt a safe RL with a neural barrier certificate framework that (1) transforms the constrained HVAC problem into an unconstrained optimization and (2) constructs these certificates in a data-driven manner using neural networks, adapting to building-specific comfort patterns without manual threshold setting. This approach enables the agent to almost guarantee solutions that improve energy efficiency and ensure defined comfort limits. We validate our approach through seven experiments spanning residential and commercial buildings, from single-zone heat pump control to five-zone variable air volume (VAV) systems. Our safe RL framework achieves energy reduction compared to baseline operation while maintaining higher comfort compliance than unconstrained RL. The data-driven barrier construction discovers building-specific comfort patterns, enabling context-aware optimization impossible with fixed thresholds. While neural approximation prevents absolute safety guarantees, reducing catastrophic safety failures compared to unconstrained RL while maintaining adaptability positions this approach as a developmental bridge between RL theory and real-world building automation, though the considerable gap in both safety and energy performance relative to rule-based control indicates the method requires substantial improvement for practical deployment. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

28 pages, 567 KB  
Article
Fine-Tune LLMs for PLC Code Security: An Information-Theoretic Analysis
by Ping Chen, Xiaojing Liu and Yi Wang
Mathematics 2025, 13(19), 3211; https://doi.org/10.3390/math13193211 - 7 Oct 2025
Viewed by 573
Abstract
Programmable Logic Controllers (PLCs), widely used in industrial automation, are often programmed in IEC 61131-3 Structured Text (ST), which is prone to subtle logic vulnerabilities. Traditional tools like static analysis and fuzzing struggle with the complexity and domain-specific semantics of ST. This work [...] Read more.
Programmable Logic Controllers (PLCs), widely used in industrial automation, are often programmed in IEC 61131-3 Structured Text (ST), which is prone to subtle logic vulnerabilities. Traditional tools like static analysis and fuzzing struggle with the complexity and domain-specific semantics of ST. This work explores Large Language Models (LLMs) for PLC vulnerability detection, supported by both theoretical insights and empirical validation. Theoretically, we prove that control flow features carry the most vulnerability-relevant information, establish a feature informativeness hierarchy, and derive sample complexity bounds. We also propose an optimal synthetic data mixing strategy to improve learning with limited supervision. Empirically, we build a dataset combining real-world and synthetic ST code with five vulnerability types. We fine-tune open-source LLMs (CodeLlama, Qwen2.5-Coder, Starcoder2) using LoRA, demonstrating significant gains in binary and multi-class classification. The results confirm our theoretical predictions and highlight the promise of LLMs for PLC security. Our work provides a principled and practical foundation for LLM-based analysis of cyber-physical systems, emphasizing the role of domain knowledge, efficient adaptation, and formal guarantees. Full article
Show Figures

Figure 1

17 pages, 3542 KB  
Article
Design and Implementation of a Cascade Control System for a Variable Air Volume in Operating Rooms Based on Pressure and Temperature Feedback
by Abdulmohaymin Bassim Qassim, Shaimaa Mudhafar Hashim and Wajdi Sadik Aboud
Sensors 2025, 25(18), 5656; https://doi.org/10.3390/s25185656 - 10 Sep 2025
Viewed by 799
Abstract
This research presents the design and implementation of a cascade Proportional–Integral (PI) controller tailored for a Variable Air Volume (VAV) system that was specially created and executed particularly for hospital operating rooms. The main goal of this work is to make sure that [...] Read more.
This research presents the design and implementation of a cascade Proportional–Integral (PI) controller tailored for a Variable Air Volume (VAV) system that was specially created and executed particularly for hospital operating rooms. The main goal of this work is to make sure that the temperature and positive pressure stay within the limits set by ASHRAE Standard 170-2017. This is necessary for patient safety, surgical accuracy, and system reliability. The proposed cascade design uses dual-loop PI controllers: one loop controls the temperature based on user-defined setpoints by local control touch screen, and the other loop accurately modulates the differential pressure to keep the pressure of the environment sterile (positive pressure). The system works perfectly with Building Automation System (BAS) parts from Automated Logic Corporation (ALC) brand, like Direct Digital Controllers (DDC) and Web-CTRL software with Variable Frequency Drives (VFDs), advanced sensors, and actuators that give real-time feedback, precise control, and energy efficiency. The system’s exceptional responsiveness, extraordinary stability, and resilient flexibility were proven through empirical validation at the Korean Iraqi Critical Care Hospital in Baghdad under a variety of operating circumstances. Even during rapid load changes and door openings, the control system successfully maintained the temperature between 18 and 22 °C and the differential pressure between 3 and 15 Pascals. Four performance scenarios, such as normal (pressure and temperature), high-temperature, high-pressure, and low-pressure cases, were tested. The results showed that the cascade PI control strategy is a reliable solution for critical care settings because it achieves precise environmental control, improves energy efficiency, and ensures compliance with strict healthcare facility standards. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

32 pages, 2285 KB  
Article
Bridging the Construction Productivity Gap—A Hierarchical Framework for the Age of Automation, Robotics, and AI
by Michael Max Bühler, Konrad Nübel, Thorsten Jelinek, Lothar Köhler and Pia Hollenbach
Buildings 2025, 15(16), 2899; https://doi.org/10.3390/buildings15162899 - 15 Aug 2025
Viewed by 1869
Abstract
The construction sector, facing a persistent productivity gap compared to other industries, is hindered by fragmented value streams, inconsistent performance metrics, and the limited scalability of process improvements. We introduce a pioneering, four-tiered hierarchical productivity framework to respond to these challenges. This innovative [...] Read more.
The construction sector, facing a persistent productivity gap compared to other industries, is hindered by fragmented value streams, inconsistent performance metrics, and the limited scalability of process improvements. We introduce a pioneering, four-tiered hierarchical productivity framework to respond to these challenges. This innovative approach integrates operational, tactical, strategic, and normative layers. At its core, the framework applies standardised, repeatable process steps—mapped using Value Stream Mapping (VSM)—to capture key indicators such as input efficiency, output effectiveness, and First-Time Quality (FTQ). These are then aggregated through takt time compliance, schedule reliability, and workload balance to evaluate trade synchronisation and flow stability. Higher-level metrics—flow efficiency, multi-resource utilisation, and ESG-linked performance—are integrated into an Overall Productivity Index (OPI). Building on a modular production model, the proposed framework supports real-time sensing, AI-driven monitoring, and intelligent process control, as demonstrated through an empirical case study of continuous process monitoring for Kelly drilling operations. This validation illustrates how sensor-equipped machinery and machine learning algorithms can automate data capture, map observed activities to standardised process steps, and detect productivity deviations in situ. This paper contributes to a multi-scalar measurement architecture that links micro-level execution with macro-level decision-making. It provides a foundation for real-time monitoring, performance-based coordination, and data-driven innovation. The framework is applicable across modular construction, digital twins, and platform-based delivery models, offering benefits beyond specialised foundation work to all construction trades. Grounded in over a century of productivity research, the approach demonstrates how emerging technologies can deliver measurable and scalable improvements. Framing productivity as an integrative, actionable metric enables sector-wide performance gains. The framework supports construction firms, technology providers, and policymakers in advancing robust, outcome-oriented innovation strategies. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

19 pages, 1563 KB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 1736
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

45 pages, 11380 KB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 751
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

28 pages, 878 KB  
Review
AI in Cervical Cancer Cytology Diagnostics: A Narrative Review of Cutting-Edge Studies
by Daniele Giansanti, Andrea Lastrucci, Antonia Pirrera, Sandra Villani, Elisabetta Carico and Enrico Giarnieri
Bioengineering 2025, 12(7), 769; https://doi.org/10.3390/bioengineering12070769 - 16 Jul 2025
Cited by 1 | Viewed by 2818
Abstract
Background: The integration of artificial intelligence (AI) into cervical cancer diagnostics has shown promising advancements in recent years. AI technologies, particularly in the analysis of cytological images, offer potential improvements in diagnostic accuracy and screening efficiency. However, challenges regarding model generalizability, explainability, and [...] Read more.
Background: The integration of artificial intelligence (AI) into cervical cancer diagnostics has shown promising advancements in recent years. AI technologies, particularly in the analysis of cytological images, offer potential improvements in diagnostic accuracy and screening efficiency. However, challenges regarding model generalizability, explainability, and operational integration into clinical workflows persist, impeding widespread adoption. Aim: This narrative review aims to critically evaluate the current state of AI in cervical cancer diagnostic cytology, identifying trends, key developments, and areas requiring further research. It also explores the potential for AI to improve diagnostic processes, alongside examining international guidelines and consensus on its adoption. Methods: A narrative review was conducted through a comprehensive search of PubMed and Scopus databases. Thirty studies published between 2020 and 2025 were selected based on their relevance. Results: The literature review reveals a growing interest in the application of AI for cervical cancer diagnostics, particularly in the automated interpretation. However, large-scale clinical adoption remains limited. Most studies are experimental or application-based in controlled settings. Consensus efforts and specific recommendations for this domain are still limited and not specific. Key barriers include limited model generalizability, lack of explainability, challenges in integration into clinical workflows, and regulatory and infrastructural constraints. Conclusions: A sustainable and meaningful integration of AI in cervical cancer diagnostics requires a unified framework that addresses both technical challenges and operational needs, supported by context-specific strategies and broader consensus-building efforts. Full article
Show Figures

Figure 1

27 pages, 1431 KB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 933
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

41 pages, 2392 KB  
Review
How Beyond-5G and 6G Makes IIoT and the Smart Grid Green—A Survey
by Pal Varga, Áron István Jászberényi, Dániel Pásztor, Balazs Nagy, Muhammad Nasar and David Raisz
Sensors 2025, 25(13), 4222; https://doi.org/10.3390/s25134222 - 6 Jul 2025
Cited by 1 | Viewed by 2275
Abstract
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. [...] Read more.
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. It highlights the critical challenges in achieving energy efficiency, interoperability, and real-time responsiveness across different domains. The paper reviews key enablers such as LPWAN, wake-up radios, mobile edge computing, and energy harvesting techniques for green IoT, as well as optimization strategies for 5G/6G networks and data center operations. Furthermore, it examines the role of 5G in enabling reliable, ultra-low-latency data communication for advanced smart grid applications, such as distributed generation, precise load control, and intelligent feeder automation. Through a structured analysis of recent advances and open research problems, the paper aims to identify essential directions for future research and development in building energy-efficient, resilient, and scalable smart infrastructures powered by intelligent wireless networks. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

32 pages, 58845 KB  
Article
Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design
by Yuanyuan Li, Lina Zhao, Hao Zheng and Xiaozhou Yang
Land 2025, 14(7), 1393; https://doi.org/10.3390/land14071393 - 2 Jul 2025
Cited by 1 | Viewed by 990
Abstract
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study [...] Read more.
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study takes New York City as a case and systematically investigates small-scale urban cooling strategies by integrating multiple factors, including adjustments to the blue–green ratio, spatial layouts, vegetation composition, building density, building height, and layout typologies. We utilize multi-source geographic data, including LiDAR derived land cover, OpenStreetMap data, and building footprint data, together with LST data retrieved from Landsat imagery, to develop a prediction model based on generative adversarial networks (GANs). This model can rapidly generate visual LST predictions under various configuration scenarios. This study employs a combination of qualitative and quantitative metrics to evaluate the performance of different model stages, selecting the most accurate model as the final experimental framework. Furthermore, the experimental design strictly controls the study area and pixel allocation, combining manual and automated methods to ensure the comparability of different ratio configurations. The main findings indicate that a blue–green ratio of 3:7 maximizes cooling efficiency; a shrub-to-tree coverage ratio of 2:8 performs best, with tree-dominated configurations outperforming shrub-dominated ones; concentrated linear layouts achieve up to a 10.01% cooling effect; and taller buildings exhibit significantly stronger UBGS cooling performance, with super-tall areas achieving cooling effects approximately 31 percentage points higher than low-rise areas. Courtyard layouts enhance airflow and synergistic cooling effects, whereas compact designs limit the cooling potential of UBGS. This study proposes an innovative application of GANs to address a key research gap in the quantitative optimization of UBGS configurations and provides a methodological reference for sustainable microclimate planning at the neighborhood scale. Full article
Show Figures

Figure 1

21 pages, 1723 KB  
Article
Transforming Chiller Plant Efficiency with SC+BAS: Case Study in a Hong Kong Shopping Mall
by Fong Ming-Lun Alan and Li Baonan Nelson
Urban Sci. 2025, 9(7), 253; https://doi.org/10.3390/urbansci9070253 - 2 Jul 2025
Viewed by 2439
Abstract
The imperative for building managers, in the face of high-density urban environments, is to drive existing chiller plants to greater operational efficiency through the application of advanced technological interventions. The case for applying Supervisory Control (SC) and a Building Automation System (SC+BAS) for [...] Read more.
The imperative for building managers, in the face of high-density urban environments, is to drive existing chiller plants to greater operational efficiency through the application of advanced technological interventions. The case for applying Supervisory Control (SC) and a Building Automation System (SC+BAS) for optimizing chiller plants is the subject of investigation here, through the lens of a typical commercial shopping mall in the high-density infrastructure of Hong Kong. The application of SC+BAS falls into the realm of advanced Trim/Respond algorithms coupled with sophisticated sequencing algorithms that allow for refined optimization of the chiller operations in response to the dynamic demands of urban infrastructure. The SC+BAS features an array of optimizations specifically for the chiller plant. Incentive parameters such as cooling capacity, energy usage, and Coefficient of Performance (COP) were thoroughly studied through 12 months’ worth of data, before and after the implementation of the SC+BAS. Empirical observations indicate a statistically significant 17.6% energy usage decrease, coupled with a 15.3% decrease in the related energy expenditure costs. Furthermore, the environmental impact is calculated, with an estimated 61.1 tons reduction in the amount of CO2 emissions, hence emphasizing the capacity for SC+BAS in offsetting the carbon footprint for commercial buildings. These data prove convincingly that the implementation of SC+BAS can increase the energy efficiency in chiller plants in commercial buildings, supporting the overall sustainability of the urban infrastructure. In turn, the authors suggest other areas for optimization through the advanced sequencing of chillers and demand-based cooling strategies. This highlights the ability of SC+BAS in creating more economical and green building operations regarding urban microclimates, occupant behavior patterns, and interactivity with the power grid, leading ultimately to the holistic optimization of chiller plant performance within the urban framework. Full article
Show Figures

Figure 1

22 pages, 33852 KB  
Article
Research on Actuator Control System Based on Improved MPC
by Qingjian Zhao, Qinghai Zhang, Shuang Zhao, Xiaoqian Zhang, Shilei Lu, Yang Guo, Liqiang Song and Zhengxu Zhao
Actuators 2025, 14(6), 263; https://doi.org/10.3390/act14060263 - 27 May 2025
Viewed by 715
Abstract
To improve the control accuracy and interference resistance of actuator control systems in complex environments, a complete actuator control system solution has been designed. The system uses an STM32 controller as the core processing unit, integrating high-precision position sensors to build a multi-level [...] Read more.
To improve the control accuracy and interference resistance of actuator control systems in complex environments, a complete actuator control system solution has been designed. The system uses an STM32 controller as the core processing unit, integrating high-precision position sensors to build a multi-level control architecture. An improved model predictive control algorithm is proposed, which introduces extended state observers and multi-objective optimization strategies to estimate system states and external disturbances in real-time, achieving precise disturbance compensation. Experimental and test results show that, under electromagnetic interference and mechanical vibration conditions, the system’s stability and robustness are significantly enhanced, with error fluctuations of less than 0.03 mm, dynamic response time of 4.82 s, overshoot of 1.5%, steady-state error of 0.14 mm, and energy consumption reduced by 15%, all better than MPC, fuzzy control, and PID control methods under similar conditions. This research provides a comprehensive solution for hardware design and algorithm optimization in actuator control for industrial automation and precision manufacturing. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

26 pages, 2812 KB  
Article
Dynamic Modeling, Trajectory Optimization, and Linear Control of Cable-Driven Parallel Robots for Automated Panelized Building Retrofits
by Yifang Liu and Bryan P. Maldonado
Buildings 2025, 15(9), 1517; https://doi.org/10.3390/buildings15091517 - 1 May 2025
Viewed by 1355
Abstract
The construction industry faces a growing need for automation to reduce costs, improve accuracy and productivity, and address labor shortages. One area that stands to benefit significantly from automation is panelized prefabricated building envelope retrofits, which can improve a building’s energy efficiency in [...] Read more.
The construction industry faces a growing need for automation to reduce costs, improve accuracy and productivity, and address labor shortages. One area that stands to benefit significantly from automation is panelized prefabricated building envelope retrofits, which can improve a building’s energy efficiency in heating and cooling interior spaces. In this paper, we propose using cable-driven parallel robots (CDPRs), which can effectively lift and handle large objects, to install these panels. However, implementing CDPRs presents significant challenges because of their nonlinear dynamics, complex trajectory planning, and precise control requirements. To tackle these challenges, this work focuses on a new application of established control and trajectory optimization theories in a CDPR simulation of a building envelope retrofit under real-world conditions. We first model the dynamics of CDPRs, highlighting the critical role of damping in system behavior. Building on this dynamic model, we formulate a trajectory optimization problem to generate feasible and efficient motion plans for the robot under operational and environmental constraints. Given the high precision required in the construction industry, accurately tracking the optimized trajectory is essential. However, challenges such as partial observability and external vibrations complicate this task. To address these issues, a Linear Quadratic Gaussian control framework is applied, enabling the robot to track the optimized trajectories with precision. Simulation results show that the proposed controller enables precise end effector positioning with errors under 4 mm, even in the presence of external wind disturbances. Through comprehensive simulations, our approach allows for an in-depth exploration of the system’s nonlinear dynamics, trajectory optimization, and control strategies under controlled yet highly realistic conditions. The results demonstrate the feasibility of CDPRs for automating panel installation and provide insights into their practical deployment. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

Back to TopTop