Robotics, Automation and Digitization in Construction

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Construction Management, and Computers & Digitization".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 5522

Special Issue Editors


E-Mail Website
Guest Editor
Züblin Endowed Junior-Professor, Chair of Digital Transformation in Construction, University of Stuttgart, 70174 Stuttgart, Germany
Interests: renovation; automation; robotics; BIM
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Emeritus Professor Doctor, Chair of Building Realization and Robotics, Technical University of Munich, Munich, Germany
Interests: construction robotics; robotic prefabrication of building components; automated on site construction robotics; ambient integrated robotics for aging society; robot oriented design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Construction sector needs a transformation. There are several reasons. For instance, the productivity rate in Construction is below other sectors such as Manufacturing Industry. Moreover, the Construction sector is facing a lack of personnel in all of its phases, from planning to execution. Finally, the accident rate is very high in Construction. For all these reasons, digitization, automation, and robotics are playing a crucial role in order to gain better conditions and performance in all phases of the construction phases.

This Special Issue entitled “Robotics, Automation, and Digitization in Construction” aims to cover topics related to the technological improvement of Construction in all its phases, such as:

  • Automated Data Acquisition of the Built Environment;
  • Robot Oriented Design in Construction, that facilitates a lean manufacturing and assembly process;
  • Data flow, from data acquisition to on-site works;
  • Robotic Off-site Manufacturing;
  • Robotic On-site Execution and Maintenance;
  • Computational Design Oriented to Robotics.

I look forward to receiving your contributions.

Dr. Kepa Iturralde
Prof. Dr. Thomas Bock
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • robots
  • automation
  • prefabrication
  • robot oriented design
  • data flow
  • data acquisition
  • digitization
  • computational design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 2812 KiB  
Article
Dynamic Modeling, Trajectory Optimization, and Linear Control of Cable-Driven Parallel Robots for Automated Panelized Building Retrofits
by Yifang Liu and Bryan P. Maldonado
Buildings 2025, 15(9), 1517; https://doi.org/10.3390/buildings15091517 - 1 May 2025
Viewed by 372
Abstract
The construction industry faces a growing need for automation to reduce costs, improve accuracy and productivity, and address labor shortages. One area that stands to benefit significantly from automation is panelized prefabricated building envelope retrofits, which can improve a building’s energy efficiency in [...] Read more.
The construction industry faces a growing need for automation to reduce costs, improve accuracy and productivity, and address labor shortages. One area that stands to benefit significantly from automation is panelized prefabricated building envelope retrofits, which can improve a building’s energy efficiency in heating and cooling interior spaces. In this paper, we propose using cable-driven parallel robots (CDPRs), which can effectively lift and handle large objects, to install these panels. However, implementing CDPRs presents significant challenges because of their nonlinear dynamics, complex trajectory planning, and precise control requirements. To tackle these challenges, this work focuses on a new application of established control and trajectory optimization theories in a CDPR simulation of a building envelope retrofit under real-world conditions. We first model the dynamics of CDPRs, highlighting the critical role of damping in system behavior. Building on this dynamic model, we formulate a trajectory optimization problem to generate feasible and efficient motion plans for the robot under operational and environmental constraints. Given the high precision required in the construction industry, accurately tracking the optimized trajectory is essential. However, challenges such as partial observability and external vibrations complicate this task. To address these issues, a Linear Quadratic Gaussian control framework is applied, enabling the robot to track the optimized trajectories with precision. Simulation results show that the proposed controller enables precise end effector positioning with errors under 4 mm, even in the presence of external wind disturbances. Through comprehensive simulations, our approach allows for an in-depth exploration of the system’s nonlinear dynamics, trajectory optimization, and control strategies under controlled yet highly realistic conditions. The results demonstrate the feasibility of CDPRs for automating panel installation and provide insights into their practical deployment. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

28 pages, 8461 KiB  
Article
From Digital to Real: Optimised and Functionally Integrated Shotcrete 3D Printing Elements for Multi-Storey Structures
by Robin Dörrie, Stefan Gantner, Fatemeh Salehi Amiri, Lukas Lachmayer, Martin David, Tom Rothe, Niklas Freund, Ahmad Nouman, Karam Mawas, Oguz Oztoprak, Philipp Rennen, Virama Ekanayaka, André Hürkamp, Stefan Kollmannsberger, Christian Hühne, Annika Raatz, Klaus Dröder, Dirk Lowke, Norman Hack and Harald Kloft
Buildings 2025, 15(9), 1461; https://doi.org/10.3390/buildings15091461 - 25 Apr 2025
Viewed by 247
Abstract
The construction industry is facing a dual challenge: an increasing demand for new buildings on the one hand and the urgent need to drastically reduce emissions and waste on the other. One promising field of research to face these challenges comprises additive manufacturing [...] Read more.
The construction industry is facing a dual challenge: an increasing demand for new buildings on the one hand and the urgent need to drastically reduce emissions and waste on the other. One promising field of research to face these challenges comprises additive manufacturing (AM) technologies. Through these advanced methods, digital workflows between design and fabrication can be implemented to optimise the form and structure, unlocking new architectural freedom while ensuring sustainability and efficiency. However, to drive this transformation in construction, the new technologies must be investigated in large-scale applications. One of these fast-emerging AM techniques is Shotcrete 3D Printing (SC3DP). The present research documents the 1:1 scale manufacturing process, from digital to real, of a building section utilising SC3DP. A workflow and production steps, spanning from design over manufacturing to assembly, are introduced. The architectural design, reinforced by computational methods, was iteratively refined to adapt to manufacturing constraints. The paper also emphasises the importance of a digital twin in ensuring seamless data integration and real-time adjustments during construction. By incorporating reinforcement techniques such as short rebar insertion and robotic fibre winding, this study demonstrates the structural capabilities achievable with SC3DP. In summary, the implementation of comprehensive digital workflows utilising computational design, automated data acquisition and data flow, as well as robotic fabrication is presented to demonstrate the potential of AM methods in construction. Furthermore, this paper provides a perspective on potential future research paths and opportunities inherent in leveraging the innovative SC3DP technique. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

22 pages, 13566 KiB  
Article
Exploring Architectural Units Through Robotic 3D Concrete Printing of Space-Filling Geometries
by Meryem N. Yabanigül and Derya Gulec Ozer
Buildings 2025, 15(1), 60; https://doi.org/10.3390/buildings15010060 - 27 Dec 2024
Viewed by 1268
Abstract
The integration of 3D concrete printing (3DCP) into architectural design and production offers a solution to challenges in the construction industry. This technology presents benefits such as mass customization, waste reduction, and support for complex designs. However, its adoption in construction faces various [...] Read more.
The integration of 3D concrete printing (3DCP) into architectural design and production offers a solution to challenges in the construction industry. This technology presents benefits such as mass customization, waste reduction, and support for complex designs. However, its adoption in construction faces various limitations, including technical, logistical, and legal barriers. This study provides insights relevant to architecture, engineering, and construction practices, guiding future developments in the field. The methodology involves fabricating closed architectural units using 3DCP, emphasizing space-filling geometries and ensuring structural strength. Across three production trials, iterative improvements were made, revealing challenges and insights into design optimization and fabrication techniques. Prioritizing controlled filling of the unit’s internal volume ensures portability and ease of assembly. Leveraging 3D robotic concrete printing technology enables precise fabrication of closed units with controlled voids, enhancing speed and accuracy in production. Experimentation with varying unit sizes and internal support mechanisms, such as sand infill and central supports, enhances performance and viability, addressing geometric capabilities and fabrication efficiency. Among these strategies, sand filling has emerged as an effective solution for internal support as it reduces unit weight, simplifies fabrication, and maintains structural integrity. This approach highlights the potential of lightweight and adaptable modular constructions in the use of 3DCP technologies for architectural applications. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

20 pages, 6934 KiB  
Article
Research on the System Design and Target Recognition Method of the Rebar-Tying Robot
by Ruocheng Feng, Youquan Jia, Ting Wang and Hongxiao Gan
Buildings 2024, 14(3), 838; https://doi.org/10.3390/buildings14030838 - 20 Mar 2024
Cited by 5 | Viewed by 2251
Abstract
In the construction industry, the construction process of rebar tying is highly dependent on manual operation, which leads to a wide range of work areas, high labor intensity, and limited efficiency. Therefore, robot technology for automatic rebar tying has become an inevitable trend [...] Read more.
In the construction industry, the construction process of rebar tying is highly dependent on manual operation, which leads to a wide range of work areas, high labor intensity, and limited efficiency. Therefore, robot technology for automatic rebar tying has become an inevitable trend in on-site construction. This study aims to develop a planar rebar-tying robot that can achieve autonomous navigation, precise positioning, and efficient tying on a plane rebar mesh without boundaries. Our research covers the overall design of the robot control systems, the selection of key hardware, the development of software platforms, and the optimization of core algorithms. Specifically, to address the technical challenges of accurately recognizing the tying position and status, we propose an innovative two-stage identification method that combines a depth camera and an industrial camera to obtain image information about the area to be tied. The effectiveness of the planar rebar-tying robot system, including the recognition method proposed in this study, was verified by experiments on a rebar mesh demonstration platform. The following application of our robot system in the field of the Shenyang Hunnan Science and Technology City Phase IV project achieved satisfactory performance. It is shown that this research has made a unique and significant innovation in the field of automatic rebar tying. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

Back to TopTop